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Abstract

Multi-modal metric learning has recently received considerable attention since many real-world
applications involve multi-modal data. However, there is relatively little study on the generalization
analysis of the associated learning algorithms. In this paper, we bridge this theoretical gap by de-
riving its generalization bounds using Rademacher complexities. In particular, we establish a general
Rademacher complexity result by systematically analyzing the behavior of the resulting models with
various regularizers, e.g., ℓp-regularizer on the modality level with either a mixed (q, s)-norm or a
Schatten norm on each modality. Our results and the discussion followed help to understand how the
prior knowledge can be exploited by selecting an appropriate regularizer.

1 Introduction

Nowadays, many real-world applications often involve multi-modal data, where the information comes
from multiple heterogeneous sources [12, 15]. For example, songs in music social networks can be described
by acoustic features (e.g., rhythm and timbre), semantic features (e.g., tags, lyrics), and social features
(e.g., collaborative filtering, biographies) [12]. The definition of distance metric in the multi-modal context
becomes a key challenge since it forms the foundation for many machine learning algorithms such as k-
nearest neighbor classification and k-means clustering. Simply applying single-modal metric learning
methods in this case may lead to suboptimal performance since it fails to consider the dependency and
complementarity relationships among different modalities [14, 16]. Also, the notion of distance metric may
not be consistent on distinct modalities and thus there is generally no obvious approach to establishing
a unified metric space which optimally integrates heterogeneous data [12]. Therefore, it is imperative to
find a more involved strategy to tackle multi-modal data.

In view of this, McFee and Lanckriet [12] pioneered the work on multi-modal metric learning and
they applied the multiple kernel learning technique for integrating heterogeneous data into a single unified
similarity space. Xia et al. [15] proposed an online learning method to tackle the efficiency and scalability
issues of the multi-modal learning framework in [12]. Xie and Xing [16] provided a principled methodology
to embed data of arbitrary modalities into a single latent space where the distance metric can be learned
under proper supervision. Wu et al. [14] used deep learning and online learning techniques to learn flexible
nonlinear similarity functions for images with multi-modal representations. Empirical studies show that
these methods work well in measuring dissimilarity/similarity for multi-modal data [12, 14, 15, 16].

Despite various multi-modal metric learning methods have been proposed, the theoretical result on their
generalization performance remains largely un-explored. In this paper, we will initiate this exploration by
presenting a novel generalization analysis for multi-modal metric learning. Specifically, we provide a novel
Rademacher complexity in the context of multi-modal metric learning and show how it can be used to study
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the generalization performance for the resulting models. We also propose a general technique to estimate
Rademacher complexities for matrix classes characterized by strongly convex functions, which allows us to
systematically derive generalization error bounds under different regularization terms, e.g., ℓp-regularizer
at the modality level with trace norm (or more generally Schatten norms) on each modality [12, 15], and
ℓp-regularizer at the modality level with Frobenius norm (or more generally mixed (q, s)-norms) on each
modality [14]. Our investigation also helps to illuminate the influence of the regularizer on the behavior
of the resulting models. Our results generalize and refine the generalization analysis in [4] which was
developed for the single-modal metric learning.

This paper is organized as follows. Section 2 formulates multi-modal metric learning problems. In
Section 3, we establish the generalization bounds and present a general result on estimating Rademacher
complexities. Section 4 provides the application of these results to some specific regularization learning
schemes. Section 5 exhibits some discussions. Conclusions and possible directions for future research are
presented in Section 6.

Notations. Let Nn = {1, 2, . . . , n} for any n ∈ N. The positive part of x ∈ R is denoted by [x]+ :=

max(x, 0). For any matrices X,Y of the same size, the inner product is ⟨X,Y ⟩ := Tr(X⊤Y ), where Tr(·)
denotes the trace of a matrix and X⊤ means the transpose of X. For any norm ∥ · ∥ on matrices, its
dual norm is defined by ∥M∥∗ = sup{⟨X,M⟩ : ∥X∥ ≤ 1}. The ℓq-norm of a vector x ∈ Rn is given
by ∥x∥q = (

∑
i∈Nn

|xi|q)1/q, q ≥ 1. Given a matrix M , we denote by σ(M) the vector consisting of the
singular values of M in a non-increasing order, and the q-Schatten norm ∥M∥S(q) is defined as the ℓq-norm
of σ(M). For any A = (α1, α2, . . . , αm) ∈ Rn×m, the mixed (q, s)-norm of A is

∥A∥q,s :=
∥∥(∥α1∥q, ∥α2∥q . . . , ∥αm∥q

)∥∥
s
, ∀q, s ≥ 1.

For any d,m ∈ N, introduce the following class of matrices of size d× (md):

Sd×(md) := {(M1, . . . ,Mm) :M l ∈ Rd×d, (M l)⊤ =M l, l ∈ Nm}.

We call (p, q) a dual pair (or p is the dual exponent of q) if 1/p + 1/q = 1. A norm ∥ · ∥ is said to
be absolutely symmetric if ∥x∥ remains invariant under arbitrary permutations and sign changes of the
components of x. All the norms considered in this paper are absolutely symmetric. For a convex function
f , we denote by f∗ its Fenchel conjugate, i.e.,

f∗(x) := sup
y
[⟨x, y⟩ − f(y)].

