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Abstract

In this paper we consider online mirror descent (OMD), a class of scalable

online learning algorithms exploiting data geometric structures through mirror

maps. Necessary and sufficient conditions are presented in terms of the step

size sequence {ηt}t for the convergence of OMD with respect to the expected

Bregman distance induced by the mirror map. The condition is limt→∞ ηt =

0,
∑∞
t=1 ηt = ∞ in the case of positive variances. It is reduced to

∑∞
t=1 ηt =

∞ in the case of zero variance for which linear convergence may be achieved

by taking a constant step size sequence. A sufficient condition on the almost

sure convergence is also given. We establish tight error bounds under mild

conditions on the mirror map, the loss function, and the regularizer. Our results

are achieved by some novel analysis on the one-step progress of OMD using

smoothness and strong convexity of the mirror map and the loss function.

Keywords: Mirror descent, Online learning, Bregman distance, Convergence

analysis, Learning theory

1. Introduction1

Analyzing and processing big data in various applications has raised the2

need of scalable learning algorithms using geometric structures of data. One3

approach for scalability in learning theory is stochastic gradient descent and4

online learning. In this paper we are interested in online mirror descent, a class5
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of scalable learning algorithms exploiting possible data geometric structures6

such as sparsity.7

Mirror descent is a powerful extension of the classical gradient descent [3]

by relaxing the Hilbert space structure and using a mirror map Ψ : W → R to

capture geometric properties of data from a Banach space W. In this paper we

consider W = Rd endowed with a norm ‖ · ‖ which might be a non-Euclidean

norm, allowing us to capture non-Euclidean geometric structures of data from

Rd. To introduce the mirror descent and online mirror descent, we assume that

the mirror map Ψ is Fréchet differentiable and strongly convex. The Fréchet

differentiability means the existence of a bounded linear operator ∇Ψ(w) :W →

R at every w ∈ W satisfying Ψ(w+ x)−Ψ(w)−∇Ψ(w)x = o(‖x‖). The strong

convexity of Ψ means the existence of some σΨ > 0 such that

DΨ(w̃, w) := Ψ(w̃)−Ψ(w)− 〈w̃ − w,∇Ψ(w)〉 ≥ σΨ

2
‖w̃ − w‖2, ∀w̃, w ∈ W,

where 〈w̃−w,∇Ψ(w)〉 is the linear operator ∇Ψ(w) acting on w̃−w ∈ W. With8

this number σΨ, we say Ψ is σΨ-strongly convex (with respect to the norm ‖·‖),9

which we assume throughout the paper. The quantity DΨ(w̃, w) is called the10

Bregman distance between w̃ and w.11

Given a differentiable and convex objective function F : W → R, a mirror12

descent algorithm approximates a minimizer of F by a sequence {wt}t∈N ⊂ W13

defined with an initial vector w1 ∈ W and the gradient descent method in terms14

of the gradient ∇F of F as15

∇Ψ(wt+1) = ∇Ψ(wt)− ηt∇F (wt), t ∈ N, (1.1)

where {ηt}t is a sequence of positive numbers called the step size sequence. Here16

the gradient descent is performed in the dual (W∗ = Rd, ‖ · ‖∗) of the primal17

space (W, ‖ · ‖) since the map ∇Ψ :W →W∗ is well-defined, and invertible due18

to the strong convexity of Ψ. Useful instantiations [11] of the mirror map Ψ19

include the choice of p-norm divergence Ψ = Ψp with 1 < p ≤ 2 defined by20

Ψp(w) = 1
2‖w‖

2
p where ‖·‖p is the p-norm defined by ‖w‖p =

(∑d
i=1 |w(i)|p

)1/p

21

for w = (w(1), . . . , w(d)) ∈ Rd. The mirror descent algorithm with Ψ = Ψ222
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recovers the gradient descent.23

In machine learning, the objective function F is often the regularized risk24

F (w) = EZ [f(w,Z)] of the linear function x→ 〈w, x〉 induced by the action of25

x ∈ W∗ on w ∈ W, where f(w,Z) = φ(〈w,X〉, Y ) + r(w) is the regularized loss26

function induced by a loss function φ : R × R → R+ and a convex regularizer27

r : W → R+, and EZ denotes the expectation with respect to the random28

sample Z = (X,Y ) drawn from a Borel probability measure ρ on Z := X × Y29

with an input space X ⊂ W∗ and an output space Y ⊂ R. In the remainder30

of this paper, we focus on F of the form F (w) = EZ [f(w,Z)] with f given in31

terms of φ and r.32

In many machine learning applications, training examples {zt = (xt, yt) ∈33

Z}t become available in a sequential manner. In such situations, instead of34

computing F (w), we use the sample zt at the t-th iteration of the mirror descent35

to compute the gradient ∇w[f(wt, zt)] of f(w, zt) with respect to the variable36

w at wt. This leads to the online mirror descent (OMD) which extends the37

classical online gradient descent algorithm by replacing Ψ2 with a mirror map38

Ψ to capture data geometric structures beyond Hilbert spaces. It generates a39

sequence {wt}t ⊂ W with an initial vector w1 ∈ W by performing the stochastic40

mirror descent in the dual space as41

∇Ψ(wt+1) = ∇Ψ(wt)− ηt∇w[f(wt, zt)], t ∈ N. (1.2)

We always assume that the loss function φ is convex and differentiable with42

respect to the first variable (with the partial derivative φ′). When Ψ = Ψ2 and43

r(w) = λ‖w‖22 with λ ≥ 0, the OMD (1.2) becomes the classical online learning44

algorithm with the iteration wt+1 = wt − ηt[φ′(〈wt, xt〉, yt)xt + 2λwt] generated45

by the stochastic gradient descent method in the Hilbert space W∗ = W. The46

special choice φ(a, y) = 1
2 (a−y)2 of the unregularized least squares loss function47

with r = 0 corresponds to the general randomized Kaczmarz algorithm [9] given48

by49

wt+1 = wt − ηt[〈wt, xt〉 − yt]xt, t ∈ N. (1.3)

It was shown in [22] that when infw∈W EZ
[
(Y − 〈w,X〉)2

]
> 0, the randomized50
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Kaczmarz algorithm (1.3) converges in expectation if and only if limt→∞ ηt = 051

and
∑∞
t=1 ηt =∞.52

This paper presents necessary and sufficient conditions for the conver-53

gence of the OMD (1.2) with respect to the Bregman distance DΨ. It extends54

the results in [22, 29] from Ψ2 to a general mirror map Ψ beyond the Hilbert55

space framework. Our conditions are stated in terms of the step size sequence56

{ηt}t, under some mild assumptions on the mirror map Ψ, the regularized loss57

function f , and the probability measure ρ. Throughout the paper, we assume58

that the training examples {zt}t are sampled independently from the probability59

measure ρ on Z.60

We illustrate our main results to be stated in the next section by presenting61

an example corresponding to the special choice of the unregularized least squares62

loss and a strongly smooth mirror map or the p-norm divergence Ψp (which, as63

shown in Proposition 7, is not strongly smooth). Here we say that Ψ is LΨ-64

strongly smooth (with respect to the norm ‖ · ‖) with LΨ > 0 if DΨ(w̃, w) ≤65

LΨ

2 ‖w̃ − w‖2 for any w, w̃ ∈ W. Examples of strongly smooth mirror maps66

include Ψ2 and a mirror map Ψ(ε,λ) with parameters ε > 0, λ > 0 defined in67

the literature of compressed sensing [7] as Ψ(ε,λ)(w) = λ
∑d
i=1 gε(w(i))+ 1

2‖w‖
2
2,68

where gε(ξ) = ξ2

2ε for |ξ| ≤ ε and |ξ|− ε
2 for |ξ| > ε. The mirror map Ψp plays an69

important role in the mirror descent method and it can be applied to capturing70

geometric structures of data for learning problems in huge dimensions. For71

example, the specific choice with p = 1 + 1
log d gives convergence bounds with72

only a logarithmic dependence on the dimension d, see [11]. The mirror map73

Ψp is strongly convex with σΨp = p− 1 when the norm of W takes the p-norm74

‖ · ‖ = ‖ · ‖p (see [2]), and by the norm equivalence, σΨp > 0 for other norms.75

With the special choice of the unregularized least squares loss f(w, z) =76

1
2 (〈w, x〉 − y)2, the OMD (1.2) takes a special form77

∇Ψ(wt+1) = ∇Ψ(wt)− ηt[〈wt, xt〉 − yt]xt, t ∈ N. (1.4)

The following result for this example will be proved in Section 6. Denote by78

X> the transpose of X ∈ W∗.79
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Theorem 1. Assume supx∈X ‖x‖∗ <∞, EZ [Y 2] <∞, and that the covariance80

matrix CX = EZ [XX>] is positive definite. Consider the OMD (1.4) and denote81

wρ = C−1
X EZ [XY ]. Let Ψ be either some p-norm divergence Ψ = Ψp with82

1 < p ≤ 2 or a strongly smooth mirror map.83

(a) Assume infw∈W EZ [|Y − 〈w,X〉| ‖X‖∗] > 0. Then limt→∞ Ez1,...,zt−1 [‖wρ−84

wt‖2] = 0 if and only if85

lim
t→∞

ηt = 0 and

∞∑
t=1

ηt =∞. (1.5)

Furthermore, if Ψ is strongly smooth and limt→∞ ηt = 0, then there exist86

some T̃1 ∈ N and C̃ > 0 such that Ez1,...,zT−1
[‖wρ − wT ‖2] ≥ C̃T−1 for87

T ≥ T̃1. If we take ηt = 4
(t+1)σ for some appropriate σ > 0 (given in the88

proof), then Ez1,...,zT−1
[‖wρ − wT ‖2] = O

(
T−1

)
.89

(b) Assume wρ 6= w1,EZ [|Y − 〈wρ, X〉| ‖X‖∗] = 0 and for some κ > 0, ηt ≤90

σΨ

(2+κ)R2 . Then limt→∞ Ez1,...,zt−1
[‖wρ − wt‖2] = 0 if and only if

∑∞
t=1 ηt =91

∞. Furthermore, if Ψ is strongly smooth and ηt ≡ η1 <
σΨ

2R2 , then there92

exist c̃1, c̃2 ∈ (0, 1) such that93

(
c̃1
)T ‖wρ−w1‖2 ≤ Ez1,...,zT−1

[‖wρ−wT ‖2] ≤
(
c̃2
)T ‖wρ−w1‖2, ∀T ∈ N.

(1.6)

(c) If the step size sequence satisfies94

∞∑
t=1

ηt =∞ and

∞∑
t=1

η2
t <∞, (1.7)

then {‖wρ − wt‖2}t∈N converges to 0 almost surely.95

Part (b) of Theorem 1 is for the case of zero variance with y = 〈wρ, x〉 almost96

surely, meaning that the sampling process has no noise and the target function97

(conditional mean) is linear. It asserts that the OMD with a strongly smooth98

mirror map and a constant step size sequence may converge linearly in this99

case. Part (a) asserts that for the case of positive variances (either the sampling100

process has noise or the target function is nonlinear) the OMD with a strongly101
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smooth mirror map can converge of at most order O( 1
T ) and this order may be102

achieved. This solves a conjecture raised in [22, page 3346] that a convergence103

rate of order O(T−θ) with 1 < θ ≤ 2 is impossible for the randomized Kaczmarz104

algorithm (with Ψ = Ψ2) in the noisy case. Theorem 1 also characterizes the105

convergence in expectation by means of the step size condition
∑∞
t=1 ηt = ∞106

for the case of zero variance and the condition limt→∞ ηt = 0 and
∑∞
t=1 ηt =∞107

for the case of positive variances.108

Our analysis is based on a key identity on measuring the one-step progress of109

OMD by excess Bregman distances, from which lower and upper bounds on the110

one-step progress are established by using strong smoothness and convexity of111

the associated regularized loss functions as well as properties of the mirror map.112

These lower and upper bounds are then used to build necessary and sufficient113

conditions, as well as tight convergence rates.114

This paper is organized as follows. In Section 2 we introduce some mild115

assumptions on the mirror map and the regularized risk. General results on116

convergence of the OMD for the cases with positive variances and zero variance117

are stated in subsection 2.1, and then exemplified with specific mirror maps118

and loss functions in subsections 2.2 and 2.3. We give some discussion and119

comparison with related work in subsection 2.4. In Section 3, we present a key120

identity on the one-step progress of the OMD and sketch the basic idea of our121

analysis. We prove the convergence results in the case of positive variances in122

