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Abstract

Algorithmic stability is a fundamental concept in statistical learning theory to understand the gener-

alization behavior of optimization algorithms. Existing high-probability bounds are developed for the

generalization gap as measured by function values and require the algorithm to be uniformly stable.

In this paper, we introduce a novel stability measure called pointwise uniform stability by considering

the sensitivity of the algorithm with respect to the perturbation of each training example. We show

this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-

probability bound for the generalization gap as measured by gradients. Sharper bounds are given for

strongly convex and smooth problems. We further apply our general result to derive improved general-

ization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities

for a summation of weakly-dependent vector-valued random variables.
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1. Introduction1

How to understand the generalization behavior of a learning algorithm is a central problem in2

statistical learning theory. A popular approach to developing generalization bounds is based on the3

uniform convergence, which controls the uniform deviation between population risks and empirical4

risks over a function space [39, 2, 36, 9]. This approach ignores how an algorithm explores over the5

function space, and leads to generalization bounds depending on the complexity of function spaces6

such as VC dimension [39], covering numbers [45, 36] and Rademacher complexities [2].7

An alternative approach for generalization analysis is based on a fundamental concept of algorith-8

mic stability. Roughly speaking, we say a learning algorithm is algorithmically stable if a change of a9

single example in the training dataset brings only a small change in the output model, i.e., the algo-10

rithm is insensitive with respect to (w.r.t.) the perturbation of training datasets [32, 5]. Algorithmic11

stability was introduced in 1970s to derive leave-one-out bounds for certain nonparametric local learn-12

ing algorithms (such as nearest-neighbor rules) [11, 32]. The modern framework of stability analysis13
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was established in [5], where a celebrated concept called the uniform stability has been introduced to14

study regularization methods.15

We need to answer two questions in applying algorithmic stability to get generalization bounds for16

an algorithm. The first question is how to guarantee the generalization by stability, i.e., whether a17

stable algorithm can always produce models with good generalization behavior. The second question18

is how to develop stability bounds for an algorithm in terms of algorithm parameters such as the19

regularization parameter, the step size and the number of iterations.20

The second question is algorithm-dependent, which allows us to exploit the special property of21

algorithms to get bounds better than algorithm-independent bounds based on complexity measures [2].22

The stability of various optimization algorithms has been developed in the literature. For example,23

the uniform stability has been developed for stochastic gradient descent (SGD) [17], which is one of24

the most widely used optimization methods to solve large-scale problems in machine learning.25

For the first question, quantitative connection either in expectation or with high probability has26

been established. In particular, with probability at least 1−δ the following generalization bounds were27

developed for β-uniformly stable algorithms1 [6, 14]28

∣∣F (A(S))− FS(A(S))| ≲ β log n log(1/δ) + log
1
2 (1/δ)/n

1
2 , (1.1)

where A(S) denotes the output model by applying an algorithm A to the dataset S, F (w) denotes29

the population risk of a model w, FS(w) denotes the empirical risk of w (definitions are given in30

Section 3.1) and n is the sample size. Eq. (1.1) is a breakthrough result on the high-probability31

generalization analysis for uniformly stable algorithms initialized in 2002 [5]. However, some questions32

on Eq. (1.1) still remain.33

� Eq. (1.1) provides generalization bounds in terms of function values. For nonconvex problems,34

optimization algorithms can only find a local minimizer and therefore we can only get optimiza-35

tion error bounds for ∥∇F (A(S))∥ [15], where ∇ denotes the gradient operator. Therefore, it is36

interesting to study the generalization behavior of A(S) as measured by ∇F (A(S)), which moti-37

vates the question of developing high-probability bounds on the generalization gap as measured38

by gradients, i.e., ∥∇F (A(S))−∇FS(A(S))∥.39

� Eq. (1.1) requires the algorithm to be uniformly stable, which is arguably the strongest concept40

of algorithmic stability. Is it possible to relax this uniform stability to a weaker version of uniform41

stability, and can we develop better bounds on this weaker stability for popular algorithms such42

as SGD?43

� The recent sharper generalization bounds in [18] require the loss function to be simultaneously44

Lipschitz continuous and λ-strongly convex, which cannot be satisfied globally due to the conflict45

1We use the notation ≲ to ignore constant factors in an inequality.
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between the Lipschitz continuity and strong convexity. Furthermore, their generalization bounds46

involve ∆̂
1
2

λ , where ∆̂λ = λ−1
(
FS(A(S)) − minw FS(w)

)
denotes a weighted suboptimality of47

the output model in terms of the empirical risk. This square-root dependency on ∆̂λ is slow in48

practice. Can we address the above conflict and improve the dependency on ∆̂λ?49

In this paper, we aim to provide affirmative answers to the above questions. Our main contributions50

are as follows.51

� We develop a concentration inequality for a summation of weakly-dependent vector-valued ran-52

dom variables, which generalizes a similar result in Bousquet et al. [6] from real-valued random53

variables to random variables taking values in a Hilbert space.54

� We introduce a new stability measure termed as the pointwise uniform stability. While this55

stability is weaker than the uniform stability, we show it guarantees high-probability gener-56

alization bounds on F (A(S)) − FS(A(S)). We also give the first high-probability bound for57

∥∇F (A(S))−∇FS(A(S))∥ based on stability analysis.58

� We improve the high-probability bound in [18] by considering a loss function of a structure,59

which reconciles the conflict between Lipschitz continuity and strong convexity. Furthermore,60

we derive a sharper bound involving ∆̂
1+α
2

λ to exploit the α-Hölder continuity of gradients. In61

particular, if α = 1, the term ∆̂
1+α
2

λ decays quadratically faster than ∆̂
1
2

λ in [18].62

� We study the pointwise uniform stability of SGD for convex and strongly convex problems,63

covering smooth and nonsmooth problems. We then apply our connection between stability and64

generalization to give high-probability generalization bounds.65

The paper is organized as follows. We review the related work in Section 2. We present our main66

results in Section 3, and give applications to SGD in Section 4. We present the proofs on connecting67

stability and generalization in Section 5, and the proofs on SGD in Section 6. The conclusion is given68

in Section 7. Some lemmas and proofs are given in the Appendix.69

2. Related Work70

2.1. Connection on Stability and Generalization71

Algorithmic stability can imply generalization bounds in expectation and with high probability. We72

first consider generalization bounds in expectation. On-average stability can imply generalization under73

a Lipschitz condition of loss functions [34]. For non-Lipschitz problems, an on-average model stability74

was proposed to give generalization bounds by exploiting the smoothness of loss functions [22], which75

can further imply fast rates under a low-noise condition. On-average stability can imply generalization76

bounds for any learning algorithms to solve gradient-dominated problems [23, 7]. For nonconvex77

and smooth problems, generalization as measured by gradients can be guaranteed by stability in78

gradients [21].79
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We now consider generalization bounds with high probability. In a seminal paper [5], β-uniform80

stability was introduced to give bounds of order O((β+1/n)
√
n log(1/δ)), which was extended to ran-81

domized learning algorithms [12]. These results were significantly improved to O(
√
(β + 1/n) log(1/δ))82

in [13] by techniques in adaptive data analysis. Almost optimal generalization bounds in Eq. (1.1)83

were further derived by developing concentration inequalities for a summation of weakly-dependent84

random variables [6, 14]. The above-mentioned high-probability analysis can imply bounds of the order85

at most O(1/
√
n). Under a Bernstein condition on variances, it was shown that β-uniformly stable86

algorithms can enjoy high-probability bounds of the order O((β log n+ 1/n) log(1/δ)) [18].87