2 Formulation of multi-modal metric learning

In the context of multi-modal metric learning, we assume that each input data hasm different modalities
and each modality is encoded by a vector of length d (If the vector lengths of different modalities are not
equal, one can simply add extra zeros to those modality vectors with smaller length). Therefore, every
input data x has the following group structure:

x = ((x1)⊤, (x2)⊤, . . . , (xm)⊤)⊤ ∈ X ⊂ Rdm, xl ∈ Rd,

where X is called the input space. Suppose that the side-information available to us on x is its label
y ∈ Y := {0, 1} and denote by Z := X × Y the sample space. Given a sequence of training data
z := {zi = (xi, yi) ∈ Z, i ∈ Nn} drawn independently from a measure ρ on Z, our aim is to learn a
distance metric so that any two samples with the same label admit a relatively small distance and those
two lying in different classes admit a relatively large distance [17, 20]. For any two samples xi, xj , suppose
that the distance on the l-th modality is the Mahalanobis distance captured by a positive semi-definite
matrix M l ∈ Sd×d:

dM l(xli, x
l
j) := (xli − xlj)

⊤M l(xli − xlj).

We now catenate these sub-matricesM1, . . . ,Mm into a large matrixM ∈ Sd×(md) with the block structure
M := (M1,M2, . . . ,Mm). Then the total distance between xi and xj is defined as the sum of the distances
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over all modalities:

dM (xi, xj) :=
m∑
l=1

dM l(xli, x
l
j) =

m∑
l=1

(xli − xlj)
⊤M l(xli − xlj). (1)

For any pair of examples (xi, xj), let r(yi, yj) = 1 if yi = yj and r(yi, yj) = −1 otherwise. Similar to the
work in [4], we use the following empirical error to quantify the empirical behavior of (M, b) ∈ Sd×(md)×R

Ez(M, b) :=
1

n(n− 1)

∑
i,j∈Nn,i̸=j

[1 + r(yi, yj)(dM (xi, xj)− b)]+,

where the introduction of the offset term b is based on the intuition that those samples with distances
smaller than an appropriately chosen threshold b are likely to lie in the same class and vice versa [6].

We consider here the regularization learning framework where a penalty ∥M∥2 is added to the empirical
error to control the complexity of M :

(Mz, bz) := arg min
M∈Sd×(md),b∈R

[Ez(M, b) + λ∥M∥2]. (2)

This formulation is a natural extension of the single-modal metric learning algorithm considered in [4, 6].
Furthermore, equation (2) is also analogous to the multi-modal metric learning algorithms developed in
[12, 14], with slight difference in the construction of the loss term: we use class labels as the side information
to express distance constraints, while [12, 14] used the relative comparisons. The trade-off between the
penalty and the empirical error in equation (2) is controlled by the regularization parameter λ > 0. Here
restricting M in Sd×(md) guarantees that the distance metric is symmetric, i.e.,

dM (xi, xj) = dM (xj , xi), ∀xi, xj ∈ X .

When the model (Mz, bz) is derived from equation (2), the true error (expected risk) to measure its quality
is defined by

E(M, b) :=

∫∫
[1 + r(y, y

′
)(dM (x, x

′
)− b)]+dρ(x, y)dρ(x

′
, y

′
).

3 Generalization errors and Rademacher complexities

In this section, we try to estimate the generalization error of (Mz, bz) via a notion called Rademacher
complexity [2]. We also provide a general result (Theorem 5) on Rademacher complexities when the
involved class can be controlled by a strongly convex function. We begin our discussion with a lemma
controlling the solution space of the regularization problem (2). This result was originally established in
the single-modal case, however, it is not hard to show that this is also the case for multi-modal metric
learning with exactly the same proof.

Lemma 1 ([4]). Suppose that the sample z contains at least two examples with the same label and at least
two examples with different labels, then any minimizer (Mz, bz) of problem (2) would satisfy the inequality

∥Mz∥ ≤ 1/
√
λ,

|bz| ≤ 1 + max
i ̸=j

dMz(xi, xj).

It is clear that the assumptions of Lemma 1 are very mild. Indeed, the first part would be automatically
satisfied if n ≥ 3, while the violation of the second assumption means that all examples would belong to
the same class, for which there is nothing interesting to learn as the side information accessible to us is the
same for all examples. In the sequel, without loss of generality we will always assume that the assumptions
of Lemma 1 hold true.
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For any xi, xj ∈ X and any M = (M1, . . . ,Mm) ∈ Rd×(md), the distance metric dM (xi, xj) satisfies
the following inequality

dM (xi, xj) =
m∑
l=1

⟨
(xli − xlj)(x

l
i − xlj)

⊤,M l
⟩

=
⟨(
(x1i − x1j )(x

1
i − x1j )

⊤, . . . , (xmi − xmj )(xmi − xmj )⊤
)
,M

⟩
≤ ∥

(
(x1i − x1j )(x

1
i − x1j )

⊤, . . . , (xmi − xmj )(xmi − xmj )⊤
)
∥∗∥M∥

≤ X∗∥M∥,

(3)

where
X∗ := sup

x,x′∈X
∥
(
(x1 − (x

′
)1)(x1 − (x

′
)1)⊤, . . . , (xm − (x

′
)m)(xm − (x

′
)m)⊤

)
∥∗. (4)

Combining the above inequality with Lemma 1 together, it is straightforward to see that the regular-
ization minimizer (Mz, bz) always falls into the class:

F := {(M, b) ∈ Sd×(md) × R : ∥M∥ ≤ 1/
√
λ, |b| ≤ 1 +X∗∥M∥}.

The generalization performance of (Mz, bz) defined in equation (2) relies heavily on the uniform deviation
between the empirical risk and expected risk with (M, b) from the class F . As we will see soon, this
deviation can be further controlled by the Rademacher complexity of the class {M ∈ Sd×(md) : ∥M∥ ≤
1/
√
λ}.

Definition 1 (Rademacher Complexity [2]). Let M ⊂ Sd×(md) be a class of matrices and let {σi : i =
1, . . . , ⌊n

2 ⌋} be a sequence of independent Rademacher random variables, that is, Pr{σi = +1} = Pr{σi =
−1} = 1/2. Let x = {x1, . . . , xn} ⊂ X ⊂ Rmd be an i.i.d. sequence of examples. Then, define

R̂n(M) :=
1

⌊n
2 ⌋

Eσ sup
M∈M

⌊n
2 ⌋∑

i=1

σidM (xi, x⌊n
2 ⌋+i).