Section 4, and results in the case of zero variance together with the almost sure123

convergence in Section 5. In Section 6, we prove the explicit results stated in124

Section 1, subsection 2.2 and subsection 2.3. Some simulations are given in125

Section 7 to validate our theoretical results.126

2. Main Results127

In this section we state our main results on necessary and sufficient condi-128

tions for the convergence of OMD (1.2) to a minimizer w∗ = arg minw∈W F (w)129

of the regularized risk F which is assumed to exist throughout the paper.130
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Our discussion requires some mild assumptions on the mirror map Ψ and131

the regularized risk F . On the mirror map, for necessary conditions, we shall132

assume that ∇Ψ is continuous at w∗ and satisfies the following incremental133

condition at infinity.134

Definition 1. We say that ∇Ψ satisfies an incremental condition (of order 1)135

at infinity if there exists a constant CΨ > 0 such that136

‖∇Ψ(w)‖∗ ≤ CΨ(1 + ‖w‖), ∀w ∈ W. (2.1)

We shall show later that the p-norm divergence Ψp with 1 < p ≤ 2 and137

strongly smooth mirror maps satisfy this mild condition.138

For the pair (Ψ, F ), we shall also assume the following condition measuring139

how the convexity of Ψ is controlled by that of F around w∗ with a convex140

function Ω. Recall that w∗ is a minimizer of F on W.141

Definition 2. We say that the convexity of Ψ is controlled by that of F around142

w∗ with a convex function Ω : [0,∞) → R+ satisfying Ω(0) = 0 and Ω(u) > 0143

for u > 0 if the pair (Ψ, F ) satisfies144

〈w∗ − w,∇F (w∗)−∇F (w)〉 ≥ Ω (DΨ(w∗, w)) , ∀w ∈ W. (2.2)

Typical choices of the convex function Ω include Ω(u) = Cuα with α ≥ 1145

and C > 0. In particular, when F is strongly convex and Ψ is strongly smooth,146

condition (2.2) is satisfied with a linear (convex) function Ω(u) = Cu for some147

C > 0. To see this, we notice from the definition of the Bregman distance that148

for a Fréchet differentiable and convex function g : Rd → R, there holds149

Dg(w, w̃) +Dg(w̃, w) = 〈w − w̃,∇g(w)−∇g(w̃)〉, ∀w, w̃ ∈ W. (2.3)

So when F is σF -strongly convex with σF > 0, we have 〈w∗ − w,∇F (w∗) −150

∇F (w)〉 ≥ σF ‖w∗ − w‖2. It follows that (2.2) with Ω(u) = 2σF
LΨ

u is satisfied151

when Ψ is LΨ-strongly smooth.152
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2.1. Statements of general results153

Our first main result, Theorem 2, states a necessary and sufficient condition154

for the convergence of the OMD for the case of positive variances meaning that155

infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0. It also states in Parts (a) and (b) respectively156

that in this case, the OMD cannot achieve convergence rates faster than O(T−1)157

after T iterates, while the best rate O(T−1) may be achieved when Ω(u) = Cu in158

(2.2). This theorem is a consequence of Propositions 11 and 13 to be presented159

in Section 4.160

Theorem 2. Assume infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 and that for some con-161

stant L > 0, f(·, z) is L-strongly smooth for almost every z ∈ Z. Suppose that162

∇Ψ is continuous at w∗ and satisfies the incremental condition (2.1) at infin-163

ity, and that the pair (Ψ, F ) satisfies (2.2) around w∗ with a convex function164

Ω : [0,∞) → R+ satisfying Ω(0) = 0 and Ω(u) > 0 for u > 0. Then for OMD165

(1.2), limt→∞ Ez1,...,zt−1
[DΨ(w∗, wt)] = 0 if and only if the step size sequence166

satisfies (1.5).167

(a) If Ψ is strongly smooth and limt→∞ ηt = 0, then there exist some constants168

t0 ∈ N and C̃ > 0 such that169

Ez1,...,zT−1
[DΨ(w∗, wT )] ≥ C̃

T − t0 + 1
, ∀T ≥ t0. (2.4)

(b) If there exists an σF > 0 such that170

〈w∗ − w,∇F (w∗)−∇F (w)〉 ≥ σFDΨ(w∗, w), ∀w ∈ W. (2.5)

and the step size sequence takes the form ηt = 4
(t+1)σF

, then171

Ez1,...,zT−1
[DΨ(w∗, wT )] = O

(
1

T

)
. (2.6)

We shall see from the proof of Proposition 11 given in Section 4 that the172

continuity of ∇Ψ at w∗ and the incremental condition (2.1) are only required for173

proving limt→∞ ηt = 0 of the necessity, they are not required for the sufficiency174

or for proving
∑
t→∞ ηt = ∞ of the necessity. These conditions are satisfied175

when Ψ is strongly smooth, as shown in Proposition 5 below.176

8



Our second main result, Theorem 3 to be proved in Section 5, states a177

necessary and sufficient condition for the convergence of the OMD for the case178

of zero variance in the sense that EZ [‖∇w[f(w∗, Z)]‖∗] = 0.179

Theorem 3. Assume EZ [‖∇w[f(w∗, Z)]‖∗] = 0 and that for some constant180

L > 0, f(·, z) is L-strongly smooth for almost every z ∈ Z. Suppose that the pair181

(Ψ, F ) satisfies (2.2) around w∗ with a convex function Ω : [0,∞)→ R+ satisfy-182

ing Ω(0) = 0 and Ω(u) > 0 for u > 0. Assume also w1 6= w∗ and that for some183

κ > 0, ηt ≤ σΨ

(2+κ)L for every t ∈ N. Then limt→∞ Ez1,...,zt−1
[DΨ(w∗, wt)] = 0 if184

and only if
∑∞
t=1 ηt =∞. Furthermore, if (2.5) holds and ηt ≡ η1 <

σΨ

2L , then185

DΨ(w∗, w1)

(
1− 2Lη1

σΨ

)T
≤ Ez1,...,zT−1

[DΨ(w∗, wT )] ≤ DΨ(w∗, w1)
(

1− σF η1

2

)T
.

(2.7)

Remark 1. Our results in Theorems 2 and 3 can be extended to the minibatch

setting where a batch of examples {zt,1, . . . , zt,m} are independently drawn from

the probability measure ρ at the t-th iteration. The associated OMD then takes

the form

∇Ψ(wt+1) = ∇Ψ(wt)−
ηt
m

m∑
i=1

∇w
[
f(wt, zt,i)

]
, ∀t ∈ N.

In this setting, the variance of the stochastic gradients will decrease by a factor186

of m. The necessary and sufficient conditions in Theorem 2 and Theorem 3 also187

apply. For the case with positive variances, the right-hand side of both (2.4)188

and (2.6) are required to be divided by m due to the variance reduction effect.189

For the case with zero-variances, the inequality (2.7) remains the same since the190

stochastic gradient at w∗ does not change in the mini-batch setting.191

Remark 2. The variance condition infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 is almost

complementary to the variance condition EZ [‖∇w[f(w∗, Z)]‖∗] = 0. Indeed, if

infw∈W EZ [‖∇w[f(w,Z)]‖∗] = 0 and we assume the infimum can be achieved

at a point w̄ ∈ W, meaning that EZ [‖∇w[f(w̄, Z)]‖∗] = 0. Then we have

∇w[f(w̄, z)] = 0 almost surely and therefore w̄ is a minimizer of F . To see clearly

these variance conditions, suppose the data are drawn according to the equation
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yt = 〈w∗, xt〉+ ε with w∗ ∈ W and ε following the normal distribution N(0, σ2).

Consider the loss function f(w, z) = 1
2

(
〈w, x〉− y

)2
. We assume EX [‖X‖∗] > 0.

It is clear that EZ [XX>w∗ −XY ] = 0 and therefore w∗ = arg minw∈W F (w).

If σ = 0, then it is clear that

EZ [‖∇w[f(w∗, Z)]‖∗] = EZ [|〈w∗, X〉 − Y |‖X‖∗] = 0,

which corresponds to the case with zero variance. On the other hand, if σ > 0,

then for any w ∈ W and x ∈ X we have

EY |X=x

[
‖∇w[f(w,Z)]‖∗

]
= ‖x‖∗EY |X=x

[
|〈w,X〉 − Y |

]
= ‖x‖∗EY |X=x

[
|〈w − w∗, X〉 − ε|

]
≥ σ‖x‖∗Pr

{∣∣〈w − w∗, X〉 − ε∣∣ ≥ σ∣∣X = x
}

= σ‖x‖∗
[
1− Pr

{∣∣〈w − w∗, X〉 − ε∣∣ ≤ σ∣∣X = x
}]

≥ σ‖x‖∗
[
1−

√
2/π

]
,

where the first inequality is due to the Markov’s inequality and the last inequal-

ity is due to following inequality (the density function of the normal distribution

N(0, σ2) takes values in the interval [0, 1√
2πσ

])

Pr
{
|ε− a| ≤ σ

}
≤
√

2/π, ∀a ∈ R.

It then follows that

EZ
[
‖∇w[f(w,Z)]‖∗

]
≥ σ

[
1−

√
2/π

]
EX [‖X‖∗] > 0, ∀w ∈ W.

That is, the case σ > 0 corresponds to exactly the case with positive variances.192

Our last main result, Theorem 4 to be proved in Section 5, provides a suf-193

ficient condition for the almost sure convergence of the OMD by imposing a194

stronger condition with
∑∞
t=1 η

2
t <∞.195

Theorem 4. Assume that for some constant L > 0, f(·, z) is L-strongly smooth196

for almost every z ∈ Z. Suppose that the pair (Ψ, F ) satisfies (2.2) around w∗197

with a convex function Ω : [0,∞) → R+ satisfying Ω(0) = 0 and Ω(u) > 0198

for u > 0. If the step size sequence satisfies the condition (1.7), then we have199

limt→∞DΨ(w∗, wt) = 0 almost surely.200
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2.2. Results with strongly smooth mirror maps and p-norm divergence201

In this subsection, for two classes of mirror maps Ψ and strongly convex202

objective functions F , we state some results to be proved in Section 6 on the203

continuity of ∇Ψ at w∗ and the incremental condition (2.1) at infinity for ∇Ψ,204

and the convexity condition (2.2) of (Ψ, F ).205

The first class of mirror maps are strongly smooth ones.206

Proposition 5. If Ψ is strongly smooth, then ∇Ψ is continuous everywhere207

and satisfies the incremental condition (2.1) at infinity. Furthermore, if F is208

strongly convex, (2.2) is satisfied for a linear convex function Ω(u) = CΨ,Lu209

with some CΨ,L > 0.210

The second class of mirror maps are the p-norm divergence Ψ = Ψp with211

1 < p ≤ 2. For the case p = 2, we have ∇Ψ2(w) = w, DΨ2
(w̃, w) = 1

2‖w − w̃‖
2
2212

for w, w̃ ∈ W and Ψ2 is strongly smooth. So Proposition 5 applies.213

Proposition 6. Consider the p-norm divergence Ψ = Ψp with 1 < p < 2. Then214

∇Ψp is continuous everywhere and satisfies the incremental condition (2.1) with215

CΨp = 1. Moreover, we have216

‖∇Ψp(w)‖∗ = ‖w‖p, ∀w ∈ W (2.8)

and for any w̃, w ∈ W, there holds217

DΨp(w̃, w) ≤
(

(2‖w̃‖p)2−p
+ ‖w̃‖p−1

p + 1
)(
‖w̃ − w‖2p + ‖w̃ − w‖min{p,3−p}

p

)
.

(2.9)

Denote τp = 2
min{p,3−p} ∈ (1, 2]. For any w̃ ∈ W, we have218

‖w̃ − w‖2p ≥ BpΩp
(
DΨp(w̃, w)

)
, ∀w ∈ W, (2.10)

where Ωp : [0,∞)→ [0,∞) is the convex function depending on p defined by219

Ωp (u) =

 u+ 1
τp
− 1, if u ≥ 1,

1
τp
uτp , if 0 ≤ u < 1,

(2.11)
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and Bp is the constant depending on ‖w̃‖p and p given by220

Bp = min

{(
2 (2‖w̃‖p)2−p

+ 2 ‖w̃‖p−1
p + 2

)−1

,(
2 (2‖w̃‖p)2−p

+ 2 ‖w̃‖p−1
p + 2

)−τp }
.