2.2. Stability of Learning Algorithms88

Algorithmic stability has been studied for various learning algorithms. Uniform stability bounds of89

order O(1/(nλ)) were developed for empirical risk minimization to solve λ-strongly convex problems [5].90

In a seminal paper, uniform stability bounds of order O(G2
∑T

t=1 ηt/n) were developed for SGD with91

T iterations and step size sequences {ηt} for convex, smooth and G-Lipschitz problems [17]. Data-92

dependent stability bounds reflecting the effect of initialization point were established for SGD [20].93

For nonsmooth and convex problems, stability bounds of order O(η
√
T + ηT/n) were developed for94

SGD with ηt = η either in expectation [22] or with high probability [3]. The Lipschitz constant G in the95

existing stability bounds [17] was replaced by the training error based on on-average model stability,96

which can imply fast excess risk bounds under a low-noise condition [22]. On-average model stability97

was also used to understand the benefit of overparameterization for shallow neural networks [30, 37, 24],98

and the implicit bias of gradient methods for separable data and self-bounding loss functions [33].99

Other than the standard SGD/GD, the stability of differentially private SGD [42, 3, 21], gradient-free100

optimization methods [28], accelerated methods [41] and noisy SGD [46, 25, 38, 27] was studied in the101

literature. Lower bounds on the stability of gradient methods were also developed [3, 19, 1].102

3. Main Results103

3.1. Problem Setup104

Let ρ be a probability measure defined on a sample space Z = X×Y, where X is an input space and105

Y is an output space. Let S = (z1, . . . , zn) be a training dataset drawn independently from ρ, based on106

which we aim to find a model h : X 7→ Y for further prediction. We consider a parametric model, i.e., a107

model can be indexed by a parameter w ∈ W, where W ⊂ Rd is the parameter space. The performance108

of a model w on an example z can be measured by f(w; z), where f : W×Z 7→ R+ is the loss function.109

The empirical behavior of a model w can be quantified by the empirical risk FS(w) = 1
n

∑n
i=1 f(w; zi),110

while the prediction behavior can be quantified by the population risk F (w) = Ez[f(w; z)], where Ez[·]111

denotes the expectation w.r.t. z. We often apply an algorithm A onto S to get a model A(S) ∈ W112

with a small empirical risk. However, this does not necessarily imply a small population risk referred113

to as the overfitting phenomenon. To this aim, we need to handle an important concept called the114
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generalization gap F (A(S))−FS(A(S)), i.e., the difference between population risk and empirical risk115

at the output model A(S). In this paper, we will leverage the celebrated concept called algorithmic116

stability to develop high-probability bounds on the generalization gap.117

3.2. Concentration Inequality118

We give a p-norm bound for a summation of weakly-dependent random variables taking values119

in a Hilbert space, whose proof is given in Section 5.1. It will play a fundamental role in deriving120

the connection between stability and generalization. The Lp-norm of a real-valued random variable121

Z is denoted by ∥Z∥p :=
(
E[|Z|p]

) 1
p , p ≥ 1. Let ∥ · ∥ denote the norm in a Hilbert space H. Then122

∥∇f(w;Z)∥ is a real-valued random variable (as a function of Z). According to our notation, we have123

∥∥∇f(w;Z)∥∥p =
(
EZ

[
∥∇f(w;Z)∥p

]) 1
p

, ∀p ≥ 1.

Theorem 1. Let Z = (Z1, . . . , Zn) be a sequence of independent random variables taking values in a124

Hilbert space H. Let g1, . . . , gn be functions gi : Zn 7→ H such that the following holds.125

1. For any i ∈ [n], almost surely we have supzi ∥E[gi(Z)|Zi = zi]∥ ≤ M .126

2. For any i ∈ [n], almost surely we have E[gi(Z)|Z[n]\{i} = (zj)j ̸=i] = 0,∀zj ∈ Z, j ̸= i.127

3. For any i ∈ [n], the following inequality holds128

sup
z1,...,zn,z′

j :j ̸=i

∥∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)

∥∥ ≤ βj . (3.1)

Then, for any p ≥ 2 we have129 ∥∥∥∥∥∥ n∑
i=1

gi

∥∥∥∥∥∥
p
≤ 2(

√
2 + 1)M

√
np+ 2(

√
2 + 1)p⌈log2 n⌉

(
n

n∑
i=1

β2
i

) 1
2

.

Remark 1. If H = R, a similar bound was established in [6]. That is, let g̃1, . . . , g̃n be real-valued130

functions such that ∥E[g̃i(Z)|Zi]∥ ≤ M , E[g̃i(Z)|Z[n]\{i}] = 0 and131

sup
zj ,z′

j

∣∣g̃i(z1, . . . , zj−1, zj , zj+1, . . . , zn)− g̃i(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)

∣∣ ≤ β.

Then, the following inequality was established for any p ≥ 2 [6]132 ∥∥∥ n∑
i=1

g̃i(Z)
∥∥∥
p
≤ 4M

√
np+ 12

√
2pnβ⌈log2 n⌉. (3.2)

There are two differences between our result and Eq. (3.2). First, we extend the discussion in [6]133

from real-valued random variables to random variables taking values in a general Hilbert space, and134

slightly improve the constant factor. Second, the discussions [6] assume the change of j-th example135

in z = (z1, . . . , zn) would lead to a change of value uniformly bounded by β. As a comparison, we136

allow different βj for different j ∈ [n]. As we will show, this is useful for us to get a new generalization137

bound based on our pointwise uniform stability.138
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3.3. Stability and Generalization139

Stability measures the sensitivity of an algorithm up to the perturbation of the training dataset140

by a single example. A very popular stability measure is the uniform stability, which considers the141

change of any single example of any training dataset by any z ∈ Z.142

Definition 1 (Uniform Stability). Let A be an algorithm and β > 0.143

1. We say A is β-uniformly-stable in function values if for all datasets S, S′ such that S and S′
144

differ by a single example, we have145

sup
z

|f(A(S); z)− f(A(S′); z)| ≤ β. (3.3)

2. We say A is β-uniformly-stable in gradients if for all datasets S, S′ such that S and S′ differ by146

a single example, we have147

sup
z

∥∇f(A(S); z)−∇f(A(S′); z)∥ ≤ β. (3.4)

In this paper, we introduce a new stability measure which we call the pointwise uniform stability.148

The basic idea is to give a single stability parameter βi for perturbing the i-th example of the dataset. It149

is clear that if A is β-uniformly stable, then it is also (β, . . . , β)-pointwise uniformly stable. Therefore,150

pointwise uniform stability is weaker than the uniform stability. In this paper, we will show that this151

weaker stability can also imply high-probability generalization bounds. We say two datasets S and152

S(i) differ only by the i-th example if S = (z1, . . . , zn) and S(i) = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) for153

some z′i ∈ Z.154

Definition 2 (Pointwise Uniform Stability). Let A be an algorithm and β = (β1, . . . , βn), βi > 0.155

1. We say A is β-pointwise uniformly-stable in function values if for all S, S(i) such that S and S(i)
156

differ by the i-th example, we have157

sup
z

|f(A(S); z)− f(A(S(i)); z)| ≤ βi. (3.5)