The Rademacher complexity for multi-modal metric learning is defined as its expectation: Rn(M) =

ER̂n(M).

The following lemma, attributed to Ledoux and Talagrand [10], provides a contraction property of
Rademacher averages. The version we present here can be found in Theorem A.6 of [1].

Lemma 2. Let T ⊂ Rn and let ψi : R → R, i = 1, . . . , n be functions such that

|ψi(µ)− ψi(v)| ≤ |µ− v|, ∀µ, v ∈ R.

Assume that {σi}i∈Nn is a sequence of i.i.d. Rademacher variables. Then we have

E sup
t∈T

n∑
i=1

ψi(ti)σi ≤ E sup
t∈T

n∑
i=1

tiσi.

We are now ready to present a result showing how the Rademacher complexity defined in Definition
1 is related to the generalization analysis of multi-modal metric learning. Theorem 3 is an extension of
Theorem 3 in [4] from single-modal metric learning to the multi-modal case and it can be derived using a
similar strategy. For completeness, we provide here a sketched proof only highlighting the distinction from
the original one developed in the single-modal case. It should be noted that the Rademacher complexity
used here differs from the following complexity introduced in [4]

R
′

n =
1

⌊n
2 ⌋

E
∥∥ ⌊n

2 ⌋∑
i=1

σi(xi − x⌊n
2 ⌋+i)(xi − x⌊n

2 ⌋+i)
⊤∥∥

∗.

Also, the constant factor in the inequality (5) is better than the corresponding one in [4] as we use here a
better structural result (Lemma 2) on Rademacher complexities.

4



Theorem 3. Let (Mz, bz) be the solution of the regularization formulation (2). Then, for any 0 < δ < 1,
there holds, with probability at least 1− δ, that

E(Mz, bz)− Ez(Mz, bz) ≤ 2Rn({M ∈ Sd×(md) : ∥M∥ ≤ λ−1/2}) + 2(1 +X∗/
√
λ)

1 + 2
√
log 1

δ√
⌊n
2 ⌋

. (5)

Proof. For any z = (x, y), z
′
= (x

′
, y

′
), let

ΦM,b(z, z
′
) = [1 + r(y, y

′
)(dM (x, x

′
)− b)]+.

For any (M, b) ∈ F , it follows from inequality (4) that

sup
z,z′

sup
(M,b)∈F

ΦM,b(z, z
′
) ≤ 1 + sup

z,z′
sup

(M,b)∈F
dM (x, x

′
) + b

≤ 2(1 +X∗/
√
λ).

Using this inequality and analyzing analogously to Cao et al. [4], the following inequality holds with
probability 1− δ

sup
(M,b)∈F

[E(M, b)− Ez(M, b)] ≤ Ez sup
(M,b)∈F

[E(M, b)− Ez(M, b)] + 4(1 +X∗/
√
λ)

(
2 log(1/δ)

n

)1/2

. (6)

Cao et al. [4] essentially derived the following inequality (equation (17) in [4])

Ez sup
(M,b)∈F

[E(M, b)− Ez(M, b)] ≤ 2Ez,σ
1

⌊n
2 ⌋

sup
(M,b)∈F

⌊n
2 ⌋∑

i=1

σiΦM,b(zi, z⌊n
2 ⌋+i),

which, coupled with the contraction property of Rademacher averages (Lemma 2 with ψi(t) = [1 +

r(yi, y⌊n
2 ⌋+i)t]+), can be further upper bounded by

2Ez,σ
1

⌊n
2 ⌋

sup
(M,b)∈F

⌊n
2 ⌋∑

i=1

σi[dM (xi, x⌊n
2 ⌋+i)− b]

= 2Rn({M ∈ Sd×(md) : ∥M∥ ≤ λ−1/2}) + 2(1 +X∗/
√
λ)

⌊n
2 ⌋

Eσ

∣∣ ⌊n
2 ⌋∑

i=1

σi
∣∣

≤ 2Rn({M ∈ Sd×(md) : ∥M∥ ≤ λ−1/2}) + 2(1 +X∗/
√
λ)√

⌊n
2 ⌋

.

The proof is complete if we plug the above inequality into equation (6).

As exhibited in Theorem 3, the estimation of Rademacher complexities is quite important to under-
stand the behavior of (Mz, bz). We now provide a general result on Rademacher complexity bounds by
reformulating the distance metric (1) as the inner product between two matrices. Our discussion is based
on the elegant Lemma 4 developed in [7], which provides a general technique for tackling Rademacher
complexities of linear function classes using the concept of strong convexity.

Definition 2. A function f : X → R is said to be β-strongly convex w.r.t. a norm ∥ · ∥ iff ∀x, y ∈ X and
∀α ∈ (0, 1), we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− β

2
α(1− α)∥x− y∥2.

Lemma 4 ([7]). Let f be a β-strongly convex function w.r.t. a norm ∥ · ∥ and assume that f∗(0) = 0.
Suppose that W = {w : f(w) ≤ fmax} and ∥x∥∗ ≤ X,∀x ∈ X . Then, for any x̄1, . . . , x̄n ∈ X , we have

Eσ

[
sup
w∈W

1

n

n∑
i=1

σi⟨w, x̄i⟩

]
≤ X

√
2fmax

βn
,

where {σi}i∈Nn is a sequence of i.i.d. Rademacher variables.
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Theorem 5. Let F be a β-strongly convex function w.r.t. a norm ∥ · ∥ on Rd×(md) such that F ∗(0) = 0.
Suppose that F (M) ≤ fmax,∀M ∈ M and X∗ is defined as equation (4), then we have that Rn(M) ≤
X∗

√
2fmax
β⌊n

2 ⌋ .