If F is σF -strongly convex with respect to the norm ‖ · ‖p, then the pair (Ψp, F )

satisfies (2.2) around w∗ with the convex function Ω : R+ → R+ given by

Ω(u) = σFBpΩp(u), u ∈ [0,∞).

0 0.5 1 1.5
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0.2

0.4

0.6

0.8

1

1.2

1.4

u

Ωp(u)

 

 
p = 4

3

p = 3
2

p = 2

Figure 1: Plots of the convex function Ωp with p = 4
3

(red line), p = 3
2

(blue line) and p = 2

(black line).

We remark that the convex function Ω2 defined by (2.11) with p = 2 is a221

Huber loss [17]. Figure 1 gives the plots of the function Ωp with p = 4
3 , p = 3

2222

and p = 2.223

Following Proposition 6, a natural question to ask is whether the p-norm224

divergence is strongly smooth (that is, whether (2.10) holds with Ωp (u) = Cu225

for some C > 0). When d = 1, Ψp(w) = 1
2w

2 = Ψ2(w) is strongly smooth.226

When d > 1, the answer is negative, as shown in the following proposition to227

be proved in the appendix.228

Proposition 7. For d > 1, the p-norm divergence Ψ = Ψp with 1 < p < 2 is229

not strongly smooth.230
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2.3. Explicit results with special loss functions for learning231

In this subsection we state explicit results on the convergence of the OMD232

associated with the regularized loss function f(w, z) = φ(〈w, x〉, y)+λ‖w‖22 with233

λ > 0 and the norm ‖ ·‖ = ‖ ·‖2 when the loss function φ has a Lipschitz contin-234

uous derivative. Common examples of such loss functions [17, 8, 30] include the235

least squares loss φ(a, y) = 1
2 (a−y)2, the logistic loss φ(a, y) = log(1+exp(−ay))236

or φ(a, y) = 1/(1 + eay), the 2-norm hinge loss φ(a, y) = (max{0, 1− ay})2
, and237

the Huber loss Ω2 defined by (2.11) with p = 2.238

The following explicit result will be proved in Section 6.239

Theorem 8. Assume supx∈X ‖x‖∗ <∞, ‖ · ‖ = ‖ · ‖2, and the derivative φ′ of240

the convex loss function φ : R× R→ R+ satisfies the Lipschitz condition241

`φ := sup
u 6=v∈R,y∈Y

|φ′(u, y)− φ′(v, y)|
|u− v|

<∞. (2.12)

Then the regularized loss function f(w, z) = φ(〈w, x〉, y) + λ‖w‖22 with some242

λ > 0 is 2(`φR
2 +λ)-strongly smooth for every z ∈ Z. The objective function F243

is also 2(`φR
2 + λ)-strongly smooth, and is 2λ-strongly convex. The conclusion244

of Theorem 1 with wρ replaced by w∗ holds for the OMD (1.2) with Ψ being245

either some p-norm divergence Ψ = Ψp with 1 < p ≤ 2 or a strongly smooth246

mirror map.247

2.4. Comparison and discussion248

In the special Hilbert space setting with Ψ = Ψ2, there is a large learning

theory literature on the convergence of stochastic gradient descent (SGD) or

online gradient descent (OGD). We first review some related work on condi-

tions for the convergence in expectation. Convergence of SGD/OGD in repro-

ducing kernel Hilbert spaces (RKHSs) was discussed in [28, 32] for regression

and [33, 34] for classification. Under uniform boundedness assumptions of {wt}t,

it was shown in [33] that a sufficient condition for the convergence of regularized

SGD/OGD in expectation is the step size condition (1.5). Such a result was
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recently established for online regularized pairwise learning in [14]. For unregu-

larized SGD/OGD applied to non-strongly convex and strongly smooth objec-

tive functions, it was shown in [34] that limT→∞ Ez1,...,zT−1
[F (wT )] = F (w∗) if

the step size satisfies the condition (1.7). All the above mentioned discussions

on SGD/OGD considered sufficient conditions for the convergence in expec-

tation. As a comparison, we give necessary and sufficient conditions for the

convergence of a more general OMD in the strongly convex setting. We then

review some related work on convergence rates in expectation in the strongly

convex setting. Under boundedness assumptions EZ [‖∇w[f(wt, Z)]‖22] ≤ B for

a constant B > 0, it was shown in [19, 26] that the T -th iterate of SGD/OGD

satisfies Ez1,...,zT−1
[‖wT − w∗‖22] = O(1/T ). This convergence rate was also de-

rived in [6] under a relaxed assumption on gradients as EZ [‖∇w[f(wt, Z)]‖22] ≤

A + B‖∇F (wt)‖22. As a comparison, we show that the same convergence rate

can be achieved for the general OMD without any boundedness assumptions on

gradients. Furthermore, we show this convergence rate is tight by presenting a

matching lower bound up to a constant factor, which has not been established in

the literature to our best knowledge. It should be mentioned that lower bounds

for minimax errors were discussed for stochastic convex optimization [1], which

consider the error rates of any stochastic convex optimization methods in the

worst case. We now review some related work on the almost sure convergence.

For SGD/OGD, under the assumption that the objective function F with a

single minimizer w∗ satisfies

inf
‖w−w∗‖22>ε

〈w − w∗,∇F (w)〉 > 0, ∀ε > 0

and

EZ [‖∇f(w,Z)‖2∗] ≤ A+B‖w − w∗‖22, ∀w ∈ W

for some constants A,B ≥ 0, it was shown [5] that {wt}t converges to w∗ almost249

surely if the step sizes satisfy (1.7). For regularized OGD in RKHSs associated250

with the specific least squares loss function, it was shown in [31] that {wt}t251

converges to w∗ almost surely for polynomially decaying step sizes ηt = η1t
−θ

252
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with θ ∈ (0, 1). We extend these results on the almost sure convergence to the253

OMD.254

We remark that the SGD has also been well studied in the literature of255

optimization (see, e.g., [27, 24]) under some conditions on the noise sequence256

instead of conditions on the step size sequence. For the randomized Kaczmarz257

algorithm (1.3), the convergence in expectation has been studied in the literature258

of non-uniform sampling and compressed sensing, including the characterization259

of the convergence [22] by (1.5) in the noisy case with infw∈W EZ [(〈w,X〉 −260

Y )2] > 0, and the linear convergence [29] with a constant step size sequence in261

the noiseless case with y = 〈w∗, x〉 almost surely. Our work on the convergence262

of the OMD (1.2) with a general mirror map Ψ is motivated by these results on263

the randomized Kaczmarz algorithm (1.3) with the special mirror map Ψ2.264

For the OMD (1.2) with a general mirror map Ψ, the only existing work265

to our best knowledge is some regret bounds in [11] and some convergence266

rates in [25]. In this paper we characterize the convergence in expectation by267

the step size condition (1.5) in the noisy case and by
∑∞
t=1 ηt = ∞ in the268

noiseless case, derive the linear convergence with a constant step size sequence269

in the noiseless case, and verify the almost sure convergence by the step size270

condition (1.7). The main difficulty with the general mirror map Ψ is the lack of271

analysis for the one-step progress ‖wt+1−w∗‖22−‖wt−w∗‖22 which was carried272

out in [22] by exploiting the Hilbert space structure and the special linearity273

caused by the least squares loss function. To overcome this difficulty due to the274

Banach space structure and the nonlinearity, we use the Bregman distance DΨ275

induced by the mirror map Ψ, which has been used in our recent work [20]. Our276

novelty here is a key identity (3.1) measuring the one-step progress of the OMD277

with the general mirror map Ψ. Our analysis is then conducted by extensively278

using properties of the Bregman distance, the smoothness and convexity of279

regularized loss functions, and the convexity condition (2.2) involving a related280

convex function Ω.281

Our contribution of this paper includes not only the novel convergence analy-282

sis for the OMD (1.2) with a general mirror map Ψ, but also some improvements283
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of our earlier work [22] on the randomized Kaczmarz algorithm (1.3) with the284

special mirror map Ψ2. In particular, we confirm a conjecture raised in [22] on285

high order convergence rates for the randomized Kaczmarz algorithm. Further-286

more, the analysis in [22] was carried out under the restriction 0 < ηt < 2 on the287

step size sequence which is removed here. It would be interesting to get explicit288

convergence rates when the mirror map is Ψp, and to extend our analysis to289

other learning frameworks [12, 16, 23, 13].290

3. A Key Identity and Idea of Analysis291

Our analysis for the convergence of the OMD (1.2) will be carried out based292

on the following key identity which measures the one-step progress of the algo-293

rithm in terms of the excess Bregman distance DΨ(w∗, wt+1)−DΨ(w∗, wt).294

Lemma 9. The following identity holds for t ∈ N295

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt) = ηt〈w∗ − wt,∇F (wt)〉+ Ezt
[
DΨ(wt, wt+1)

]
.

(3.1)

Proof. By the definition of the Bregman distance, we see the following identity296

DΨ(w, v) +DΨ(v, u)−DΨ(w, u) = 〈w − v,∇Ψ(u)−∇Ψ(v)〉, ∀u, v, w ∈ W.

(3.2)

Choosing v = wt+1 and u = wt yields

DΨ(w,wt+1)−DΨ(w,wt) = −DΨ(wt+1, wt) + 〈w − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉.

We now separate w−wt+1 into w−wt and wt−wt+1, use the iteration relation

(1.2) of the OMD and apply (2.3) with g = Ψ to derive

DΨ(w,wt+1)−DΨ(w,wt)

= −DΨ(wt+1, wt) + 〈w − wt,∇Ψ(wt)−∇Ψ(wt+1)〉+ 〈wt − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉

= −DΨ(wt+1, wt) + ηt〈w − wt,∇w[f(wt, zt)]〉+ 〈wt − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉

= DΨ(wt, wt+1) + ηt〈w − wt,∇w[f(wt, zt)]〉.
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Taking expectations Ezt on both sides, setting w = w∗ and noting that wt is297

independent of zt, we see the stated identity (3.1). The proof is complete.298

The necessity of the convergence will be derived by using the strong smooth-

ness of F and the strong convexity of Ψ to bound 〈wt − w∗,∇F (wt)〉 = 〈wt −

w∗,∇F (wt)−∇F (w∗)〉 by O(1)DΨ(w∗, wt), from which we can apply the iden-

tity (3.1) to get necessary conditions by the following inequality

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1−O(ηt))Ez1,...,zt−1 [DΨ(w∗, wt)]+Ez1,...,zt
[
DΨ(wt, wt+1)

]
.

The sufficiency will be derived by using the strong smoothness of f and the

duality DΨ(wt, wt+1) = DΨ∗(∇Ψ(wt+1),∇Ψ(wt)) to bound Ezt
[
DΨ(wt, wt+1)

]
in terms of 〈w∗ − wt,∇F (w∗) − ∇F (wt)〉 and Ezt [‖∇f(w∗, zt)‖2∗], from which

we can apply the identity (3.1) again to get

Ez1,...,zt [DΨ(w∗, wt+1)] ≤ Ez1,...,zt−1 [DΨ(w∗, wt)]

− ηt
2
Ez1,...,zt [〈w∗ − wt,∇F (w∗)−∇F (wt)〉] +O(η2

t )

and then use (2.2) for bounding−〈w∗−wt,∇F (w∗)−∇F (wt)〉 by−Ω (DΨ(w∗, wt)])

to obtain

Ez1,...,zt [DΨ(w∗, wt+1)] ≤ Ez1,...,zt−1 [DΨ(w∗, wt)]−
ηt
2

Ω
(
Ez1,...,zt−1 [DΨ(w∗, wt)]

)
+O(η2

t ).