2. We say A is β-pointwise uniformly-stable in gradients if for all S, S(i) such that S and S(i) differ158

by the i-th example, we have159

sup
z

∥∇f(A(S); z)−∇f(A(S(i)); z)∥ ≤ βi. (3.6)

Theorem 2 gives a high-probability bound on the generalization gap F (A(S)) − FS(A(S)) for160

pointwise uniformly stable algorithms. We omit the proof due to its similarity with Theorem 3.161

Theorem 2 (Generalization via Function Values). Let β = (β1, . . . , βn). Consider an algorithm A162

and δ ∈ (0, 1). Assume for any S and any z, |f(A(S); z)| ≤ M . If A is β-pointwise uniformly-stable163

in function values, then the following inequality holds with probability at least 1− δ164

∣∣F (A(S))− FS(A(S))| ≲ M log
1
2 (1/δ)√
n

+
( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ).
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Remark 2. If A is β-uniformly stable in function values, the generalization bound in Eq. (1.1)165

was developed [5, 14]. As a comparison, our bound involves an average of stability parameters over all166

indices, i.e., the term
(
1
n

∑n
i=1 β

2
i

) 1
2 , which is smaller than the uniform stability parameter β = maxi βi167

considered in [5, 14]. As we will show, for SGD we can establish a bound for
(
1
n

∑n
i=1 β

2
i

) 1
2 which is168

smaller than that for maxi βi.169

Our next result is a high-probability bound on the generalization gap in terms of gradients, which170

extends the high-probability generalization bound in function values in [5, 14]. We show that the171

deviation between population gradients and empirical gradients at the output model can be bounded172

by the stability parameter in gradients. We require f to be differentiable, and do not require a convexity173

or smoothness assumption in Theorem 3. The proof is given in Section 5.2.174

Theorem 3 (Generalization via Gradients). Let β = (β1, . . . , βn). Consider an algorithm A and175

δ ∈ (0, 1). Assume for any S and any z, ∥∇f(A(S); z)∥ ≤ M . If A is β-pointwise uniformly-stable in176

gradients, then the following inequality holds with probability at least 1− δ177

∥∥∇F (A(S))−∇FS(A(S))
∥∥ ≲

M log
1
2 (1/δ)√
n

+
( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ).

Remark 3. If A is β-uniformly stable in gradients with, then it was shown [21]178

E
[∥∥∇F (A(S))−∇FS(A(S))

∥∥] ≲ β +

√
1

n
E
[
VZ [f(A(S);Z)]

]
,

where VZ [f(A(S);Z)] is the variance of ∇f(A(S);Z) as a function of Z. This bound was established in179

expectation. As a comparison, we develop high-probability bounds on the generalization gap between180

population and empirical gradients. High-probability bounds of order
√
d log(1/δ)/n were also estab-181

lished for supw ∥∇F (w)−∇FS(w)∥ based on complexity measures of function spaces, which, however,182

depend on the dimensionality d of the problem and are not appealing for high-dimensional learning183

problems. As a comparison, our stability analysis implies dimension-free generalization bounds.184

3.4. Sharper Generalization Bounds185

Theorem 2 implies generalization bounds of the order O(1/
√
n). In this section, we improve this186

dependency to O(1/n) for pointwise uniformly stable algorithms. The following theorem is an extension187

of the stability analysis in [18]. We consider functions with a composite structure.188

Definition 3 (Lipschitzness, Smoothness and Convexity). Let G,Lα, L > 0, λ ≥ 0 and g : W 7→ R.189

� We say g is G-Lipschitz continuous if |g(w)− g(w′)| ≤ G∥w −w′∥,∀w,w′ ∈ W.190

� We say g has (α,Lα)-Hölder continuous gradients (α ∈ [0, 1]) if191

∥∇g(w)−∇g(w′)∥ ≤ Lα∥w −w′∥α, ∀w,w′ ∈ W.

We say g is L-smooth if g has (1, L)-Hölder continuous gradients.192
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� We say g is λ-strongly convex if193

g(w) ≥ g(w′) + ⟨w −w′,∇g(w′)⟩+ λ

2
∥w −w′∥2, ∀w,w′ ∈ W.

We say g is convex if the above inequality holds with λ = 0.194

Assumption 1. Let λ > 0, ℓ : W × Z 7→ R+ and r : W 7→ R+. Assume f : W × Z 7→ R+ has the195

following structure196

f(w; z) = ℓ(w; z) + r(w). (3.7)

Assume for any z, the function w 7→ ℓ(w; z) is nonnegative and has (α,Lα)-Hölder continuous gradi-197

ents. Assume r is Lr-smooth, and for any z, the function w 7→ f(w; z) is λ-strongly convex.198

For non-composite problems, our analysis can still imply faster rates if f is strongly convex, smooth199

and ∥∇f(A(S); z)∥ ≤ G, ∥∇f(Ae(S); z)∥ ≤ G, where we denote by Ae the empirical risk minimization200

(ERM) algorithm, i.e.,201

Ae(S) = arg min
w∈W

FS(w).

Let LS(w) = 1
n

∑n
i=1 ℓ(w; zi) and L(w) = Ez[ℓ(w; z)]. Let w∗ = argminw∈W F (w) be a minimizer of202

the population risk. The proof is given in Section C.203

Theorem 4. Let β = (β1, . . . , βn) and f take a structure in Eq. (3.7). Assume A is β-pointwise204

uniformly-stable in function values (measured by ℓ), i.e., Eq. (3.5) holds with f replaced by ℓ. Let205

M = supz
∣∣ES [ℓ(A(S)); z] − ℓ(w∗; z)

∣∣. Then for any δ ∈ (0, 1), the following inequality holds with206

probability at least 1− δ207

F (A(S))− FS(A(S))− F (w∗) + FS(w
∗) ≲

( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ) +
M log 1

δ

n
+
(σ2

A log(1/δ)

n

) 1
2

,

where208

σ2
A = EZ

[(
ES

[
ℓ(A(S);Z)

]
− ℓ(w∗;Z)

)2]
−
(
ES

[
L(A(S))

]
− L(w∗)

)2

.

Remark 4. A key difference between Theorem 4 and Theorem 2 is that the term n− 1
2M log

1
2 (1/δ) in209

Theorem 2 is replaced by n−1M log(1/δ) in Theorem 4, at the cost of introducing σAn
− 1

2 log
1
2 (1/δ).210

Then, Theorem 4 can imply fast excess risk bounds if the variance σ2
A is small. Similar bounds were211

derived in [18] under the following Bernstein assumption212

EZ

[
(f(w;Z)− f(w∗;Z))2

]
≤ B(F (w)− F (w∗)), ∀w ∈ W. (3.8)

The bound in [18] involves the uniform stability. As a comparison, our analysis uses the pointwise213

uniform stability. Furthermore, we do not impose a Bernstein assumption, and instead include the214

variance term σ2
A in the upper bound. Finally, we consider a problem with a composite structure and215

our stability assumption is imposed to ℓ instead of f . The underlying reason is that it is possible ℓ216

is Lipschitz continuous but f not. In this case, if we can derive a bound on ∥A(S) − A(S(i))∥, we217

can use the Lipschitz continuity of ℓ to get a bound on ℓ(A(S); z) − ℓ(A(S(i)); z) but not a bound218

on f(A(S); z) − f(A(S(i)); z). As a comparison, the analysis in [18] does not consider this composite219

structure.220
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To apply Theorem 4, we need to estimate the variance term σ2
A, which can be related to the excess221

risk F (A(S))−F (w∗). In the following theorem to be proved in Section 5.3, we show that the Bernstein222

condition holds if Assumption 1 holds. Furthermore, we also give generalization bounds in expectation,223

which involves optimization error FS(A(S))−FS(Ae(S)) and the strong convexity parameter λ. Define224

cα =

(1 + 1/α)
α

1+αL
1

1+α
α , if α ∈ (0, 1],

supz ∥∇ℓ(0; z)∥+ Lα, if α = 0.