Proof. Using the identity ⟨(X1, . . . , Xm), (Y 1, . . . , Y m)⟩ =
∑m

l=1⟨X l, Y l⟩, the Rademacher complexity can
be expressed as:

R̂n(M) =
1

⌊n
2 ⌋

Eσ sup
M∈M

⌊n
2 ⌋∑

i=1

σidM (xi, xi+⌊n
2 ⌋)

=
1

⌊n
2 ⌋

Eσ sup
M∈M

⌊n
2 ⌋∑

i=1

σi

m∑
l=1

(xli − xli+⌊n
2 ⌋)

⊤M l(xli − xli+⌊n
2 ⌋)

=
1

⌊n
2 ⌋

Eσ sup
M∈M

⌊n
2 ⌋∑

i=1

σi

m∑
l=1

⟨
(xli − xli+⌊n

2 ⌋)(x
l
i − xli+⌊n

2 ⌋)
⊤,M l

⟩

=
1

⌊n
2 ⌋

Eσ sup
M∈M

⌊n
2 ⌋∑

i=1

σi

⟨(
(x1i − x1i+⌊n

2 ⌋)(x
1
i − x1i+⌊n

2 ⌋)
⊤, . . . , (xmi − xmi+⌊n

2 ⌋)(x
m
i − xmi+⌊n

2 ⌋)
⊤),M⟩

.

Applying Lemma 4 with w =M and

x̄i =
(
(x1i − x1i+⌊n

2 ⌋)(x
1
i − x1i+⌊n

2 ⌋)
⊤, . . . , (xmi − xmi+⌊n

2 ⌋)(x
m
i − xmi+⌊n

2 ⌋)
⊤)

yields that R̂n(M) ≤ X∗

√
2fmax
β⌊n

2 ⌋ . The proof is complete if we take the expectation on both sides.

4 Estimating Rademacher Complexities

This section is devoted to illustrating how the general Rademacher complexity bounds built in Theorem
5 can be applied to the derivation of generalization error bounds for different regularization schemes. As
the Mahalanobis matrix for multi-modal metric learning has the structure M = (M1, . . . ,Mm), it is
natural to use the group norm

∥M∥Ψ,Φ :=
∥∥(∥M1∥Ψ, ∥M2∥Ψ, . . . , ∥Mm∥Ψ

)∥∥
Φ

(7)

in the regularization framework (2). Here Ψ is a norm on Rd×d and Φ is a norm on Rm. The relationship
among different modalities is reflected by imposing the norm Φ on the vector (∥M l∥Ψ)l∈Nm . If Φ is
absolutely symmetric, then the group norm ∥ · ∥Ψ,Φ is indeed a norm on Rd×(md) and its dual norm is

∥M∥Ψ∗,Φ∗ =
∥∥(∥M1∥Ψ∗ , ∥M2∥Ψ∗ , . . . , ∥Mm∥Ψ∗

)∥∥
Φ∗
,

where Ψ∗ is the dual norm of Ψ and Φ∗ is the dual norm of Φ [8]. This paper always assumes that Φ is
an ℓp-norm ∥ · ∥p, p ≥ 1, while Ψ can be either a mixed (q, s)-norm ∥ · ∥q,s, q, s ≥ 1 or a Schatten norm
∥ · ∥S(p), p ≥ 1.

4.1 Strong convexity of group norms

The key point to apply Theorem 5 here is to construct an appropriate strongly convex function for
different instantiations of the group norm ∥ · ∥Ψ,Φ. The following theorem provides us a powerful tool
to achieve this aim, and it shows that the square of a group norm can be strongly smooth under some
suitable conditions.

Definition 3. An everywhere differentiable function f : X → R is said to be β-strongly smooth w.r.t.
∥ · ∥ if ∀x, y ∈ X we have

f(x+ y) ≤ f(x) + ⟨▽f(x), y⟩+ β

2
∥y∥2.
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Theorem 6 (Group Norms [9]). Let Ψ,Φ be absolutely symmetric norms on Rd×d and Rm, respectively.
Let Φ2 ◦

√
: Rm → Rm denote the following function

(Φ2 ◦
√
)(x) := Φ2(

√
|x1|, . . . ,

√
|xm|).

Suppose Φ2 ◦
√

is a norm on Rm. Furthermore, assume that both Ψ2 and Φ2 are β1- and β2-strongly
smooth w.r.t. Ψ and Φ, respectively. Then, the function ∥·∥2Ψ,Φ is (β1+β2)-strongly smooth w.r.t. ∥·∥Ψ,Φ.

Remark 1. Kakade et al. [9] proved Theorem 6 when Ψ is a vector norm rather than a matrix norm.
However, a closer look of their proof shows that this is also the case when Ψ is a norm on Rd×d.

Furthermore, the following lemma provides a dual property between convexity and smoothness: a
function is strongly convex w.r.t. a norm if and only if its Fenchel conjugate is strongly smooth w.r.t. the
dual norm.

Lemma 7 (Convexity/Smoothness Duality). Assume that f is a closed and convex function. Then f is
β-strongly convex w.r.t. a norm ∥ · ∥ if and only if f∗ is 1

β -strongly smooth w.r.t. the dual norm ∥ · ∥∗.

Theorem 6, coupled with the convexity/smoothness duality, allows us to derive the following strongly
convex functions for different instantiations of the group norm ∥ · ∥Ψ,Φ.

Corollary 1. Let 1 < r1, r2, p ≤ 2 be three positive numbers. Then the function F (M) = 1
2∥M∥2(r1,r2),p is

(s1 + s2 + q− 3)−1-strongly convex w.r.t. ∥ · ∥(r1,r2),p, where si is the dual exponent of ri, i = 1, 2 and q is
the dual exponent of p.