Here for a continuous convex function g : Rd → R, the Fenchel-conjugate g∗ is

defined by

g∗(v) = sup
w∈W

[〈w, v〉 − g(w)], v ∈ Rd

and the duality (3.3) on the Bregman distances is stated (see, e.g., [4]) in the299

following lemma together with the duality between strong convexity and strong300

smoothness [18].301

Lemma 10. Let g : Rd → R be continuous and convex. Let β > 0. Then g is302

β-strongly convex with respect to the norm ‖ · ‖ if and only if g∗ is 1
β -strongly303

smooth with respect to the dual norm ‖ · ‖∗.304

If g is Fréchet differentiable and strongly convex, then there holds305

Dg(w, w̃) = Dg∗(∇g(w̃),∇g(w)), ∀w, w̃ ∈ W. (3.3)
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4. Convergence in the Case of Positive Variances306

In this section we prove Theorem 2 by deriving the necessary and sufficient307

condition from two propositions given below.308

4.1. Necessary condition for convergence309

The first proposition gives the necessity for the convergence of the OMD310

(1.2).311

Proposition 11. Assume infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 and that F is strongly312

smooth. Assume also that ∇Ψ satisfies the incremental condition (2.1) at infin-313

ity. If limt→∞ Ez1,...,zt−1
[DΨ(w∗, wt)] = 0 for some w∗ where ∇Ψ is continuous,314

then the step size sequence satisfies (1.5).315

Furthermore, if Ψ is strongly smooth, then (2.4) holds with some constants316

t0 ∈ N and C̃ > 0.317

Proof. We first show limt→∞ ηt = 0.318

By the σΨ-strong convexity of Ψ, we have ‖w∗ − wt‖2 ≤ 2
σΨ
DΨ(w∗, wt). So319

the condition limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0 implies limt→∞ Ez1,...,zt−1 [‖w∗−320

wt‖2] = 0. Then we claim that321

lim
t→∞

Ez1,...,zt−1 [‖∇Ψ(wt)−∇Ψ(w∗)‖∗] = 0. (4.1)

To prove our claim, we use the continuity of ∇Ψ at w∗ and know that for322

any ε > 0, there exists some 0 < δ ≤ 1 such that ‖∇Ψ(w) − ∇Ψ(w∗)‖∗ < ε323

whenever ‖w − w∗‖ < δ.324

When ‖w − w∗‖ ≥ δ, we apply the incremental condition (2.1) and ‖w‖ ≤

‖w − w∗‖+ ‖w∗‖ to find

‖∇Ψ(w)−∇Ψ(w∗)‖∗ ≤ CΨ(1 + ‖w‖) + ‖∇Ψ(w∗)‖∗ ≤ CΨ,w∗,δ‖w − w∗‖,

where CΨ,w∗,δ is the constant given by

CΨ,w∗,δ = CΨ +
CΨ + CΨ‖w∗‖+ ‖∇Ψ(w∗)‖∗

δ
.
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Combining the above two cases, we know that

Ez1,...,zt−1
[‖∇Ψ(wt)−∇Ψ(w∗)‖∗] ≤ ε+ CΨ,w∗,δEz1,...,zt−1

[‖wt − w∗‖].

But limt→∞ Ez1,...,zt−1
[‖w∗ − wt‖2] = 0 ensures the existence of some tε,δ ∈325

N such that for t > tε,δ, there holds Ez1,...,zt−1
[‖wt − w∗‖2] < ε2

C2
Ψ,w∗,δ

which326

implies Ez1,...,zt−1 [‖wt − w∗‖] < ε
CΨ,w∗,δ

by the Schwarz inequality. So we have327

Ez1,...,zt−1
[‖∇Ψ(wt) − ∇Ψ(w∗)‖∗] < 2ε for t > tε,δ, which verifies our claim328

(4.1).329

Denote σ = infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0. From the iteration relation

(1.2) of the OMD, we have ηt‖∇w[f(wt, zt)]‖∗ = ‖∇Ψ(wt)−∇Ψ(wt+1)‖∗. Tak-

ing expectations on both sides with respect to zt yields

ηtσ ≤ ηtEzt [‖∇w[f(wt, zt)]‖∗] ≤ ‖∇Ψ(wt)−∇Ψ(w∗)‖∗+Ezt [‖∇Ψ(wt+1)−∇Ψ(w∗)‖∗]

and

ηtσ ≤ Ez1,...,zt−1
[‖∇Ψ(wt)−∇Ψ(w∗)‖∗] + Ez1,...,zt [‖∇Ψ(wt+1)−∇Ψ(w∗)‖∗].

Hence (4.1) confirms our first limit limt→∞ ηt = 0.330

We now show
∑∞
t=1 ηt =∞. Assume that F is LF -strongly smooth for some

LF > 0. From the identity (2.3) and the optimality condition ∇F (w∗) = 0, we

have

DF (w∗, wt) +DF (wt, w
∗) = −〈w∗ − wt,∇F (wt)〉.

This is bounded by LF ‖w∗ −wt‖2 by the LF -strong smoothness of F . But the

σΨ-strong convexity of Ψ implies DΨ(w∗, wt) ≥ σΨ

2 ‖w
∗ − wt‖2. Hence

〈w∗ − wt,∇F (wt)〉 ≥ −LF ‖w∗ − wt‖2 ≥ −
2LF
σΨ

DΨ(w∗, wt).

Plugging this inequality into (3.1) and taking expectations on both sides give331

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1−aηt)Ez1,...,zt−1 [DΨ(w∗, wt)]+Ez1,...,zt [DΨ(wt, wt+1)],

(4.2)

where a is the constant a = 2LFσ
−1
Ψ .332
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Since limt→∞ ηt = 0, we can find some integer t0 ∈ N such that ηt ≤ (3a)−1
333

for t ≥ t0. Applying the elementary inequality 1 − η ≥ exp(−2η) valid for334

η ∈ (0, 1/3], we know by noting Ez1,...,zt [DΨ(wt, wt+1)] ≥ 0 in (4.2) that335

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ exp(−2aηt)Ez1,...,zt−1 [DΨ(w∗, wt)], ∀t ≥ t0.

(4.3)

Applying this inequality iteratively for t = T, . . . , t0 + 1 then yields

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
T∏

t=t0+1

exp(−2aηt)Ez1,...,zt0 [DΨ(w∗, wt0+1)]

= exp
(
− 2a

T∑
t=t0+1

ηt

)
Ez1,...,zt0 [DΨ(w∗, wt0+1)].

(4.4)

We claim that Ez1,...,zt0 [DΨ(w∗, wt0+1)] > 0. Otherwise, we would have

Ez1,...,zt0−1
[DΨ(w∗, wt0)] = Ez1,...,zt0 [DΨ(w∗, wt0+1)] = 0

by (4.3), leading to Ez1,...,zt0−1 [‖w∗ − wt0‖2] = Ez1,...,zt0 [‖w∗ − wt0+1‖2] = 0336

according to the strong convexity of Ψ. This would imply wt0+1 = wt0 = w∗337

almost surely and thereby ∇w[f(w∗, zt0)] = 0 almost surely by (1.2), leading to338

EZ [‖∇w[f(w∗, Z)]‖∗] = 0, a contradiction to the assumption infw∈W EZ [‖∇w[f(w,Z)]‖∗] >339

0.340

By Ez1,...,zt0 [DΨ(w∗, wt0+1)] > 0 and limT→∞ Ez1,...,zT [DΨ(w∗, wT+1)] = 0,341

we see from (4.4) that
∑∞
t=1 ηt = ∞. This proves the necessary condition for342

the convergence of the OMD.343

We now prove (2.4) under the LΨ-strong smoothness of Ψ for some LΨ > 0.

Since Ψ is σΨ-strongly convex and LΨ-strongly smooth with respect to ‖ · ‖, we

know from Lemma 10 that Ψ∗ is σ−1
Ψ -strongly smooth and L−1

Ψ -strongly convex

with respect to ‖ · ‖∗ (note Ψ∗∗ = Ψ since Ψ is convex and differentiable). We

also know from Lemma 10 that the duality relation (3.3) between Bregman

distances holds for g = Ψ, which yields

DΨ(wt, wt+1) = DΨ∗(∇Ψ(wt+1),∇Ψ(wt)), ∀t ∈ N.
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Combining this with the L−1
Ψ -strong convexity of Ψ∗ and (4.2), we know from

the bound ηt ≤ (3a)−1 that for t ≥ t0,

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1− aηt)Ez1,...,zt−1
[DΨ(w∗, wt)]

+ (2LΨ)−1Ez1,...,zt
[
‖∇Ψ(wt)−∇Ψ(wt+1)‖2∗

]
.

But ∇Ψ(wt)−∇Ψ(wt+1) = ηt∇w[f(wt, zt)] by the definition (1.2) of the OMD.

So for t ≥ t0 we have

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1− aηt)Ez1,...,zt−1
[DΨ(w∗, wt)]

+ (2LΨ)−1η2
tEz1,...,zt

[
‖∇w[f(wt, zt)]‖2∗

]
.

By the Schwarz inequality,

Ez1,...,zt
[
‖∇w[f(wt, zt)]‖∗

]
≤
{
Ez1,...,zt

[
‖∇w[f(wt, zt)]‖2∗

]}1/2
.

Hence

Ez1,...,zt
[
‖∇w[f(wt, zt)]‖2∗

]
≥
{
Ez1,...,zt

[
‖∇w[f(wt, zt)]‖∗

]}2 ≥ σ2

and thereby

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1−aηt)Ez1,...,zt−1 [DΨ(w∗, wt)]+(2LΨ)−1η2
t σ

2, ∀t ≥ t0.

Applying this inequality iteratively from t = T ≥ t0 to t = t0 yields (denote∏T
k=T+1(1− aηk) = 1)

Ez1,...,zT [DΨ(w∗, wT+1)]

≥ Ez1,...,zt0−1
[DΨ(w∗, wt0)]

T∏
t=t0

(1− aηt) + (2LΨ)−1σ2
T∑
t=t0

η2
t

T∏
k=t+1

(1− aηk)

≥ (2LΨ)−1σ2
T∑
t=t0

η2
t

T∏
k=t+1

(1− aηk).

By the Schwarz inequality and the bound 0 < 1− aηk ≤ 1 for k ≥ t0, we have

T∑
t=t0

ηt

T∏
k=t+1

(1− aηk) ≤

{
T∑
t=t0

η2
t

T∏
k=t+1

(1− aηk)

}1/2

(T − t0 + 1)1/2.
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Hence

T∑
t=t0

η2
t

T∏
k=t+1

(1− aηk) ≥ 1

a2(T − t0 + 1)

(
T∑
t=t0

aηt

T∏
k=t+1

(1− aηk)

)2

=
1

a2(T − t0 + 1)

(
T∑
t=t0

(
1− (1− aηt)

) T∏
k=t+1

(1− aηk)

)2

=
1

a2(T − t0 + 1)

(
T∑
t=t0

[
T∏

k=t+1

(1− aηk)−
T∏
k=t

(1− aηk)

])2

=
1

a2(T − t0 + 1)

(
1−

T∏
k=t0

(1− aηk)

)2

≥ 1

a2(T − t0 + 1)
(1− (1− aηt0))

2
=

η2
t0

T − t0 + 1
.

Therefore,

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
η2
t0(2LΨ)−1σ2

T − t0 + 1
, ∀T ≥ t0.

This verifies (2.4) with C̃ = η2
t0(2LΨ)−1σ2 and completes the proof.344

4.2. Sufficient condition for convergence345

We now turn to the second proposition giving the sufficiency for the con-346

vergence of the OMD (1.2). We need the following lemma, to be proved in347

appendix by some ideas from [34], which establishes the co-coercivity of gradi-348

ents for convex functions enjoying some smoothness condition.349

Lemma 12. Let α ∈ (0, 1] and g : W → R be a Fréchet differentiable and

convex function. If there exists some constant L > 0 such that

Dg(w, w̃) ≤ L

1 + α
‖w − w̃‖1+α, ∀w, w̃ ∈ W,

then we have350

2L−
1
αα

1 + α
‖∇g(w)−∇g(w̃)‖

1+α
α
∗ ≤ 〈w−w̃,∇g(w)−∇g(w̃)〉, ∀w, w̃ ∈ W. (4.5)

Proposition 13. Assume that for some constant L > 0, f(·, z) is L-strongly351

smooth for almost every z ∈ Z. Suppose that the pair (Ψ, F ) satisfies (2.2)352
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around w∗ with a convex function Ω : [0,∞) → R+ satisfying Ω(0) = 0 and353

Ω(u) > 0 for u > 0. If the step size sequence satisfies (1.5), then we have354

limt→∞ Ez1,...,zt−1
[DΨ(w∗, wt)] = 0.355

Furthermore, if (2.5) holds with some σF > 0 and the step size takes the356

form ηt = 4
(t+1)σF

, then (2.6) holds.357

Proof. According to the key identity (3.1) for the one-step progress of the OMD358

and the duality relation (3.3) of the Bregman distances, we have359

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt)

= ηt〈w∗ − wt,∇F (wt)〉+ Ezt
[
DΨ∗(∇Ψ(wt+1),∇Ψ(wt))

]
. (4.6)

By Lemma 10, the σΨ-strong convexity of Ψ implies the σ−1
Ψ -strong smoothness

of Ψ∗. It follows from the definition (1.2) of the OMD that

Ezt
[
DΨ∗(∇Ψ(wt+1),∇Ψ(wt))

]
≤ 1

2σΨ
Ezt
[
‖∇Ψ(wt+1)−∇Ψ(wt)‖2∗

]
=

η2
t

2σΨ
Ezt
[
‖∇w[f(wt, zt)]‖2∗

]
. (4.7)

We bound
[
‖∇w[f(wt, zt)]‖2∗

]
by 2

[
‖∇w[f(wt, zt)]−∇w[f(w∗, zt)]‖2∗

]
+2
[
‖∇w[f(w∗, zt)]‖2∗

]
.