(3.9)

The proof is given in Section D.225

Lemma 5. Let Assumption 1 hold. Then226

σ2
A ≤ Cλ−1ES [F (A(S))− F (w∗)], (3.10)

where227

C = 2c2αES,Z

[
max

{
ℓ

2α
1+α (A(S);Z), ℓ

2α
1+α (w∗;Z)

}]
. (3.11)

Furthermore, if
(
F (Ae(S)) − F (w∗)

) 1−α
1+α ≤ C̃ for some C̃ > 0 independent of n or λ, then any228

algorithm A satisfies229

E
[
F (A(S))

]
− F (w∗) ≤ C

(
∆

1+α
2

λ +∆λ +∇λ

)
, (3.12)

where C is a constant independent of λ or n (may depend on α,Lα, Lr and is explicitly given in Eq.230

(D.5)) and231

∆λ = λ−1E
[
FS(A(S))− FS(Ae(S))

]
, ∇λ =

1

nλ
E
[
L

2α
1+α

S (Ae(S)) + L
2α

1+α (Ae(S))
]
.

The assumption
(
F (Ae(S))− F (w∗)

) 1−α
1+α ≤ C̃ is introduced just for simplifying the analysis, and232

can be removed with more complicated computation. This assumption holds automatically if α = 1.233

We can combine Eq. (3.10) and Eq. (3.12) to derive234

σ2
A ≤ 2c2αC(E[F (A(S))])

2α
1+α

( 1

λ1+ 1+α
2

(
E
[
FS(A(S))− FS(Ae(S))

]) 1+α
2

+
E
[
FS(A(S))− FS(Ae(S))

]
λ2

+
2
(
E
[
L(Ae(S))

]) 2α
1+α

nλ2

)
,

where we have used the Jensen’s inequality. We can plug the above bound back into Theorem 4, and235

get the following high-probability bound. We omit the proof for simplicity. For simplicity, we assume236

∆λ = O(1) and absorb all constant factors independent of βi, n, λ (e.g., α,Lα, Lr) into the ≲ notation.237

Corollary 6. Let Assumptions in Lemma 5 hold. Let β = (β1, . . . , βn) and assume A is β-pointwise238

uniformly-stable in function values (measured by ℓ). Let M = supz
∣∣ES [ℓ(A(S)); z] − ℓ(w∗; z)

∣∣. Then239

for any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ240

F (A(S))− FS(A(S))− F (w∗) + FS(w
∗) ≲

( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ) +
M log 1

δ

n

+
log1/2(1/δ)(E[F (A(S))])

α
1+α

√
n

( 1

λ
3+α
4

(
E
[
FS(A(S))− FS(Ae(S))

]) 1+α
4

+

(
E
[
L(Ae(S))

]) α
1+α

√
nλ

)
.
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If we further assume ℓ is Lipschitz continuous, we can have the following high-probability bounds241

for any algorithm to solve strongly convex problems. The proof is given in Section 5.3.242

Theorem 7. Let Assumptions in Lemma 5 hold and ℓ be G-Lipschitz continuous. If supz
∣∣ES [ℓ(A(S)); z]−243

ℓ(w∗; z)
∣∣ < ∞, then for any δ ∈ (0, 1) with probability at least 1− δ we have244

F (A(S))− F (w∗) ≲ (nλ)−1 log n log(1/δ) + ∆̂
1+α
2

λ ,

where ∆̂λ = λ−1
(
FS(A(S))− FS(Ae(S))

)
.245

Remark 5. The term FS(A(S))− FS(Ae(S)) is the optimization error, which measures the subopti-246

mality of A(S) to the minimal empirical risk. The recent work [18] gives the following high probability247

bound if FS is λ-strongly convex and f is Lipschitz continuous248

F (A(S))− F (w∗) ≲
( 1

nλ
+ ∆̄

1
2

λ

)
log n log(1/δ), (3.13)

where ∆̄λ is a deterministic number and an upper bound of ∆̂λ. However, a strongly convex function249

cannot be Lipschitz continuous in the whole region. Therefore, the strong convexity assumption is250

contradictory to the Lipschitz condition. As a comparison, we consider an objective with a composite251

structure where ℓ has α-Hölder continuous gradients and is Lipschitz continuous. Our assumption is252

satisfied by various machine learning problems. For example, for logistic regression we have253

f(w; z) = log(1 + exp(−yw⊤x)) + 2−1λ∥w∥2,

which satisfies Assumption 1 with α = 1. Moreover, the function z 7→ log(1+exp(−yw⊤x)) is Lipschitz254

continuous.255

Furthermore, we show that the term ∆̄
1
2

λ in Eq. (3.13) can be replaced by a faster-decaying term256

∆̂
1+α
2

λ . In particular, if ℓ is smooth, we have ∆̂
1+α
2

λ = ∆̂λ, which decays quadratically faster than ∆̄
1
2

λ257

in Eq. (3.13). This shows that we can stop the algorithm earlier if we impose a stronger assumption258

on the smoothness, and shows the benefit of smoothness in improving the generalization. Indeed, the259

analysis in [18] first shows that the algorithm A is β-uniformly stable with β = 4G2/(λn) +
√

8G2∆̄λ.260

Then, they apply the high-probability bound on uniform stability to A and give the bound in Eq.261

(3.13). Since a smoothness assumption would not affect the uniform stability, the uniform stability262

parameter there involves ∆̄
1
2

λ , and the strategy fails to use the smoothness assumption to improve the263

bound. We take a different strategy. We apply Theorem 4 to the algorithm Ae to first give a bound264

on F (Ae(S))− FS(Ae(S))− F (w∗) + FS(w
∗), which does not involve ∆̄λ since Ae outputs the ERM265

model. Then we control F (A(S)) − Ae(S)) in terms of ∆̂λ, and use the smoothness assumption to266

show this bound improves as f is becoming more and more smooth. Finally, Eq. (3.13) requires ∆̂λ to267

be upper bounded by a deterministic number ∆̄λ. As a comparison, our result directly involves ∆̂λ.268

4. Applications to Stochastic Gradient Descent269

In this section, we apply our connection between stability and generalization to derive generalization270

bounds for SGD.271
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Definition 4 (SGD). Let w1 ∈ W and {ηt} be a sequence of positive step sizes. At each iteration, we272

first randomly select an index jt according to the uniform distribution over [n] and update the model273

as follows274

wt+1 = wt − ηt∇f(wt; zjt).