Proof. Introduce the norm Ψ = ∥ · ∥s1,s2 on Rd×d and the norm Φ = ∥ · ∥q on Rm. Kakade et al. [8]
indicated that Ψ2 is 2(s1 + s2 − 2)-strongly smooth w.r.t. Ψ and Φ2 is 2(q − 1)-strongly smooth w.r.t.
Φ. Furthermore, the fact q ≥ 2 guarantees that Φ2 ◦

√
= ∥ · ∥2q ◦

√
= ∥ · ∥q/2 is a norm on Rm. Also,

both Ψ and Φ are absolutely symmetric. Thus, an application of Theorem 6 shows that 1
2∥ · ∥2Ψ,Φ is

(s1+s2+q−3)-strongly smooth w.r.t. ∥ ·∥Ψ,Φ. Lemma 17 in [8] implies that ∥ ·∥Ψ,Φ is a norm on Rd×(md)

with dual norm ∥ · ∥Ψ∗,Φ∗ = ∥ · ∥(r1,r2),p.
For any norm ∥ ·∥, we know that the Fenchel conjugate of 1

2∥ ·∥
2 is 1

2∥ ·∥
2
∗, where ∥ ·∥∗ is the dual norm

of ∥ · ∥ [3]. Consequently, the Fenchel conjugate of the function 1
2∥M∥2Ψ,Φ is F (M) = 1

2∥M∥2Ψ∗,Φ∗
. Putting

the above discussions together and noticing the convexity/smoothness duality (Lemma 7), we immediately
derive that F (M) is (s1 + s1 + q − 3)−1-strongly convex w.r.t. the norm ∥ · ∥(r1,r2),p.

Corollary 2. Let 1 < r, p ≤ 2 be any two numbers. Then the function F (M) = 1
2∥M∥2S(r),p is min((q +

1)−1, (s+q−2)−1)-strongly convex w.r.t. ∥·∥S(r),p, where q and s are dual exponents of p and r, respectively.

Proof. It is known [8] that ∥ · ∥2S(s) is 2max{2, s− 1}-strongly smooth w.r.t. the norm ∥ · ∥S(s). From the
proof of Corollary 1, one can see that the conditions of Theorem 6 hold for the choice Ψ = ∥·∥S(s) on Rd×d

and Φ = ∥ · ∥q on Rm. Consequently, the function 1
2∥ · ∥

2
Ψ,Φ is max(q+1, s+ q− 2)-strongly smooth w.r.t.

∥ · ∥Ψ,Φ. Now Lemma 7 shows that F (M) = 1
2∥M∥2S(r),p =

(
1
2∥M∥2S(s),q

)∗ is min((q+1)−1, (s+ q− 2)−1)-
strongly convex w.r.t. ∥ · ∥S(r),p.

4.2 Specific examples

Here we estimate Rademacher complexities for different matrix regularization schemes. Our discussion
covers the regularizer ∥ · ∥S(1),1 used in [12, 15] and the regularizer ∥ · ∥(2,2),2 exploited in [14]. For brevity,
we first introduce the following notations for any s, q ≥ 1:

X(s,s),q := sup
x,x′∈X

∥
(
(x1 − (x

′
)1)(x1 − (x

′
)1)⊤, . . . , (xm − (x

′
)m)(xm − (x

′
)m)⊤

)
∥(s,s),q,

XS(s),q := sup
x,x′∈X

∥
(
(x1 − (x

′
)1)(x1 − (x

′
)1)⊤, . . . , (xm − (x

′
)m)(xm − (x

′
)m)⊤

)
∥S(s),q,

Xs,q := sup
x,x′∈X

∥(x1 − (x
′
)1, x2 − (x

′
)2, . . . , xm − (x

′
)m)∥s,q.
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The following two lemmas show that the discussion of X(s,s),q and XS(s),q all reduce to the estimation of
Xs,q.

Lemma 8. Let s, q ≥ 1 be two arbitrary numbers. For any x1, . . . , xm ∈ Rd, we have

∥(x1(x1)⊤, x2(x2)⊤, . . . , xm(xm)⊤)∥(s,s),q = ∥(x1, x2, . . . , xm)∥2s,2q.

Proof. Denote by xl,i the i-th component of the vector xl. From the definition of group norm, we know
that

∥(x1(x1)⊤, x2(x2)⊤, . . . , xm(xm)⊤)∥(s,s),q =

 m∑
l=1

( d∑
i=1

d∑
j=1

|xl,i|s|xl,j |s
)q/s1/q

=

 m∑
l=1

( d∑
i=1

|xl,i|s
)q/s( d∑

j=1

|xl,j |s
)q/s1/q

=

[
m∑
l=1

∥xl∥2qs

]1/q

= ∥(x1, x2, . . . , xm)∥2s,2q.

This completes the proof.

Lemma 9. Let s, q ≥ 1 be two arbitrary numbers. For any x1, . . . , xm ∈ Rd, we have

∥(x1(x1)⊤, x2(x2)⊤, . . . , xm(xm)⊤)∥S(s),q = ∥(x1, x2, . . . , xm)∥22,2q.

Proof. Denote by xl,i the i-th component of the vector xl. For any l ∈ Nm, note that the matrix xl(xl)⊤

is of rank one. Consequently, the matrix xl(xl)⊤ has only one non-zero eigenvalue, which is identical to
its trace

∑d
i=1(x

l,i)2 = ∥xl∥22. That is,

∥xl(xl)⊤∥S(s) = ∥xl∥22, ∀s ≥ 1.

Now, the group norm has the following equivalent form:

∥
(
x1(x1)⊤, x2(x2)⊤, . . . , xm(xm)⊤

)
∥S(s),q =

[
m∑
l=1

∥xl(xl)⊤∥qS(s)

]1/q

=

[
m∑
l=1

∥xl∥2q2

]1/q

= ∥
(
x1, x2, . . . , xm

)
∥22,2q.