Then we apply Lemma 12 with w = w∗, w̃ = wt, g = f(·, zt) and α = 1. By the

L-strong smoothness of f(·, z), we know that

Ezt
[
‖∇w[f(wt, zt)]−∇w[f(w∗, zt)]‖2∗

]
≤ LEzt

[〈
wt − w∗,∇w[f(wt, zt)]−∇w[f(w∗, zt)]

〉]
= L〈w∗ − wt,∇F (w∗)−∇F (wt)〉, (4.8)

where the interchange of the expectation and the gradient is valid due to the

strong smoothness. Then we have

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt) ≤

−
(

1− Lηt
σΨ

)
ηt〈w∗ − wt,∇F (w∗)−∇F (wt)〉+

η2
t

σΨ
Ezt
[
‖∇w[f(w∗, zt)]‖2∗

]
.

Since limt→∞ ηt = 0, there exists some t1 ∈ N such that L
σΨ
ηt ≤ 1

2 for t ≥ t1
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which implies

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt) ≤

− ηt
2
〈w∗ − wt,∇F (w∗)−∇F (wt)〉+

η2
t

σΨ
Ezt
[
‖∇w[f(w∗, zt)]‖2∗

]
. (4.9)

Now we apply the relation (2.2) on the convexity to obtain360

−〈w∗ − wt,∇F (w∗)−∇F (wt)〉 ≤ −Ω (DΨ(w∗, wt)) . (4.10)

It follows that361

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt)−
ηt
2

Ω (DΨ(w∗, wt)) + bη2
t , (4.11)

where b is the constant b = 1
σΨ

EZ
[
‖∇w[f(w∗, Z)]‖2∗

]
. Since Ω is convex, by

Jensen’s inequality, we have

Ω
(
Ez1,...,zt−1 [DΨ(w∗, wt)]

)
≤ Ez1,...,zt−1 [Ω (DΨ(w∗, wt))] .

Therefore, by taking expectations over z1, . . . , zt−1 and denoting a sequence

{At}t by

At = Ez1,...,zt−1 [DΨ(w∗, wt)] ,

we have362

At+1 ≤ At −
ηt
2

Ω (At) + bη2
t , ∀t ≥ t1. (4.12)

To prove limt→∞At = 0, we let 0 < γ < 1 be an arbitrarily chosen number.

The convexity of Ω : [0,∞)→ R+ tells us that for u ≥ γ, there holds

Ω(γ) = Ω
(

(1− γ

u
) · 0 +

γ

u
u
)
≤ (1− γ

u
)Ω (0) +

γ

u
Ω(u) =

γ

u
Ω(u)

which yields363

Ω(u) ≥ Ω(γ)

γ
u, ∀u ≥ γ. (4.13)

Since limt→∞ ηt = 0, we know that there exists some integer tγ ≥ t1 such that364

ηt ≤ min

{
Ω(γ)

4b
,

Ω(γ)

4γb
,
√
γ

}
, ∀t ≥ tγ . (4.14)

We claim that365

sup {t ∈ N : At ≤ γ} =∞. (4.15)
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If (4.15) is not true, we can find some t′γ ≥ tγ such that

At > γ, ∀t ≥ t′γ .

Combining this with (4.13), (4.14) and (4.12) tells us that for t ≥ t′γ ,

At+1 ≤ At−ηt
Ω(γ)

2γ
At+bη

2
t ≤ At−

Ω(γ)

2γ
ηtAt+

Ω(γ)

4γ
ηtAt = At−

Ω(γ)

4γ
ηtAt ≤ At−

Ω(γ)

4
ηt,

which implies by iteration

At+1 ≤ At′γ −
Ω(γ)

4

t∑
k=t′γ

ηk → −∞ (as t→∞).

This is a contradiction, which verifies our claim (4.15).366

By (4.15) there exists some positive integer t′′γ > tγ such that At′′γ ≤ γ. We367

now show by induction that368

At ≤ γ + b max
t′′γ≤`≤t−1

η2
` , ∀t ≥ t′′γ . (4.16)

The case t = t′′γ is true (where we denote maxt′′γ≤`≤t′′γ−1 η
2
` = 0) since At′′γ ≤ γ.

Supposes the statement (4.16) holds for t = k ≥ t′′γ . Note that t′′γ > tγ and

γ < 1. To prove the statement for t = k+ 1, we discuss in two cases. If Ak ≤ γ,

we see directly from (4.12) that

Ak+1 ≤ γ + bη2
k ≤ γ + b max

t′′γ≤`≤k
η2
` .

If Ak > γ, we apply (4.13), (4.14) and (4.12) again and find

Ak+1 ≤ Ak − ηk
Ω(γ)

2γ
Ak + bη2

k ≤ Ak −
Ω(γ)

4γ
ηkAk ≤ Ak ≤ γ + b max

t′′γ≤`≤k−1
η2
` ,

where we have used the induction hypothesis in the last inequality. This verifies369

the statement (4.16) for t = k + 1 and completes the induction procedure.370

Applying (4.14), (4.16) and noting t′′γ > tγ , we know that

At ≤ (1 + b)γ, ∀t ≥ t′′γ .

Since γ is an arbitrary number on (0, 1), this proves

lim
t→∞

At = lim
t→∞

Ez1,...,zt−1 [DΨ(w∗, wt)] = 0.
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We now prove (2.6) under condition (2.5) and the choice ηt = 4
(t+1)σF

of the

step size sequence. Eq. (2.5) implies that (2.2) holds with Ω(u) = σFu. The

estimate (4.12) then becomes

At+1 ≤ At −
2

t+ 1
At +

16b

(t+ 1)2σ2
F

, ∀t ≥ t1.

Multiplying both sides by t(t+ 1) gives

t(t+ 1)At+1 ≤ (t− 1)tAt +
16b

σ2
F

, ∀t ≥ t1.

Applying this relation iteratively, we obtain

(T − 1)TAT ≤ (t1 − 1)t1At1 +
16b(T − t1)

σ2
F

, ∀T ≥ t1,

from which we see

Ez1,...,zT−1
[DΨ(w∗, wT )] ≤

(t1 − 1)t1Ez1,...,zt1−1 [DΨ(w∗, wt1)]

(T − 1)T
+

16b

Tσ2
F

, ∀T ≥ t1.

This yields (2.6). The proof is complete.371

Remark 3. Equation (2.6) gives convergence rates for Ez1,...,zT−1
[DΨ(w∗, wT )]372

under an assumption on the strong convexity of F measured by the Bregman373

distance. It should be noticed that DΨ(w∗, wT ) provides different geometric374

distance measures between w∗ and wT for different mirror maps. For example,375

if Ψ = Ψp, then Equation (2.6) together with the (p − 1)-strong convexity of376

Ψp w.r.t. ‖ · ‖p implies the rate Ez1,...,zT−1
[‖wT −w∗‖2p] = O(1/T ) for the ‖ · ‖p377

convergence. The case p = 2 corresponds to the Euclidean distance while the378

case 1 < p < 2 corresponds to a distance in a Banach space. Furthermore, if w∗379

is sparse and admits small ‖w∗‖1, then we can choose p to be close to 1 to make380

sure wT also attains a small `1-norm: Ez1,...,zT−1
[‖wT ‖1] ≤ Ez1,...,zT−1

[‖wT −381

w∗‖1] + ‖w∗‖1. In this case, wT also enjoys some sparsity.382

Let us clarify the role of the mirror map in the case when (2.2) around w∗

is not imposed for the pair (Ψ, F ). Take w1 = 0 and ηt ≤ σΨ/(2L) for all t ∈ N

(in this case t1 for (4.9) can be taken as 1). Since the derivation of (4.9) does

not depend on (2.2), we use the convexity of F and ∇F (w∗) = 0 in (4.9) to
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derive

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt) ≤
ηt
[
F (w∗)− F (wt)

]
2

+
EZ
[
‖∇w[f(w∗, Z)]‖2∗

]
η2
t

σΨ
.

Taking a summation from t = 1 to T , we derive

Ez1,...,zT [DΨ(w∗, wT+1)]−DΨ(w∗, w1) ≤ 1

2

T∑
t=1

ηt
[
F (w∗)− F (wt)

]
+

EZ
[
‖∇w[f(w∗, Z)]‖2∗

]∑T
t=1 η

2
t

σΨ
.

According to the convexity of F , it further follows that

F (w̄T )− F (w∗) ≤ 2DΨ(w∗, w1)∑T
t=1 ηt

+
2
[
EZ‖∇w[f(w∗, Z)]‖2∗

]∑T
t=1 η

2
t

σΨ

∑T
t=1 ηt

,

where w̄T =
∑T
t=1 ηtwt∑T
t=1 ηt

is a weighted average of the first T iterates. If we consider

the mirror map Ψ = Ψp and ηt = η1t
− 1

2 with η1 = σΨ/(2L), then from w1 = 0

we get

F (w̄T )− F (w∗) ≤
‖w∗‖2p

η1

∑T
t=1 t

− 1
2

+
2η1EZ

[
‖∇w[f(w∗, Z)]‖2∗

]∑T
t=1 t

−1

σΨ

∑T
t=1 t

− 1
2

= O
( ‖w∗‖2p

(p− 1)
√
T

+
EZ
[
‖∇w[f(w∗, Z)]‖2∗

]
log T

√
T

)
,

where we have used the (p−1)-strong convexity of Ψp w.r.t. ‖ · ‖p. If we choose383

p = 1 + 1
log d , then it follows from ‖∇w[f(w∗, Z)]‖∗ = ‖∇w[f(w∗, Z)]‖1+log d ≤384

e‖∇w[f(w∗, Z)]‖∞ that385

F (w̄T )− F (w∗) = O
(‖w∗‖21 log d+ EZ

[
‖∇w[f(w∗, Z)]‖2∞

]
log T

√
T

)
. (4.17)

As a comparison, if we choose p = 2, the expression takes the form386

F (w̄T )− F (w∗) = O
(‖w∗‖22 + EZ

[
‖∇w[f(w∗, Z)]‖22

]
log T

√
T

)
. (4.18)

The bound in (4.17) would be significantly smaller than that in (4.18) in the case387

when w∗ is sparse and ‖∇w[f(w∗, z)]‖2 is close to
√
d‖∇w[f(w∗, z)]‖∞ (meaning388

∇w[f(w∗, z)] is dense). In this case, the bound (4.17) enjoys a logarithmic389

dependency on the dimension [11], while the bound (4.18) enjoys a square-root390
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dependency. It should be noticed that the discussion in [11] requires a nontrivial391

assumption ‖∇w[f(w∗, z)]‖∗ ≤ G with a constant G > 0, which is removed in392

this remark.393

Remark 4. Some of our results can be extended to projected OMD applied394

to non-differentiable objective functions. For any convex function g : Rd → R,395

we use g′(w) to denote a subgradient of g at w satisfying g(w̃) ≥ g(w) + 〈w̃ −396

w, g′(w)〉 for all w̃. We assume that there exist A and B > 0 such that397

‖f ′(w, z)]‖2∗ ≤ Af(w, z) +B, ∀w ∈ W, z ∈ Z. (4.19)

This assumption was considered in the literature [35], and is satisfied by many

(nondifferentiable) regularized loss functions wisely used in the machine learning

community, including hinge loss and all strongly smooth loss functions. Let

W̃ ⊂ W and ηt ≤ σΨ/A. We consider the following projected OMD where a

mirror descent step is followed by a Bregman projection at each iteration:∇Ψ(wt+ 1
2
) = ∇Ψ(wt)− ηtf ′(wt, zt),

wt+1 = arg min
w∈W̃ DΨ(w,wt+ 1

2
).