4.1. Stability Bounds275

We first develop the pointwise uniform stability bounds for SGD. We consider three classes of276

problems: convex and smooth problems, convex and nonsmooth problems, and strongly convex and277

smooth problems. Let I[E] be the indicator function, i.e., I[E] = 1 if the event E happens, and 0278

otherwise. The proofs are given in Section 6.279

Theorem 8 (Stability of SGD: Smooth Case). Assume f : W × Z 7→ R+ is convex, L-smooth and280

G-Lipschitz. Let {wt}t∈N be produced by SGD with ηt = η ≤ 2/L. Then SGD with T iterations is281

β-pointwise uniformly stable in function values, where 1
n

∑n
i=1 βi =

2G2Tη
n and282

1

n

n∑
i=1

β2
i =

4G4η2

n

n∑
i=1

( T∑
t=1

I[jt=i]

)2

. (4.1)

Remark 6. Under the same condition, one can show that SGD is βunif -uniformly stable in function283

values with (implicitly shown in the proof of Theorem 8)284

βunif = 2G2ηmax
i∈[n]

T∑
t=1

I[jt=i]. (4.2)

To see the comparison between the uniform stability bound in Eq. (4.2) and the pointwise stability285

bound in Eq. (4.1), we introduce286

β̃unif = max
i∈[n]

T∑
t=1

I[jt=i], β̃point =
( 1

n

n∑
i=1

( T∑
t=1

I[jt=i]

)2) 1
2

. (4.3)

It is clear that β̃unif , β̃point differ from the above uniform/pointwise stability bounds by a factor of287

2G2η. For simplicity, we set T = n as this implies the optimal excess risk bounds [17]. Then, we have288

β̃point ≤
( 1

n

n∑
i=1

( n∑
t=1

I[jt=i]

)
max
i∈[n]

( n∑
t=1

I[jt=i]

)) 1
2

=
( 1

n

n∑
t=1

n∑
i=1

I[jt=i]

) 1
2

β̃
1
2

unif = β̃
1
2

unif , (4.4)

where we have used the identity
∑n

i=1 I[jt=i] = 1 for any t. The term β̃unif is related to the balls and289

bins problem [29]. It was shown that with probability at least 1− 1/n, β̃unif = Θ
(

logn
log logn

)
[29]. Then,290

by Eq. (4.4), with probability at least 1− 1/n we have β̃point = O
(

log
1
2 n

(log logn)
1
2
)
)
. Note Eq. (4.4) is not291

tight, and we expect that β̃point has a tighter upper bound. For example, we can show that the second292

moment of β̃point is bounded by a constant independent of n:293

E[β̃2
point] =

1

n

n∑
i=1

E
[( n∑

t=1

I[jt=i]

)2]
=

1

n

n∑
i=1

n∑
t=1

E[I2[jt=i]] +
1

n

n∑
i=1

∑
t ̸=t′∈[n]

E[I[jt=i]I[jt′=i]]

=
1

n

n∑
t=1

n∑
i=1

E[I[jt=i]] +
1

n

n∑
i=1

∑
t̸=t′∈[n]

E[I[jt=i]]E[I[jt′=i]] = 1 +
n2 − n

n2
≤ 2.

11



(a) Smooth case (b) Nonsmooth case

Figure 1: β̃unif (blue curve) and β̃point (red curve) as a function of n for SGD applied to convex and Lipschitz problems.

Left panel considers the smooth case with T = n, where β̃unif and β̃point are defined in Eq. (4.3). Right panel considers

the nonsmooth case with T = n2, where β̃unif and β̃point are defined in Eq. (4.6).

As a comparison, E[β̃unif ] = Θ
(

logn
log logn

)
[29], which grows as n increases. We perform a simulation to294

compare β̃unif and β̃point. We set T = n, and get a sequence of indices {jt}t∈[T ] by drawing jt from the295

uniform distribution over [n]. Then, we compute β̃unif and β̃point according to Eq. (4.3). We repeat296

the experiments 25 times, and report the average of the experimental results. In Figure 1 (left panel),297

we plot β̃unif and β̃point as functions of n. The plot shows that β̃unif is substantially larger than β̃point,298

and the difference grows as n increases. This shows the benefit of using pointwise uniform stability to299

study generalization.300

Remark 7. Recently, fast excess risk bounds were derived for SGD based on the on-average model301

stability in the realizable (low-noise) setting [22]. Their bounds are stated in expectation, and their302

key idea is to incorporate the empirical risk in the stability bounds by using the expectation over S.303

For example, for SGD in a convex and smooth case, we can build the following inequality for two304

datasets S, S(i) differing by the i-th example305

∥wt+1 −w
(i)
t+1∥ ≤ ∥wt −w

(i)
t ∥+ ηtI[jt=i]

(
∥∇f(wt; zi)∥+ ∥∇f(w

(i)
t ; z′i)∥

)
, (4.5)

where zi and z′i are respectively the i-th example in S and S(i), and {wt}, {w(i)
t } are SGD iterates306

on S and S(i), respectively. Then, the self-bounding property of smooth functions and the symmetry307

between zi and z′i imply308

E[∥wt+1−w
(i)
t+1∥] ≤ E[∥wt−w

(i)
t ∥]+

√
2Lηt
n

E
[
f

1
2 (wt; zi)+f

1
2 (w

(i)
t ; z′i)

]
= E[∥wt−w

(i)
t ∥]+2

√
2Lηt
n

E
[
f

1
2 (wt; zi)].

An average over i ∈ [n] further includes the empirical risks in the stability bounds309

1

n

n∑
i=1

E[∥wt+1 −w
(i)
t+1∥] ≤

1

n

n∑
i=1

E[∥wt −w
(i)
t ∥] + 2

√
2Lηt
n

E[F
1
2

S (wt)],

which implies fast rates if FS(wt) are small.310
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As a comparison, the pointwise uniform stability takes a supremum over all neighboring datasets,311

and this supremum comes from the bounded increment condition in Eq. (A.1), which takes the312

supremum over all zj . Then, we need to take supremum over S on both sides of Eq. (4.5) to get313

sup
S,z′

i

∥wt+1 −w
(i)
t+1∥ ≤ sup

S,z′
i

∥wt −w
(i)
t ∥+ ηtI[jt=i] sup

S,z′
i

(
∥∇f(wt; zi)∥+ ∥∇f(w

(i)
t ; z′i)∥

)
,

from which we fail to incorporate empirical risks in the stability bounds for a fast rate.314

We now consider the convex and nonsmooth case. The following theorem shows that the stability315

of SGD in the nonsmooth case is worse than that in the smooth case.316

Theorem 9 (Stability of SGD: Nonsmooth Case). Assume f : W × Z 7→ R+ is convex and G-317

Lipschitz. Let {wt}t∈N be produced by SGD with ηt = η. Then SGD with T iterations is β-pointwise318

uniformly-stable in function values, where319

1

n

n∑
i=1

β2
i ≤ 4G4η2

n

(
Tn+ 4(T + 1)

3
2 /3 + 4

n∑
i=1

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i]

)
.

Remark 8. As we will show in the proof of Theorem 9, we can show that SGD is βunif -uniformly320

stable with321

βunif ≤ 2G2η
√
T + 4G2ηmax

i∈[n]

T∑
t=1

I[jt=i].