In the remainder of this section, we always assume that (p, q), (r, s) are two dual pairs.

Example 1. Consider the class

MS(1),1 = {M ∈ Rd×(md) : ∥M∥S(s),1 ≤MS(1),1}.

Then, the Rademacher complexity satisfies the inequality

Rn(MS(1),1) ≤ e2X2
2,∞MS(1),1

√
logm+ log d

⌊n
2 ⌋

.
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Proof. For any r, p ∈ (1, 2], Corollary 2 indicates that the function F (M) := 1
2∥M∥2S(r),p is min((q +

1)−1, (s + q − 2)−1)-strongly convex w.r.t. ∥ · ∥S(r),p. Note that any M ∈ MS(1),1 meets the inequality
F (M) ≤ 1

2∥M∥2S(1),1 ≤ 1
2M

2
S(1),1. Moreover, for any W = (W1, . . . ,Wm) ∈ Rd×(md), we have the following

inequality connecting ∥W∥S(s),q with ∥W∥S(∞),∞:

∥W∥S(s),q ≤ m1/q sup
1≤l≤m

∥W l∥S(s) ≤ m1/qd1/s sup
1≤l≤m

∥W l∥S(∞)

= m1/qd1/s∥W∥S(∞),∞.

Thus, there holds that XS(s),q ≤ m1/qd1/sXS(∞),∞. Applying Theorem 5 with ∥·∥ = ∥·∥S(r),p and Lemma
9 here, we have

Rn(MS(1),1) ≤ XS(s),q

√
2 supM∈MS(1),1

F (M)

min((q + 1)−1, (s+ q − 2)−1)⌊n
2 ⌋

≤ m1/qd1/sXS(∞),∞MS(1),1

√
max(q + 1, s+ q − 2)

⌊n
2 ⌋

= m1/qd1/sX2
2,∞MS(1),1

√
max(q + 1, s+ q − 2)

⌊n
2 ⌋

.

As the above inequality holds for any q, s ≥ 2, plugging q = logm and s = log d into the above inequality
completes the proof 1.

Example 2. For the class

MS(r),1 = {M ∈ Rd×(md) : ∥M∥S(r),1 ≤MS(r),1}, r ∈ (1, 2],

we have the following Rademacher complexity bound:

Rn(MS(r),1) ≤ eX2
2,∞MS(r),1

√
logm+max(1, s− 2)

⌊n
2 ⌋

.

Proof. Introduce the function F (M) := 1
2∥M∥2S(r),p, 1 < p ≤ 2. Corollary 2 implies that F (M) is min((q+

1)−1, (s+ q − 2)−1)-strongly convex w.r.t. ∥ · ∥S(r),p, while its magnitude over MS(r),1 can be controlled
by

F (M) =
1

2
∥M∥2S(r),p ≤ 1

2
∥M∥2S(r),1 ≤ 1

2
M2

S(r),1, ∀M ∈ MS(r),1.

Moreover, we have XS(s),q ≤ m1/qXS(s),∞. Putting the above discussion together and applying here
Theorem 5 with ∥ · ∥ = ∥ · ∥S(r),p, we derive the inequality

Rn(MS(r),1) ≤ XS(s),q

√
2 supM∈MS(r),1

F (M)

min((q + 1)−1, (s+ q − 2)−1)⌊n
2 ⌋

≤ XS(s),∞MS(r),1m
1/q

√
max(q + 1, s+ q − 2)

⌊n
2 ⌋

.

Taking the choice q = logm and using Lemma 9 to control XS(s),∞, we obtain the promised inequality.

Example 3. The Rademacher complexity of

M(1,1),1 = {M ∈ Rd×(md) : ∥M∥(1,1),1 ≤M(1,1),1}

satisfies the inequality

Rn(M(1,1),1) ≤ eX2
∞,∞M(1,1),1

√
log(md2)− 1

⌊n
2 ⌋

.

1If either m < e2 or d < e2, one can simply take q = 2 or s = 2 to get similar Rademacher complexity bounds. For
simplicity, here and in the following examples we omit the discussions for these situations.

9



Proof. Consider the function F (M) := 1
2∥M∥2(p,p),p, p ∈ (1, 2]. It is known [9] that F (M) is (p−1)-strongly

convex w.r.t. ∥ · ∥(p,p),p. Furthermore, we have

X(q,q),q ≤ (md2)1/qX(∞,∞),∞ = (md2)1/qX2
∞,∞.

Consequently, there holds that

Rn(M(1,1),1) ≤ (md2)1/qX2
∞,∞M(1,1),1

√
q − 1

⌊n
2 ⌋

.

Plugging q = log(md2) into the above inequality yields the desired bound.

Example 4. Suppose that the class M(r,r),1 is defined by

M(r,r),1 = {M ∈ Rd×(md) : ∥M∥(r,r),1 ≤M(r,r),1}, r ∈ (1, 2].

Then the Rademacher complexity satisfies the inequality

Rn(M(r,r),1) ≤ eX2
s,∞M(r,r),1

√
s− 2 + logm

⌊n
2 ⌋

.

Proof. Corollary 1 indicates that for any p ∈ (1, 2], the function F (M) := 1
2∥M∥2(r,r),p is (s + q − 2)−1-

strongly convex w.r.t. ∥ · ∥(r,r),p 2. For any M ∈ M(r,r),1, there holds that

F (M) =
1

2
∥M∥2(r,r),p ≤ 1

2
∥M∥2(r,r),1 ≤ 1

2
M2

(r,r),1.

Moreover, it can be directly verified that X(s,s),q ≤ m1/qX(s,s),∞. Consequently, applying Theorem 5 with
∥ · ∥ = ∥ · ∥(r,r),p implies that

Rn(M(r,r),1) ≤ X(s,s),q

√
2 supM∈M(r,r),1

F (M)

(s+ q − 2)−1⌊n
2 ⌋

≤ m1/qX(s,s),∞M(r,r),1

√
s+ q − 2

⌊n
2 ⌋

.