We can replace wt+1 with wt+ 1
2

in (3.1) to get (by definition one can show

F ′(wt) =: EZ [f ′(wt, Z)] is a subgradient of F at wt)

Ezt [DΨ(w∗, wt+ 1
2
)]−DΨ(w∗, wt) = ηt〈w∗ − wt, F ′(wt)〉+ Ezt [DΨ(wt, wt+ 1

2
)]

= ηt〈w∗ − wt, F ′(wt)〉+ Ezt [DΨ∗(∇Ψ(wt+ 1
2
),∇Ψ(wt))]

≤ ηt〈w∗ − wt, F ′(wt)〉+
η2
t

2σΨ
Ezt [‖f ′(wt, zt)‖2∗], (4.20)

where the second identity is due to (3.3) and the last inequality is due to the

σ−1
Ψ -strong smoothness of Ψ∗. By the first-order condition in the definition wt+1

above, we derive

〈w∗ − wt+1,∇Ψ(wt+1)−∇Ψ(wt+ 1
2
)〉 ≥ 0,

from which and (3.2) we derive

DΨ(w∗, wt+1)−DΨ(w∗, wt+ 1
2
) =

−DΨ(wt+1, wt+ 1
2
)− 〈w∗ − wt+1,∇Ψ(wt+1)−∇Ψ(wt+ 1

2
)〉 ≤ 0.
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Plugging the above inequality back into (4.20) and using (4.19), we derive398

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt) ≤ ηt〈w∗−wt, F ′(wt)〉+
η2
t

2σΨ

[
AEzt [f(wt, zt)]+B

]
.

(4.21)

According to the definition of subgradient, we know

Ezt [f(wt, zt)] = F (wt)− F (w∗) + F (w∗) ≤ 〈wt − w∗, F ′(wt)〉+ F (w∗).

This together with (4.21) gives399

Ezt [DΨ(w∗, wt+1)]−DΨ(w∗, wt)

≤ ηt〈w∗ − wt, F ′(wt)〉
(

1− ηtA

2σΨ

)
+
η2
t [AF (w∗) +B]

2σΨ

≤ ηt〈w∗ − wt, F ′(wt)− F ′(w∗)〉
(

1− ηtA

2σΨ

)
+
η2
t [AF (w∗) +B]

2σΨ
,

where in the last step we have used 〈w∗−wt,−F ′(w∗)〉 ≥ 0 due to the first-order

condition in the definition of w∗. If we impose an assumption similar to (2.2) as

〈w∗ − w,F ′(w∗) − F ′(w)〉 ≥ Ω(DΨ(w∗, w)) for all w ∈ W and use ηt ≤ σΨ/A,

then we derive

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt)−
ηt
2

Ω (DΨ(w∗, wt)) + b′η2
t ,

where b′ = AF (w∗)+B
2σΨ

. The above inequality takes the same form as (4.11),400

from which we can derive exactly the same sufficient condition for the con-401

vergence and upper bounds on convergence rates. Our analysis may not be402

used to get necessary conditions or lower bounds for either projected OMD or403

non-differentiable objective functions. Indeed, the derivation of (4.2) is based404

on an identity on the one-step progress which may not hold for the projected405

algorithm, and the LF -strong smoothness of F which does not hold for non-406

differentiable loss functions.407

5. Convergence in the Case of Zero Variance and Almost Sure Con-408

vergence409

In this section we prove Theorem 3 for the convergence in the case of zero410

variance and Theorem 4 for the almost sure convergence.411
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Proof of Theorem 3. Necessity. For any w, w̃ ∈ W, we know

DF (w, w̃) = F (w)− F (w̃)− 〈w − w̃,∇F (w̃)〉

= Ez
[
f(w, z)− f(w̃, z)− 〈w − w̃,∇f(w̃, z)

]
≤
LEz

[
‖w − w̃‖2

]
2

=
L‖w − w̃‖2

2
,

where the inequality follows from the L-strong smoothness of f(·, z) for almost412

every z ∈ Z. Hence F is L-strongly smooth w.r.t. ‖ · ‖. Notice that we413

do not require the increment condition (2.1) nor the variance condition in the414

derivation of (4.2). Indeed, we only use the LF -strong smoothness of F and415

σΨ-strong convexity of Ψ there. Therefore, (4.2) holds, from which we derive416

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1− 2Lσ−1
Ψ ηt)Ez1,...,zt−1 [DΨ(w∗, wt)]. (5.1)

We now need the assumption 0 < ηt ≤ σΨ

(2+κ)L with κ > 0 on the step

size sequence. Denote the constant ã = 2+κ
2 log 2+κ

κ and apply the elementary

inequality (see e.g., [20])

1− x ≥ exp(−ãx), ∀ 0 < x ≤ 2

2 + κ
.

We know from (5.1) that

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ exp
(
− 2ãLσ−1

Ψ ηt
)
Ez1,...,zt−1

[DΨ(w∗, wt)].

Applying this inequality iteratively for t = 1, . . . , T then gives

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
T∏
t=1

exp
(
− 2ãLσ−1

Ψ ηt
)
DΨ(w∗, w1)

= exp

{
−2ãLσ−1

Ψ

T∑
t=1

ηt

}
DΨ(w∗, w1).

From the assumption w∗ 6= w1, we have DΨ(w∗, w1) > 0. The convergence417

limt→∞ Ez1,...,zt−1
[DΨ(w∗, wt)] = 0 then implies

∑∞
t=1 ηt =∞.418

Sufficiency. Here we use the estimate (4.12) derived in the proof of Proposi-419

tion 13. But in our case of zero variance, b = 1
σΨ

EZ
[
‖∇w[f(w∗, Z)]‖2∗

]
= 0. So420

(4.12) takes the form (note that we can choose t1 = 1 in deriving (4.9))421

At+1 ≤ At −
ηt
2

Ω (At) , ∀t ∈ N. (5.2)
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This implies that for any 0 < γ < 1, there must exist some integer t̃γ ∈ N such

that At̃γ ≤ γ, since otherwise At > γ for every t ∈ N, which by (4.13) and (5.2)

leads to a contradiction:

At+1 ≤ At−
ηtΩ(γ)

2γ
At ≤ At−

ηt
2

Ω(γ) ≤ At̃γ −
Ω(γ)

2

t∑
k=t̃γ

ηk → −∞ (as t→∞).

But (5.2) also tells us that the sequence {At}t∈N of nonnegative numbers is

decreasing. Hence At̃γ ≤ γ for every t ≥ t̃γ . This proves the limit

lim
t→∞

Ez1,...,zt−1
[DΨ(w∗, wt)] = lim

t→∞
At = 0.

We now turn to prove (2.7) under the special choice of the constant step

size sequence ηt ≡ η1. It follows from (5.1) that AT+1 ≥ (1 − 2Lσ−1
Ψ η1)TA1.

Furthermore, assumption (2.5) means that (2.2) holds with Ω(u) = σFu. So

(5.2) translates to

At+1 ≤ (1− 2−1η1σF )At,

from which we find AT+1 ≤ (1− 2−1η1σF )TA1 by iteration. This verifies (2.7)422

and completes the proof of Theorem 3.423

The proof of Theorem 4 for the almost sure convergence is based on the424

following Doob’s forward convergence theorem (see, e.g., [10] on page 195).425

Lemma 14. Let {X̃t}t∈N be sequences of nonnegative random variables and let426

{Ft}t∈N be a sequence of random variable sets with Ft ⊂ Ft+1 for every t ∈ N.427

Suppose that E[X̃t+1|Ft] ≤ X̃t almost surely for every t ∈ N. Then the sequence428

{X̃t} converges to a nonnegative random variable X̃ almost surely.429

Proof of Theorem 4. We follow the proof of Proposition 13 and apply (4.9).430

Since 〈w∗ − wt,∇F (w∗)−∇F (wt)〉 ≥ 0, (4.9) implies431

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt) +
η2
t

σΨ
EZ
[
‖∇w[f(w∗, Z)]‖2∗

]
, ∀t ≥ t1.

(5.3)

The condition
∑∞
t=1 η

2
t <∞ enables us to define a stochastic process {X̃t}t by

X̃t = DΨ(w∗, wt) +
1

σΨ
EZ
[
‖∇w[f(w∗, Z)]‖2∗

] ∞∑
`=t

η2
` .
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By (5.3), we know that Ezt [X̃t+1] ≤ X̃t for t ≥ t1. Also, X̃t ≥ 0. So the

stochastic process {X̃t}t≥t1 is a supermartingale. Then by the supermartin-

gale convergence theorem, Lemma 14, we know that the sequence {X̃t}t≥t1
converges to a non-negative random variable X̃ almost surely. According to

Fatou’s Lemma and the limit limt→∞ E[DΨ(w∗, wt)] = 0 proved by Proposition

13, we get

E[X̃] = E
[

lim
t→∞

DΨ(w∗, wt)
]
≤ lim inf

t→∞
E[DΨ(w∗, wt)] = 0.

But X̃ is a non-negative random variable, so we have X̃ = 0 almost surely.432

It follows that {DΨ(w∗, wt)}t∈N converges to 0 almost surely. The proof of433

Theorem 4 is complete.434

6. Proving Explicit Results435

In this section we prove the propositions stated in subsection 2.2 on some436

properties of special mirror maps, and Theorems 1 and 8 on necessary and437

sufficient conditions for the convergence, as well as tight convergence rates.438

Proof of Proposition 5. If Ψ is LΨ-strongly smooth, then the condition in Lemma

12 is satisfied with g = Ψ, L = LΨ and α = 1. So by Lemma 12, there holds

‖∇Ψ(w)−∇Ψ(w̃)‖2∗ ≤ LΨ〈w − w̃,∇Ψ(w)−∇Ψ(w̃)〉, ∀w, w̃ ∈ W.

By the Schwarz inequality 〈w − w̃,∇Ψ(w) − ∇Ψ(w̃)〉 ≤ ‖w − w̃‖‖∇Ψ(w) −439

∇Ψ(w̃)‖∗, this implies440

‖∇Ψ(w)−∇Ψ(w̃)‖∗ ≤ LΨ‖w − w̃‖, ∀w, w̃ ∈ W. (6.1)

So the function ∇Ψ is Lipschitz, and hence is continuous everywhere.441

Setting w̃ = 0 in (6.1) also yields

‖∇Ψ(w)‖∗ ≤ ‖∇Ψ(0)‖∗ + LΨ‖w‖ ≤ (‖∇Ψ(0)‖∗ + LΨ) (1 + ‖w‖), ∀w ∈ W.

This establishes the incremental conditional (2.1) at infinity with CΨ = ‖∇Ψ(0)‖∗+442

LΨ.443
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If F is σF -strongly convex, by the identity (2.3), we have

〈w−w̃,∇F (w)−∇F (w̃〉 = DF (w, w̃)+DF (w̃, w) ≥ σF ‖w−w̃‖2, ∀w, w̃ ∈ W.

But DΨ(w̃, w) ≤ LΨ

2 ‖w − w̃‖
2. So we have

〈w − w̃,∇F (w)−∇F (w̃〉 ≥ σF ‖w − w̃‖2 ≥
2σF
LΨ

DΨ(w̃, w), ∀w, w̃ ∈ W.

Hence (2.2) is satisfied for a linear convex function Ω(u) = 2σF
LΨ

u. This proves444

Proposition 5.445

For proving Proposition 6, we need the following inequalities which follow

easily from the elementary inequalities

|aβ−bβ | ≤ |a−b|β , (a+b)β ≤ aβ+bβ ≤ 21−β(a+b)β , ∀a, b ≥ 0, β ∈ (0, 1].

Lemma 15. Let 0 < β ≤ 1. Then we have446

|sgn(a)|a|β − sgn(b)|b|β | ≤ 21−β |a− b|β , ∀a, b ∈ R, (6.2)∣∣‖w̃‖βp − ‖w‖βp ∣∣ ≤ ∣∣‖w̃‖p − ‖w‖p∣∣β ≤ ‖w̃ − w‖βp , ∀w, w̃ ∈ W, (6.3)

where we denote the sign of a ∈ R by sgn(a) = 1 if a > 0, −1 if a < 0, and 0 if447

a = 0.448

Proof of Proposition 6. Let p∗ = p
p−1 > 2 be the dual number of p satisfying449

1
p + 1

p∗ = 1. Then the dual norm ‖ · ‖∗ is exactly the p∗-norm ‖ · ‖p∗ , and the450

gradient of Ψp at w ∈ W equals451

∇Ψp(w) = ‖w‖2−pp ŵ, (6.4)

where ŵ ∈ W∗ is the vector depending on w given by

ŵ =
(
sgn(w(j))|w(j)|p−1

)d
j=1

.