Analogous to Remark 6, we introduce322

β̃unif =
√
T + 2max

i∈[n]

T∑
t=1

I[jt=i], β̃point =
(
T +

4(T + 1)
3
2

3n
+

4

n

n∑
i=1

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i]

) 1
2

. (4.6)

It is clear that β̃unif , β̃point differ from the above uniform/pointwise stability bounds by a factor of323

2G2η. Since
∑T

t=1

∑t−1
k=1 I[jt=i]I[jk=i] =

∑T
k=1

∑T
t=k+1 I[jt=i]I[jk=i] =

∑T
t=1

∑T
k=t+1 I[jt=i]I[jk=i], we324

know325

2

n∑
i=1

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i] =

n∑
i=1

T∑
t=1

I2[jt=i] +

n∑
i=1

T∑
t=1

T∑
k=1

I[jt=i]I[jk=i] = T +

n∑
i=1

( T∑
t=1

I[jt=i]

)2

≤ T +

n∑
i=1

( T∑
t=1

I[jt=i]

)
max
i∈[n]

T∑
t=1

I[jt=i] = T + T max
i∈[n]

T∑
t=1

I[jt=i].

It then follows that326

β̃point ≤
(
T +

4(T + 1)
3
2

3n
+

2T

n
+

2T

n
max
i∈[n]

T∑
t=1

I[jt=i]

) 1
2 ≤ β̃unif . (4.7)

For the nonsmooth case, β̃point and β̃unif are of similar order. Indeed, if T = O(n2), the dominating327

term in both β̃point and β̃unif is
√
T . Furthermore, if T = Ω(n2), then maxi∈[n]

∑T
t=1 I[jt=i] = Θ(T/n)328

with high probability [29], which implies that β̃point = Θ(T/n) and β̃unif = Θ(T/n) in this case. In329

Figure 1 (right panel), we also plot β̃point and β̃unif as a function of n. We set T = n2, and get a330

sequence of indices {jt}t∈[T ] by drawing jt from the uniform distribution over [n]. Then, we compute331
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β̃unif and β̃point according to Eq. (4.6). We repeat the experiments 25 times, and report the average332

of the experimental results. The experimental results show that β̃point and β̃unif behave as linear333

functions of n in the nonsmooth case (note T/n = n in our experiments), which is consistent with our334

theoretical analysis.335

Finally, we consider SGD for strongly convex and smooth problems.336

Theorem 10 (Stability of SGD: Strongly Convex Case). Let Assumption 1 hold with α = 1 and ℓ be337

G-Lipschitz. Let {wt}t∈N be produced by SGD with ηt ≤ 1/L, where L := Lα +Lr. Then SGD with T338

iterations is β-pointwise uniformly-stable in function values (measured by ℓ), where 1
n

∑n
i=1 βi ≤ 4G2

nλ339

and340

1

n

n∑
i=1

β2
i =

4G4

n

n∑
i=1

( T∑
t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2)
)2

.

Remark 9. Under the same condition, one can show that SGD is βunif -uniformly stable in function val-341

ues with (implicitly shown in the proof of Theorem 10) βunif = 2G2 maxi∈[n]

∑T
t=1 ηtI[jt=i]

∏T
t′=t+1(1−342

ηt′λ/2). It is clear that β
2
unif ≥ 1

n

∑n
i=1 β

2
i for βi in Theorem 10.343

Remark 10 (Lower bounds). Recently, lower bounds on the uniform stability were also developed for344

Lipschitz problems [3, 44, 19, 1]. A lower bound of order Ω
(
min{1, t/n}η

√
t + ηt/n

)
was established345

for SGD with convex and nonsmooth problems [3], a lower bound of order Ω
(
ηt/n

)
was established for346

convex and smooth problems [44], and a lower bound of order Ω(η2n) was established for nonconvex347

problems [19]. These bounds are developed for uniform stability and are stated in expectation. As a348

comparison, this paper considers pointwise uniform stability. It is interesting to develop lower bounds349

on pointwise uniform stability with high probability.350

4.2. Generalization Bounds351

We now apply the above stability bounds to get high-probability generalization bounds of SGD.352

To our knowledge, Corollary 11 gives the first high-probability bounds on
∥∥∇F (A(S))−∇FS(A(S))∥353

based on algorithmic stability. The bounds can be directly derived by plugging the stability bounds354

in Section 4.1 to Theorem 2 (Theorem 3). We omit the proofs for simplicity.355

Corollary 11 (Generalization of SGD: Smooth Case). Assume f : W×Z 7→ R+ is convex, L-smooth356

and G-Lipschitz. Let {wt}t∈N be produced by SGD with ηt = η. Let δ ∈ (0, 1). Then with probability357

at least 1− δ we have358

∣∣F (A(S))− FS(A(S))| ≲ T1 and
∥∥∇F (A(S))−∇FS(A(S))∥ ≲ T1,

where359

T1 =
log

1
2 (1/δ)√
n

+
η log n log(1/δ)√

n

( n∑
i=1

( T∑
k=1

I[jk=i]

)2) 1
2

.

We now turn to high-probability bounds for SGD applied to nonsmooth problems.360
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Corollary 12 (Generalization of SGD: Nonsmooth Case). Assume f : W × Z 7→ R+ is convex and361

G-Lipschitz. Let {wt}t∈N be produced by SGD with ηt = η and δ ∈ (0, 1). With probability at least362

1− δ, we have363

∣∣F (A(S))− FS(A(S))| ≲ log
1
2 (1/δ)√
n

+
η log n log(1/δ)√

n

(
Tn+ T

3
2 +

n∑
i=1

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i]

) 1
2

.

Finally, we can directly plug Theorem 10 to Corollary 6 to get high-probability bounds for SGD364

applied to strongly convex problems.365

Corollary 13 (Generalization of SGD: Strongly Convex Case). Let Assumptions in Lemma 5 hold366

with α = 1 and ℓ be G-Lipschitz continuous. Let A be SGD with T iterations and ηt ≤ 1/L. If367

supz
∣∣ES [ℓ(A(S)); z]− ℓ(w∗; z)

∣∣ < ∞, then for any δ ∈ (0, 1) with probability at least 1− δ we have368

F (A(S))− FS(A(S))− F (w∗) + FS(w
∗) ≲ T2 and ∥∇F (A(S))−∇FS(A(S)) +∇FS(w

∗)∥ ≲ T2,

where369

T2 =

(
1

n

n∑
i=1

( T∑
t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2)
)2

) 1
2

log n log(1/δ)

+
log1/2(1/δ)(E[F (A(S))])

1
2

λ
√
n

((
E
[
FS(A(S))− FS(Ae(S))

]) 1
2

+
E
[
L(Ae(S))

]
√
n

)
.

5. Proofs on Connecting Stability and Generalization370

5.1. Proof of Theorem 1371

To prove Theorem 1, we need the following Marcinkiewicz-Zygmund’s inequality for random vari-372

ables taking values in a Hilbert space. It shows that the p-norm of a summation of independent random373

variables can be bounded by the summation of the p-norm of random variables.374

Lemma 14. Let X1, . . . , Xn be independent random variables taking values in a Hilbert space with375

E[Xi] = 0 for all i ∈ [n]. Then for any p ≥ 2 we have376 ∥∥∥∥∥∥ n∑
i=1

Xi

∥∥∥∥∥∥
p
≤ 2

√
np

( 1

n

n∑
i=1

∥∥∥Xi∥
∥∥p
p

) 1
p

.