Taking the assignment q = logm in the above inequality, we have

Rn(M(r,r),1) ≤ eX(s,s),∞M(r,r),1

√
s− 2 + logm

⌊n
2 ⌋

.

The proof is complete if we apply Lemma 8 here to bound X(s,s),∞.

For simplicity, we now provide Rademacher complexity bounds for MS(r),p and M(2,2),2 without pre-
senting the proof.

Example 5. The Rademacher complexity of

MS(r),p = {M ∈ Rd×(md) : ∥M∥S(r),p ≤MS(r),p}

is upper bounded by

Rn(MS(r),p) ≤ X2
2,2qMS(r),p

√
max(q + 1, s+ q − 2)

⌊n
2 ⌋

.

Example 6. The Rademacher complexity of

M(2,2),2 = {M ∈ Rd×(md) : ∥M∥(2,2),2 ≤M(2,2),2}

satisfies the inequality

Rn(M(2,2),2) ≤ X2
2,4M(2,2),2

√
1

n
.
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class M(1,1),1 M(2,2),2 M(r,r),1, r ∈ (1, 2]

bound X2
∞,∞M(1,1),1

√
log(md2)

n X2
2,4M(2,2),2

√
1
n X2

s,∞M(r,r),1

√
s+logm

n

Table 1: Rademacher complexity bounds for mixed (q, s)-norm based regularizers.

class MS(r),1, r ∈ (1, 2] MS(1),1 MS(r),p

bound X2
2,∞MS(r),1

√
logm+s

n X2
2,∞MS(1),1

√
logm+log d

n X2
2,2qMS(r),p

√
s+q
n

Table 2: Rademacher complexity bounds for Schatten-norm based regularizers.

Combining the above Rademacher complexity bounds and Theorem 3, it is straightforward to derive the
generalization bounds for problem (2) under different regularizers. For brevity, we omit these discussions
here. We now summarize in Table 1 and 2 the Rademacher complexity bounds in Examples 1-6, ignoring
the exact constant factors here.

Remark 2. Our discussion extends the generalization analysis in [4] from single-modal context to multi-
modal case. Furthermore, our result is more general in that we provide a universal technique to approach
Rademacher complexities, while the complexity bounds in [4] are somewhat disperse and the deduction
process largely relies on the specific classes considered.

Remark 3. In the context of single-modal learning, Cao et al. [4] derived the Rademacher complexity

bounds of the form supx,x′ ∥x−x′∥22·n−1/2 for the regularizer ∥·∥2,2, and of the form supx,x′ ∥x−x′∥2∞
√

log d
n

for the regularizer ∥ · ∥1,1. It can be clearly seen that our results recover these bounds when m = 1.
Furthermore, we also provide Rademacher complexity bounds for Schatten-norm based regularizers, which
were not addressed in [4].

5 Discussions

In this section, we discuss the implication of our generalization analysis for multi-modal metric learning
and its extension to similarity learning.

Multi-modal similarity learning. Although we only focus our attention to metric learning here, it
should be mentioned that these discussions can be transformed in a straightforward manner to the setting
of multi-modal similarity learning. Indeed, one can define the following empirical error for similarity
learning:

Ẽz(M, b) :=
1

n(n− 1)

∑
i,j∈Nn,i̸=j

[1− r(yi, yj)(sM (xi, xj)− b)]+,

where the similarity function sM (xi, xj) is

sM (xi, xj) :=
m∑
l=1

(xli)
⊤M lxlj .

One can also define the generalization error Ẽ(M, b) in a similar manner. Suppose that the model (M̃z, b̃z)

is obtained by minimizing the regularization functional (2) except that the involved distance function
dM (xi, xj) is replaced by the similarity function sM (xi, xj). For any matrix class M, one can define the
following Rademacher complexity for multi-modal similarity learning:

R̃n(M) :=
1

⌊n
2 ⌋

E sup
M∈M

⌊n
2 ⌋∑

i=1

σisM (xi, x⌊n
2 ⌋+i).

2In the case r1 = r2 = r, the constant (s1 + s2 + q− 3)−1 in Corollary 1 can be slightly improved to (s+ q− 2)−1, which
is due to the fact that 1

2
∥ · ∥2

(s,s)
is (s− 1)-strongly smooth w.r.t. ∥ · ∥(s,s).
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Analogous to Theorem 3, with probability 1−δ, the generalization error of (M̃z, b̃z) satisfies the inequality

Ẽ(M̃z, b̃z)− Ẽz(M̃z, b̃z) ≤ 2R̃n({M ∈ Sd×(md) : ∥M∥ ≤ λ−1/2}) + 2(1 + X̃∗/
√
λ)

1 + 2
√
log 1

δ

⌊n
2 ⌋

,

where
X̃∗ := sup

x,x′∈X

∥∥((x′
)1(x1)⊤, (x

′
)2(x2)⊤, . . . , (x

′
)m(xm)⊤

)∥∥
∗.

Furthermore, for any class M meeting the conditions of Theorem 5, one can derive the Rademacher
complexity bound: R̃n(M) ≤ X̃∗

√
2fmax
β⌊n

2 ⌋ . There also holds similar Rademacher complexity bounds for the
specific classes considered in Section 4.2. For example, for the class MS(1),1 we have

R̃n(MS(1),1) ≤ e2X̃2
2,∞MS(1),1

√
logm+ log d

⌊n
2 ⌋

,

where X̃2,∞ := supx∈X ∥(x1, x2, . . . , xm)∥2,∞.