It follows that ∇Ψp is continuous everywhere, and by calculating the norm∥∥ŵ∥∥
p∗

directly that

‖∇Ψp(w)‖∗ = ‖w‖2−pp

∥∥ŵ∥∥
p∗

= ‖w‖
2−p+ p

p∗
p = ‖w‖p.
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This proves the identity (2.8) and the incremental condition (2.1) with CΨp = 1.452

To bound the Bregman distance DΨp(w̃, w), we apply the identity (2.3) and453

find that for any w, w̃ ∈ W,454

DΨp(w̃, w) ≤ DΨp(w̃, w)+DΨp(w, w̃) ≤ ‖w̃−w‖p
∥∥∇Ψp(w̃)−∇Ψp(w)

∥∥
p∗
. (6.5)

We use the expression (6.4) and write ∇Ψp(w̃)−∇Ψp(w) as

∇Ψp(w̃)−∇Ψp(w) = ‖w̃‖2−pp
ˆ̃w−‖w‖2−pp ŵ = ‖w̃‖2−pp

(
ˆ̃w − ŵ

)
+
(
‖w̃‖2−pp − ‖w‖2−pp

)
ŵ.

Applying (6.2) to the j-th components of ˆ̃w− ŵ and β = p− 1 ∈ (0, 1), we have

∣∣sgn(w̃(j))|w̃(j)|p−1 − sgn(w(j))|w(j)|p−1
∣∣ ≤ 22−p |w̃(j)− w(j)|p−1

, j = 1, . . . , d.

So for the first term, we have

∥∥∥ ˆ̃w − ŵ
∥∥∥
p∗
≤


d∑
j=1

2p
∗(2−p) |w̃(j)− w(j)|p

∗(p−1)


1/p∗

= 22−p ‖w̃ − w‖
p
p∗
p = 22−p ‖w̃ − w‖p−1

p . (6.6)

For the second term, we apply (6.3) with β = 2− p and find

∥∥(‖w̃‖2−pp − ‖w‖2−pp

)
ŵ
∥∥
p∗
≤ ‖w̃ − w‖2−pp ‖ŵ‖p∗ = ‖w̃ − w‖2−pp ‖w‖p−1

p .

Applying (6.3) with β = p− 1 yields

‖w‖p−1
p ≤ ‖w̃‖p−1

p + ‖w̃ − w‖p−1
p .

Hence

∥∥(‖w̃‖2−pp − ‖w‖2−pp

)
ŵ
∥∥
p∗
≤ ‖w̃‖p−1

p ‖w̃ − w‖2−pp + ‖w̃ − w‖p.

Combining this with (6.6) gives

∥∥∇Ψp(w̃)−∇Ψp(w)
∥∥
p∗
≤ (2‖w̃‖p)2−p ‖w̃ − w‖p−1

p +‖w̃‖p−1
p ‖w̃−w‖2−pp +‖w̃−w‖p.

Putting this bound into (6.5), we obtain

DΨp(w̃, w) ≤ (2‖w̃‖p)2−p ‖w̃ − w‖pp + ‖w̃‖p−1
p ‖w̃ − w‖3−pp + ‖w̃ − w‖2p.
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Since 1 < 3− p < 2, we have

DΨp(w̃, w) ≤


(

(2‖w̃‖p)2−p
+ ‖w̃‖p−1

p + 1
)
‖w̃ − w‖2p, when ‖w̃ − w‖p ≥ 1,(

(2‖w̃‖p)2−p
+ ‖w̃‖p−1

p + 1
)
‖w̃ − w‖min{p,3−p}

p , when ‖w̃ − w‖p < 1.

Then our desired estimate (2.9) for DΨp(w̃, w) follows.455

Let w̃ ∈ W and denote the constant C‖w̃‖p,p =
(

(2‖w̃‖p)2−p
+ ‖w̃‖p−1

p + 1
)−1

.456

We know from (2.9)457

‖w̃ − w‖2p + ‖w̃ − w‖min{p,3−p}
p ≥ C‖w̃‖p,pDΨp(w̃, w). (6.7)

When DΨp(w̃, w) ≥ 1, we have Ωp
(
DΨp(w̃, w)

)
= DΨp(w̃, w) + 1

τp
− 1 ≤

DΨp(w̃, w) and see from (6.7) that either

‖w̃−w‖2p ≥ 1 =⇒ ‖w̃−w‖2p ≥
1

2

(
‖w̃ − w‖2p + ‖w̃ − w‖min{p,3−p}

p

)
≥
C‖w̃‖p,p

2
Ωp
(
DΨp(w̃, w)

)
or ‖w̃ − w‖2p < 1 which implies

‖w̃ − w‖min{p,3−p}
p ≥

C‖w̃‖p,p

2
DΨp(w̃, w) ≥

C‖w̃‖p,p

2

by our assumption DΨp(w̃, w) ≥ 1, and thereby

‖w̃ − w‖2p = ‖w̃ − w‖min{p,3−p}
p ‖w̃ − w‖2−min{p,3−p}

p

≥
{
C‖w̃‖p,p

2
DΨp(w̃, w)

}(
C‖w̃‖p,p

2

) 2−min{p,3−p}
min{p,3−p}

.

Hence

‖w̃ − w‖2p ≥ min

{
C‖w̃‖p,p

2
,

(
C‖w̃‖p,p

2

)τp}
Ωp
(
DΨp(w̃, w)

)
.

When DΨp(w̃, w) < 1, we have Ωp
(
DΨp(w̃, w)

)
= 1

τp

(
DΨp(w̃, w)

)τp
. Again,

from (6.7), we have either

‖w̃ − w‖2p < 1 =⇒ ‖w̃ − w‖min{p,3−p}
p ≥

C‖w̃‖p,p

2
DΨp(w̃, w)

=⇒ ‖w̃ − w‖2p ≥ τp
(
C‖w̃‖p,p

2

)τp
Ωp
(
DΨp(w̃, w)

)
or ‖w̃ − w‖2p ≥ 1 which implies

‖w̃ − w‖2p ≥
C‖w̃‖p,p

2
DΨp(w̃, w) ≥

τpC‖w̃‖p,p

2
Ωp
(
DΨp(w̃, w)

)
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by our assumption DΨp(w̃, w) < 1. Therefore,

‖w̃ − w‖2p ≥ min

{
τp
C‖w̃‖p,p

2
, τp

(
C‖w̃‖p,p

2

)τp}
Ωp
(
DΨp(w̃, w)

)
.

Combining the above two cases and noting τp > 1, we see (2.10) holds.458

The last statement follows immediately from the identity (2.3), the definition459

of σF -strong convexity, and (2.10). The proof is complete.460

Proof of Theorem 1. Denote supx∈X ‖x‖∗ = R > 0. The Hessian matrix of

f(·, z) = 1
2 (〈·, x〉 − y)

2
for every z is ∇2

w[f(w, z)] = xx>, from which we know

that f(·, z) and F are R2-strongly smooth. Moreover, we have

∇F (w) = EZ [XX>w −XY ] = CXw − EZ [XY ].

So we know from the positive definiteness of the covariance matrix CX that the461

only minimizer w∗ is w∗ = wρ. For any w, w̃ ∈ W, there holds462

DF (w, w̃) =
1

2
EZ
[(
〈w,X〉 − 〈w̃,X〉+ 〈w̃,X〉 − Y

)2]
−1

2
EZ
[(
〈w̃,X〉 − Y

)2]− 〈w − w̃,∇F (w̃)〉

=
1

2
EZ
[(
〈w − w̃,X〉

)2]
+ EZ

[〈
w − w̃, 〈w̃,X〉X −XY

〉]
−〈w − w̃,∇F (w̃)〉

=
1

2
(w − w̃)>CX(w − w̃) ≥ λmin

2
‖w − w̃‖22,

where λmin > 0 is the smallest eigenvalue of the positive definite covariance

matrix CX . But the norms ‖ · ‖2 and ‖ · ‖ on Rd are equivalent. So there exist

two positive numbers b1 ≤ b2 such that b1‖w‖2 ≤ ‖w‖22 ≤ b2‖w‖2 for w ∈ Rd.

It follows that

DF (w, w̃) ≥ λminb1
2
‖w − w̃‖2, ∀w, w̃ ∈ W.

This verifies the λminb1-strong convexity of F . So by Propositions 5 and 6, the

conditions of Theorems 2, 3 and 4 are satisfied. Moreover,

EZ [‖∇w[f(w,Z)]‖∗] = EZ [‖(Y − 〈w,X〉)X‖∗] = EZ [|Y − 〈w,X〉| ‖X‖∗] .
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So the assumption infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 in Theorem 2 is the same463

as the assumption infw∈W EZ [|Y − 〈w,X〉| ‖X‖∗] > 0 in Theorem 1, and from464

Theorem 2 we know that if we replace ‖wρ−wt‖2 by DΨ(wρ, wt), our statement465

(a) holds true and the constant σ can be taken as σ = 2λminb1
LΨ

in the case of an466

LΨ-strongly smooth mirror map Ψ. To get the statement for the norm square467

‖wρ−wt‖2, we notice first from the strong convexity of Ψ that σΨ

2 ‖wρ−wt‖
2 ≤468

DΨ(wρ, wt).469

When Ψ is strongly smooth satisfying DΨ(wρ, wt) ≤ LΨ

2 ‖wρ−wt‖
2, we know

that our statement (a) holds true. When Ψ = Ψp for some 1 < p ≤ 2, we use

(2.10) with w̃ = wρ and Jensen’s inequality to get from the convexity of Ω

Ez1,...,zt−1 [‖wρ − wt‖2] ≥ B′pΩp
(
Ez1,...,zt−1 [DΨp(wρ, wt)]

)
,

where B′p is a constant depending on p, ‖wρ‖, and a constant cp such that470

cp‖w‖p ≤ ‖w‖ holds for every w ∈ W. Combining this relation with the explicit471

formula (2.11) for Ωp, we know that limt→∞ Ez1,...,zt−1 [‖wρ −wt‖2] = 0 implies472

limt→∞ Ez1,...,zt−1
[DΨp(wρ, wt)] = 0. Hence our statement (a) also holds true473

for Ψ = Ψp.474

Note that the assumption EZ [‖∇w[f(w∗, Z)]‖∗] = 0 in our statement (b) of475

Theorem 3 is the same as the the assumption EZ [|Y − 〈wρ, X〉| ‖X‖∗] = 0 in476

Theorem 1. So our statement (b) can be proved from Theorem 3 by the same477

argument for dealing with the norm square ‖wρ − wt‖2 from DΨ(wρ, wt) as we478

did for our statement (a).479

Our statement (c) follows from Theorem 4 and the strong convexity of Ψ.480

The proof of Theorem 1 is complete.481

Proof of Theorem 8. Recall that for the regularizer r given by r(w) = λ‖w‖22,482

there holds Dr(w̃, w) = λ‖w̃ − w‖22 for w̃, w ∈ W. So we know that F is483

2λ-strongly convex for every z ∈ Z.484

For the Bregman distance induced by the loss function

Dφ(〈·,x〉,y)(w̃, w) = φ(〈w̃, x〉, y)− φ(〈w, x〉, y)− 〈w̃ − w, φ′(〈w, x〉, y)x〉,
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we apply the mean value theorem to find

φ(〈w̃, x〉, y)− φ(〈w, x〉, y) = φ′(ξ, y) (〈w̃, x〉 − 〈w, x〉) = 〈w̃ − w, φ′(ξ, y)x〉,

where ξ is a number between 〈w̃, x〉 and 〈w, x〉. We can write

ξ = (1− θ)〈w̃, x〉+ θ〈w, x〉 = 〈(1− θ)w̃ + θw, x〉

for some θ ∈ (0, 1). It follows that

Dφ(〈·,x〉,y)(w̃, w) = 〈w̃ − w, (φ′(〈(1− θ)w̃ + θw, x〉, y)− φ′(〈w, x〉, y))x〉

and

Dφ(〈·,x〉,y)(w̃, w) ≤ ‖w̃ − w‖‖x‖∗ |φ′(〈(1− θ)w̃ + θw, x〉, y)− φ′(〈w, x〉, y)| .

Then we apply the Lipschitz condition (2.12) and obtain

Dφ(〈·,x〉,y)(w̃, w) ≤ ‖w̃−w‖‖x‖∗`φ |〈(1− θ)w̃ + θw, x〉 − 〈w, x〉| ≤ ‖w̃−w‖2‖x‖2∗`φ.