The Marcinkiewicz-Zygmund’s inequality can be proved by using its connection to Khintchine-377

Kahane’s inequality [4, page 441], where the Marcinkiewicz-Zygmund’s inequality was established for378

real-valued random variables. To get Marcinkiewicz-Zygmund’s inequality for vector-valued random379

variables, we need to use the following Khintchine-Kahane’s inequality [10, Theorem 1.3.1]380

Eϵ∥
n∑

i=1

ϵiXi∥p ≤ max((p− 1)
p
2 , 1)

( n∑
i=1

∥Xi∥2
) p

2

p ≥ 2,

where X1, . . . , Xn are elements in a Hilbert space, and ϵ1, . . . , ϵn are independent Rademacher variables381

(i.e., taking values in {1,−1} with the same probability). For brevity, we omit the proof of Lemma 14.382

We now give the proof of Theorem 1, which is motivated by the analysis in [6]. For f(Z1, . . . , Zn)383

and A ⊂ [n], we write ∥f∥p(ZA) =
(
E[|f |p|ZA]

) 1
p .384
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Proof of Theorem 1. For simplicity, we assume n = 2k. Define a sequence of partitions B0, . . . ,Bk with385

Bk = {1, 2, . . . , 2k}, where Bl is derived from Bl+1 by splitting each subset in Bl+1 into two equal parts.386

Then, there holds387

B0 = {{1}, {2}, . . . , {2k}}, B1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}, . . . ,Bk = {[n]}.

For each i ∈ [n] and l = 0, 1, . . . , k, denote by Bl(i) ∈ Bl the only set from Bl containing i. According388

to this definition, we know B0(i) = {i} and Bk(i) = [n].389

For each i ∈ [n] and each l = 0, 1, . . . , k, we introduce random vectors as follows390

gli := gli(Zi, Z[n]\Bl(i)) = E[gi|Zi, Z[n]\Bl(i)].

That is, we condition on Zi and all the variables that are not in the same set as Zi in Bl. This definition391

shows that g0i = gi and gki = E[gi|Zi]. For each i ∈ [n], we can decompose gi as follows392

gi = E[gi|Zi] +

k−1∑
l=0

(gli − gl+1
i ).

It then follows from the triangle inequality that393

∥∥∥∥∥∥ n∑
i=1

gi

∥∥∥∥∥∥
p
=

∥∥∥∥∥∥ n∑
i=1

(
E[gi|Zi] +

k−1∑
l=0

(gli − gl+1
i )

)∥∥∥∥∥∥
p

≤
∥∥∥∥∥∥ n∑

i=1

E[gi|Zi]
∥∥∥∥∥∥

p
+

k−1∑
l=0

∥∥∥∥∥∥ n∑
i=1

(gli − gl+1
i )

∥∥∥∥∥∥
p
. (5.1)

Since ∥E[gi|Zi]∥ ≤ M , one can check that f(Z1, . . . , Zn) =
∑n

i=1 E[gi|Zi] satisfies Eq. (A.1) with394

βi = 2M . Furthermore, we have E[E[gi|Zi]] = 0. Now we can apply Lemma A.3 with βi = 2M to395

derive the following inequality396 ∥∥∥∥∥∥ n∑
i=1

E[gi|Zi]
∥∥∥∥∥∥

p
≤ 2(

√
2 + 1)

√
npM. (5.2)

The definition of gli implies that397

EZ
Bl+1(i)\Bl(i)

[gli] = gl+1
i .

We view gli as a function of Zj , j ∈ Bl+1(i)\Bl(i). Changing any Zj would change gli by βj . Therefore,398

one can apply Lemma A.3 with f = gli to derive the following inequality with (there are 2l random399

variables)400 ∥∥∥∥∥gli − gl+1
i

∥∥∥∥∥
p
(Zi, Z[n]\Bl+1(i)) ≤ (

√
2 + 1)

(
p

∑
j∈Bl+1(i)\Bl(i)

β2
j

) 1
2

. (5.3)

We now turn to the sum
∑

i∈B(g
l
i − gl+1

i ) for any B ∈ Bl. Consider any i ∈ B ∈ Bl. Note401

Z ′
i := gli − gl+1

i is a function of Zi, Z[n]\B . We now condition on Z[n]\B and then Z ′
i is a function of402

Zi, which are independent. We can apply Lemma 14 to derive the following inequality403 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥p
p
(Z[n]\B) ≤

(2
√
p|B|)p

|B|
∑
i∈B

∥∥∥∥gli − gl+1
i

∥∥∥∥p
p
(Z[n]\B).
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Taking integration over Z[n]\B gives404 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥p
p
≤

(2
√
p|B|)p

|B|
∑
i∈B

∥∥∥∥gli − gl+1
i

∥∥∥∥p
p
,

which implies405 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2

√
p|B|

(
1

|B|
∑
i∈B

∥∥∥∥gli − gl+1
i

∥∥∥∥p
p

) 1
p

.

This together with Eq. (5.3) implies that406 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2p(

√
2 + 1)|B| 12

(
1

|B|
∑
i∈B

( ∑
j∈Bl+1(i)\Bl(i)

β2
j

) p
2

) 1
p

. (5.4)

The rest of the proof is where we depart from the analysis of [6]. Note for any i, i′ ∈ B ∈ Bl, we have407

Bl+1(i)\Bl(i) = Bl+1(i′)\Bl(i′).

Therefore, for any B ∈ Bl we have the following well-defined notation408

B̃ :=
{
j : j ∈ Bl+1(i)\Bl(i)

}
, ∀i ∈ B,

which implies409 ∑
j∈Bl+1(i)\Bl(i)

β2
j =

∑
j∈B̃

β2
j , if i ∈ B ∈ Bl. (5.5)

One can interpret B̃ as a sibling set of B in Bl (they have the same parent set in Bl+1). For example,410

if B = {5, 6}, then B̃ = {7, 8}. If B = {7, 8}, then B̃ = {5, 6}. The parent set in B2 is {5, 6, 7, 8}. It411

then follows from Eq. (5.4) and Eq. (5.5) the following inequality for any B ∈ Bl (|B| = 2l)412 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2p(

√
2 + 1)|B| 12

((∑
j∈B̃

β2
j

) p
2

) 1
p

= 2p(
√
2 + 1)2

l
2

(∑
j∈B̃

β2
j

) 1
2

.

It then follows from the fact |Bl| = 2k−l and the Cauchy-Schwartz inequality that413 ∥∥∥∥∥∥ ∑
i∈[n]

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤

∑
B∈Bl

∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2

k−l
2

( ∑
B∈Bl

∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥2
p

) 1
2

≤ 2p(
√
2 + 1)2

k
2

( ∑
B∈Bl

∑
j∈B̃

β2
j

) 1
2

.

According to our definition of B̃, one can check
∑

B∈Bl

∑
j∈B̃ β2

j =
∑n

i=1 β
2
i and therefore414 ∥∥∥∥∥∥ ∑

i∈[n]

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2p(

√
2 + 1)

√
n
( n∑

i=1

β2
i

) 1
2

.

This further gives415

k−1∑
l=0

∥∥∥∥∥∥ n∑
i=1

(gli − gl+1
i )

∥∥∥∥∥
p
≤ 2p(

√
2 + 1)k

(
n

n∑
i=1

β2
i

) 1
2

.