Learning under weighted distance metric. In some multi-modal learning problems, it may happen
that some modalities are more important than the others in doing the prediction. In such cases, it would
be a better strategy to consider a weighted summation when incorporating the sub-distances associated
to each modality together. That is, the distance metric is of the form:

dM,µ(xi, xj) :=
m∑
l=1

µldM l(xli, x
l
j) =

m∑
l=1

µl(x
l
i − xlj)

⊤M l(xli − xlj), (8)

where µl > 0 represents our belief on the importance of the l-th modality. Such strategy was considered
by Xia et al. [15]. Although this distance function largely enriches the flexibility of multi-modal metric
learning, our previous discussion for the unweighted case can be easily extended to tackle problem (8).
Specifically, for each x ∈ X , we introduce a related vector

x̄ =
(√
µ1(x

1)⊤,
√
µ2(x

2)⊤, . . . ,
√
µm(xm)⊤

)⊤
.

Now it is obvious that
dM,µ(x, x

′
) = dM,1(x̄, x̄

′
), ∀x, x

′
∈ X ,

where 1 is the vector with all components equal to 1. Consequently, to study the generalization performance
of (Mz, bz) under the distance function dM,µ, it suffices to consider the unweighted distance metric dM,1

with the transformed input data x̄.

Comparison of bounds with different regularizers. We now compare the generalization bounds for
multi-modal metric learning under different regularization terms. To this end, assume the best model is
(M∗, b∗) := argminM,b E(M, b) and the classes MΨ,Φ in Examples 1-6 are of the form MΨ,Φ = {M ∈
Rd×(md) : ∥M∥Ψ,Φ ≤ ∥M∗∥Ψ,Φ} with different instantiations of Ψ,Φ.

Our first remark is that the Frobenius-norm based regularizers (regularizers with Frobenius-norm on
each modality) are preferable to the Schatten-norm based regularizers (regularizers with Schatten-norm
on each modality). Indeed, for any r ∈ (1, 2], the Rademacher complexity bounds for MS(r),1 and M(2,2),1

satisfy the inequality

X2
2,∞∥M∗∥S(r),1

√
logm+ s

n
≥ X2

2,∞∥M∗∥S(2),1

√
logm+ 2

n
(since r ≤ 2)

= X2
2,∞∥M∗∥(2,2),1

√
logm+ 2

n
,

where we have used the fact that ∥·∥S(2) = ∥·∥2,2. That is, our Rademacher complexity bounds for M(2,2),1

are always smaller than that for MS(r),1, r ∈ (1, 2]. The same argument also holds for the classes MS(r),p
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and M(2,2),p, p ≥ 1, r ∈ (1, 2]. The underlying reason for this phenomenon is that, for any rank-one matrix,
its Schatten norm is reduced to the Frobenius norm.

We now consider the choice among M(1,1),1,M(2,2),2 and M(2,2),1. Both ∥M∗∥(1,1),1 and ∥M∗∥(2,2),2
ignore the group structure of M∗ and boil down to the ℓ1- and ℓ2-norm on M∗, respectively. While
∥M∗∥(2,2),1 behaves like an ℓ1-norm on the vector (∥M l∥(2,2))l∈Nm and thus assumes a structural sparsity.
This has the effect of “variable section” in the sense that some unrelated modalities are removed. Unlike
the case for Schatten-norm based regularizers, as we will see, none of these regularizes dominates the rest
and which one should be used depends on a priori information of the concrete problem. Specifically, on
the one hand the norm on M∗ satisfies the inequality

∥M∗∥(2,2),2 ≤ ∥M∗∥(2,2),1 ≤ ∥M∗∥(1,1),1.

On the other hand, we have the following relationship for X:

X2,4 ≥ X2,∞ ≥ X∞,∞.

Thus, considering either ∥M∗∥Ψ,Φ or XΨ∗,Φ∗ while ignoring the other would lead to a reverse preference
on the choice of regularizers. Only if we know how ∥M∗∥Ψ,Φ grows versus XΨ∗,Φ∗ can we make a right
selection. For example, if we know that M∗ is sparse and the input vector x is dense, then the regularizer
∥ · ∥(1,1),1 would be the best choice. On the other hand, if M∗ admits a structural sparsity (i.e., the vector
(∥(M∗)1∥2,2, . . . , ∥(M∗)m∥2,2) is sparse) and the input vector x admits a structural density (i.e., the vector
(∥x1∥, . . . , ∥xm∥) is dense), then both ∥M∗∥(2,2),1 and X2,∞ would be small and thus ∥ · ∥(2,2),1 may be an
appropriate regularizer.

6 Conclusions

Motivated by the growing interest on multi-modal metric learning recently, we initiate the theoretical
work on studying their generalization performance in this paper. We establish its generalization bounds
using the concept of Rademacher complexity. By restating the distance metric (1) as the inner product of
two matrices, we also provide a general result on estimating Rademacher complexities. We demonstrate
the potential of this general Rademacher complexity bound by deriving novel generalization bounds for
different regularizers (e.g., ∥ · ∥S(r),p, ∥ · ∥(r,r),p) under the unified framework. Below we mention some
interesting problems for future research.

Firstly, in many applications the metric built on the metric learning stage serves as the foundation on
which other machine learning algorithms (e.g., classification, regression) are subsequently implemented.
Thus, it would be very interesting to establish the theoretical link between the generalization bounds of
metric learning and the generalization performance of the resulting classifiers/regressors. Guo and Ying [5]
developed such a connection by showing that regularized similarity learning can guarantee the goodness
of the resulting classifier in the single-modal setting. In future, we would like to investigate how their
discussion can be extended to the multi-modal case.

Secondly, we only consider linear metric learning in this paper. It remains a challenging question to
study the generalization bounds for nonlinear multi-modal metric learning, where each modality is encoded
by a kernel function and the Mahalanobis metric is searched in the feature space [12, 13]. A probable
starting point would be the techniques developed for the kernel learning problems [11, 18, 19].
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