If we denote supx∈X ‖x‖∗ = R > 0, then we have

Dφ(〈·,x〉,y)(w̃, w) ≤ `φR2‖w̃ − w‖2, ∀w̃, w ∈ W.

Therefore, f(·, z) is 2(`φR
2 + λ)-strongly smooth for every z ∈ Z, and the485

statements on the strong smoothness of F follows. Our desired statement on486

the convergence follows from Theorems 2, 3 and 4, as we have done in the proof487

of Theorem 1. The proof of Theorem 8 is complete.488

7. Simulations489

In this section, we present some numerical simulations to validate our theo-490

retical results. We use the AIR toolbox [15] to create a CT-measurement matrix491

A ∈ Rn×d and an N × N sparse image represented by a vector w† ∈ Rd with492

d = N2. Our objective is to recover the image w† based on a sequence of noisy493

measurements {(xt, yt)}t∈N. In our experiment, we consider the measurement494

vector xt =
A>it
‖Ait‖2

and yt = 〈w†, xt〉+st, where Ait is the it-th row of A with the495
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index it randomly drawn from the uniform distribution over {1, . . . , n} and st496

is a Gaussian random variable with mean 0 and standard deviation σ|〈w†, xt〉|.497

We set N = 128 and n = 92160.498

We apply the following online version of a modified linearized Bregman it-499

eration [7] to recover the image w† from noisy measurements {(xt, yt)}t∈N500 vt+1 = vt − ηt
(
〈wt, xt〉 − yt

)
xt,

wt+1 = Tλ,ε(vt+1),

(7.1)

where Tλ,ε : Rd → Rd is defined component-wisely in terms of the function

Tλ,ε : R→ R given by

Tλ,ε(v) =


vε
λ+ε , if |v| ≤ λ+ ε,

sgn(v)(|v| − λ), otherwise.

Here we set w1 = v1 = 0 ∈ Rd. This is a specific instantiation of the OMD501

with f(w, z) = 1
2

(
〈w, x〉 − y

)2
and Ψ = Ψ(ε,λ) defined [21] in Section 1. We502

choose λ = 1 and, as suggested in [7], ε = 10−8 here. We consider several503

step size sequences of the form ηt =
(
1 + tσmin(CX)

)−θ
with θ ≥ 0, where504

σmin(CX) is the smallest positive eigenvalue of the covariance matrix CX . We505

repeat the experiments 8 times and report the average of experimental results506

in this section.507

We first consider the noisy case with σ > 0, which, as suggested in Remark508

2, corresponds to the case with positive variances. We plot in panel (a) of509

Figure 2, the relative error errr(wt) := 100‖wt−w†‖2/‖w†‖2 versus the number510

of iterations for polynomially decaying step sizes with exponents θ ∈ {0, 1
2 , 1}.511

The blue line is a plot for θ = 0, which verifies the divergence of the algorithm512

since the step sizes do not satisfy the necessary condition limt→∞ ηt = 0 for513

the convergence of (7.1). The red and black lines are the plots for θ = 1
2 and514

θ = 1, respectively. It is clear that both of these step size sequences satisfy the515

sufficient condition (1.5) for the convergence of the algorithm, which explains516

the convergence of (7.1) in the setting with positive variances. It can also be517

39



103 104 105 106

time index

2

5

8

12
15

20

50

100
re

la
tiv

e 
er

ro
r

(a) Positive variances

103 104 105 106

time index

10-4

10-2

100

102

re
la

tiv
e 

er
ro

r

(b) Zero variances

Figure 2: Relative error of algorithm (7.1) with different step sizes. Panel (a) shows the

relative error in the case with positive variances for the polynomially decaying step sizes with

θ = 0 (blue line), θ = 1
2

(red line) and θ = 1 (black line). Panel (b) shows the relative error

in the case with zero variance for the polynomially decaying step sizes with θ = 0 (blue line),

θ = 2 (red line) and θ = 1 (black line).

seen that a faster convergence rate is achieved by setting θ = 1 as compared to518

θ = 1/2, which verifies Theorem 2 on tight convergence rates with θ = 1.519

We now consider the noiseless case with σ = 0, which, as clarified in Remark520

2, corresponds to the case with zero variance. In panel (b) of Figure 2, we521

report the relative error as a function of the number of iterations for the step522

size sequences with θ = 0 (blue line), θ = 2 (red line) and θ = 1 (black line).523

The step size sequence with θ = 2 does not satisfy the necessary condition524 ∑∞
t=1 ηt = ∞ for the convergence, which is well consistent with the divergence525

behavior of the algorithm as shown in panel (b). Both the step size sequences526

with θ = 1 and θ = 0 satisfy the sufficient condition
∑∞
t=1 ηt = ∞, implying527

the convergence behavior of the algorithm (7.1). It is also clear that (7.1) with528

θ = 0 achieves a faster convergence rate than that with θ = 1, which is also529

consistent with the linear convergence rate established in (2.7) corresponding to530

θ = 0.531
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Appendix540

This appendix provides the proofs of the co-coercivity of gradients stated541

in Lemma 12 and Proposition 7 together with a remark on variances involving542

stochastic gradients.543

To prove Lemma 12, we need the following lemma on the Fenchel-conjugate544

of some norm power functions which is of independent interest.545

Lemma 16. Let κ > 1. The Fenchel-conjugate of f = 1
κ‖ · ‖

κ is given by546

f∗(v) = κ−1
κ ‖v‖

κ
κ−1
∗ .547

Proof. According to Young’s inequality ab ≤ 1
κa

κ + κ−1
κ a

κ
κ−1 , we have for v ∈

W∗,

f∗(v) = sup
w∈W

[
〈w, v〉 − 1

κ
‖w‖κ

]
≤ sup
w∈W

[
‖w‖‖v‖∗ −

1

κ
‖w‖κ

]
≤ sup
w∈W

[ 1

κ
‖w‖κ +

κ− 1

κ
‖v‖

κ
κ−1
∗ − 1

κ
‖w‖κ

]
=
κ− 1

κ
‖v‖

κ
κ−1
∗ .

Since W = W∗∗, for v ∈ W∗, there exists some w ∈ W = W∗∗ such that

〈w, v〉 = ‖v‖∗ and ‖w‖ = 1. Taking the vector ‖v‖
1

κ−1
∗ w in the definition of f∗

gives

f∗(v) ≥ 〈‖v‖
1

κ−1
∗ w, v〉− 1

κ
‖w‖κ‖v‖

κ
κ−1
∗ = ‖v‖

1
κ−1
∗ ‖v‖∗−

1

κ
‖v‖

κ
κ−1
∗ =

κ− 1

κ
‖v‖

κ
κ−1
∗ .

Combining the above two inequalities yields the stated result.548
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Proof of Lemma 12. We use some ideas from [34]. Fix a w ∈ W. Define h :

W → R by h(w̄) = g(w̄)− 〈w̄,∇g(w)〉. It is clear that h satisfies the condition

Dh(w̄, w̃) = Dg(w̄, w̃) ≤ L

1 + α
‖w̄ − w̃‖1+α, ∀w̄, w̃ ∈ W.

Since h is convex and ∇h(w) = 0, we know that h attains its minimum at w.

So for w̃ ∈ W, we have

h(w) = min
w̄∈W

h(w̄) ≤ min
w̄∈W

[
h(w̃) + 〈w̄ − w̃,∇h(w̃)〉+

L

1 + α
‖w̃ − w̄‖α+1

]
= h(w̃)− Lmax

w̄∈W

[
〈w̃ − w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̃ − w̄‖α+1

]
= h(w̃)− Lmax

w̄∈W

[
〈w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̄‖α+1

]
.

According to the definition of Fenchel-conjugate and Lemma 16 with κ = α+ 1,

we know

max
w̄∈W

[
〈w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̄‖α+1

]
=
( 1

1 + α
‖ · ‖α+1

)∗
(L−1∇h(w̃))

=
α

1 + α

∥∥L−1∇h(w̃)
∥∥ 1+α

α

∗ .

Combining the above discussions yields

h(w) ≤ h(w̃)− L−
1
αα

1 + α

∥∥∇h(w̃)
∥∥ 1+α

α

∗ , ∀w̃ ∈ W.

The above inequality can be equivalently written as

g(w̃) ≥ g(w) + 〈w̃ − w,∇g(w)〉+
L−

1
αα

1 + α
‖∇g(w̃)−∇g(w)‖

1+α
α
∗ .

Switching w and w̃ also shows

g(w) ≥ g(w̃) + 〈w − w̃,∇g(w̃)〉+
L−

1
αα

1 + α
‖∇g(w)−∇g(w̃)‖

1+α
α
∗ .

Summing up the above two inequalities gives the stated inequality (4.5) and549

completes the proof.550

Now we turn to the proof of Proposition 7.551

Proof of Proposition 7. Recall the dual number p∗ = p
p−1 > 2 of p given in the552

proof of Proposition 6 satisfying 1
p + 1

p∗ = 1. Take the norm ‖ · ‖ = ‖ · ‖p.553
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Suppose to the contrary that Ψp is L-strong smooth for some L > 0. Then554

we know from the inequality (6.1) derived in the proof of Proposition 5 that555

‖∇Ψp(w)−∇Ψp(w̃)‖∗ ≤ L‖w − w̃‖, ∀w, w̃ ∈ W. (7.2)

Let a ≥ 1 and define two vectors w, w̃ ∈ Rd as

w =

 (a+ 1, a− 1, . . . , a+ 1, a− 1), if d is even,

(a+ 1, a− 1, . . . , a+ 1, a− 1, a), if d is odd,

and

w̃ =

 (a− 1, a+ 1, . . . , a− 1, a+ 1), if d is even,

(a− 1, a+ 1, . . . , a− 1, a+ 1, a), if d is odd.

By the elementary inequality (a+ 1)p + (a− 1)p ≥ 2ap, we find

‖w‖p = ‖w̃‖p =


[
d
2 (a+ 1)p + d

2 (a− 1)p
] 1
p ≥ d

1
p a, if d is even,[

d−1
2 (a+ 1)p + d−1

2 (a− 1)p + ap
] 1
p ≥ d

1
p a, if d is odd.

Combining this with the expression of ∇Ψp given in (6.4) yields

‖∇Ψp(w)−∇Ψp(w̃)‖∗ = ‖w‖2−pp

∥∥(|w(j)|p−1 − |w̃(j)|p−1
)d
j=1

∥∥
∗

≥ ‖w‖2−pp [(a+ 1)p−1 − (a− 1)p−1](d− 1)
1
p∗

≥ (d− 1)
1
p a2−p[(a+ 1)p−1 − (a− 1)p−1].

But

‖w − w̃‖ =

 2d1/p, if d is even,

2(d− 1)1/p < 2d1/p, if d is odd.

It follows that

‖∇Ψp(w)−∇Ψp(w̃)‖∗ ≥
1

2

(
d− 1

d

) 1
p

a2−p[(a+ 1)p−1 − (a− 1)p−1]‖w − w̃‖.

Since d ≥ 2, we have d−1
d ≥

1
2 . Therefore we apply the inequality (7.2) to obtain

L‖w − w̃‖ ≥ 1

4
a2−p[(a+ 1)p−1 − (a− 1)p−1]‖w − w̃‖.

This is a contradiction to the limit lima→∞ a2−p[(a+ 1)p−1 − (a− 1)p−1] =∞.556

So Ψp is not strongly smooth. The proof of Proposition 7 is complete.557
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At the end, we give the following remark on the conditions on the variances.558

Proposition 17. If F is Fréchet differentiable, then the following two state-559

ments hold.560

(a) If there exists a w∗ ∈ W with EZ [‖∇w[f(w∗, Z)]‖∗] = 0, then we have561

EZ [‖∇w[f(w∗, Z)]−∇F (w∗)‖2∗] = 0.562

(b) If infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0, then we have EZ [‖∇w[f(w∗, Z)]−∇F (w∗)‖2∗] >563

0 for any minimizer w∗ of F .564

Proof. For the statement (a), the condition EZ [‖∇w[f(w∗, Z)]‖∗] = 0 amounts565

to saying that ∇w[f(w∗, Z)] = 0 holds almost surely, from which it follows that566

∇F (w∗) = 0 and therefore EZ [‖∇w[f(w∗, Z)]−∇F (w∗)‖2∗] = 0.567

The statement (b) follows from the optimality condition ∇F (w∗) = 0 and568

the Schwarz inequality EZ [‖∇w[f(w∗, Z)]‖∗] ≤
{
EZ [‖∇w[f(w∗, Z)]‖2∗]

}1/2
.569
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