We can plug Eq. (5.2) and the above inequality back into Eq. (5.1) to derive416 ∥∥∥∥∥∥ n∑
i=1

gi

∥∥∥∥∥∥
p
≤ 2(

√
2 + 1)

√
npM + 2p(

√
2 + 1)k

(
n

n∑
i=1

β2
i

) 1
2

.

The proof is completed.417
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Remark 11. We highlight the difference between our proof and the analysis in [6]. We adopt the418

analysis in [6] to derive Eq. (5.4), excepting considering vector-valued random variables here. If the419

algorithm is βunif -uniformly stable, then the analysis in [6] gives the following inequality similar to Eq.420

(5.4)421 ∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2p(

√
2 + 1)2lβunif , ∀B ∈ Bl.

Then one immediately gets422 ∥∥∥∥∥∥ ∑
i∈[n]

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤

∑
B∈Bl

∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2k−l2l2p(

√
2+1)βunif = 2np(

√
2+1)βunif . (5.6)

As a comparison, we get Eq. (5.4) to control
∥∥∥∥∑

i∈B(g
l
i−gl+1

i )
∥∥∥∥

p
in terms of

∑
i∈B

(∑
j∈Bl+1(i)\Bl(i) β

2
j

) p
2 .423

Our observation is that
∑

j∈Bl+1(i)\Bl(i) β
2
j is the same for any i ∈ B ∈ Bl, based on which we show424 ∥∥∥∥∥∥∑

i∈B

(gli − gl+1
i )

∥∥∥∥∥∥2
p
≤ 4p2(

√
2 + 1)22l

∑
j∈B̃

β2
j , (5.7)

where B̃ is a sibling of B. We then apply the Cauchy-Schwartz inequality to get425 ∥∥∥∥∥∥ ∑
i∈[n]

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤

∑
B∈Bl

∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥
p
≤ 2

k−l
2

( ∑
B∈Bl

∥∥∥∥∥∥∑
i∈B

(gli − gl+1
i )

∥∥∥∥∥∥2
p

) 1
2

.

Finally, we can apply Eq. (5.7) to derive a bound similar to Eq. (5.6).426

5.2. Proof of Theorem 3427

In this section, we give the proof of Theorem 3.428

Proof of Theorem 3. Let S′ = {z′1, . . . , z′n} be drawn independently from ρ. For any i ∈ [n], define429

S(i) = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn}. (5.8)

Since EZ [∇f(A(S);Z)] = ∇F (A(S)), we can decompose ∇F (A(S))−∇FS(A(S)) as follows430

n
(
∇F (A(S))−∇FS(A(S))

)
=

n∑
i=1

EZ,z′
i

[
∇f(A(S);Z)−∇f(A(S(i));Z)

]
+

n∑
i=1

Ez′
i

[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)); zi)−∇f(A(S); zi)

]
.

Since A is β-pointwise uniformly stable in gradients, we know431

n
∥∥∇F (A(S))−∇FS(A(S))

∥∥ ≤ 2

n∑
i=1

βi +
∥∥∥ n∑

i=1

gi

∥∥∥, (5.9)

where gi = Ez′
i

[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
. According to our assumption, we know ∥gi∥ ≤432

2M and433

Ezi [gi] = EziEz′
i

[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
= Ez′

i

[
EZ [∇f(A(S(i));Z)]− Ezi [∇f(A(S(i)); zi)]

]
= 0,
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where we have used the fact that zi and Z follow from the same distribution. For any i ∈ [n], any434

j ̸= i and any z′′j , we have435

∥∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∥∥
=

∥∥Ez′
i

[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
− Ez′

i

[
EZ [∇f(A(S

(i)
j );Z)]−∇f(A(S

(i)
j ); zi)

]∥∥
≤

∥∥Ez′
i

[
EZ [∇f(A(S(i));Z)−∇f(A(S

(i)
j );Z)]

∥∥ +
∥∥Ez′

i
[∇f(A(S(i)); zi)−∇f(A(S

(i)
j ); zi)]

∥∥ ≤ 2βj ,

where436

S
(i)
j = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′′
j , zj+1, . . . , zn}. (5.10)

Therefore, all the assumptions in Theorem 1 hold (with M replaced by 2M and βj replaced by 2βj)437

and we can apply Theorem 1 to derive438 ∥∥∥∥∥∥ n∑
i=1

gi

∥∥∥∥∥∥
p
≤ 4(

√
2 + 1)

√
npM + 4p(

√
2 + 1)⌈log2 n⌉

(
n

n∑
i=1

β2
i

) 1
2

.

We can combine the above inequality and Eq. (5.9) to derive the following inequality439

n
∥∥∥∥∥∇F (A(S))−∇FS(A(S))

∥∥∥∥∥
p
≤ 2

n∑
i=1

βi + 4(
√
2 + 1)

√
npM + 4p(

√
2 + 1)⌈log2 n⌉

(
n

n∑
i=1

β2
i

) 1
2

.

By Lemma A.5, the following inequality holds with probability at least 1− δ440

n
∥∥∇F (A(S))−∇FS(A(S))

∥∥ ≤ 2

n∑
i=1

βi+4e(
√
2+1)

√
n log(1/δ)M+4e(

√
2+1)⌈log2 n⌉ log(1/δ)

(
n

n∑
i=1

β2
i

) 1
2

and therefore441

∥∥∇F (A(S))−∇FS(A(S))
∥∥ ≤

2
∑n

i=1 βi

n
+

4e(
√
2 + 1)M log

1
2 (1/δ)n− 1

2 + 4e(
√
2 + 1)⌈log2 n⌉ log(1/δ)

( 1

n

n∑
i=1

β2
i

) 1
2

.

The proof is completed.442

5.3. Proof of Theorem 7443

To prove Theorem 7, we require the following lemma on the uniform stability of ERM for strongly444

convex problems. It is a direct extension of a similar result in [5] to functions with a structure in445

Assumption 1. Since the proof is identical to the classical stability analysis, we omit the proof for446

brevity.447

Lemma 15. Let Assumption 1 hold and ℓ be G-Lipschitz continuous. Then448

max
i∈[n]

sup
S,S(i)

sup
z

[
ℓ
(
Ae(S); z

)
− ℓ

(
Ae(S

(i)); z
)]

≤ 4G2/(nλ),

where S(i) is defined in Eq. (5.8).449
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Proof of Theorem 7. According to Lemma 15, we know that Ae is 4G2/(nλ)-uniformly stable in func-450

tion values (measured by ℓ). According to Theorem 4, the following inequality holds with probability451

at least 1− δ452

F (Ae(S))− FS(Ae(S))− F (w∗) + FS(w
∗) ≲ (nλ)−1 log n log(1/δ) +

(σ2
A log(1/δ)

n

) 1
2

,

where (by Lemma 5)453

σ2
A ≤ Cλ−1ES [F (Ae(S))− F (w∗)].

We know454

ES [F (Ae(S))− F (w∗)] = ES [F (Ae(S))− FS(Ae(S))] + ES [FS(Ae(S))− FS(w
∗)] + ES [FS(w

∗)− F (w∗)]

≤ ES [F (Ae(S))− FS(Ae(S))] ≤
4G2

nλ
.

We can combine the above inequalities to derive the following inequality with probability at least 1− δ455

F (Ae(S))− FS(Ae(S))− F (w∗) + FS(w
∗) ≲ (nλ)−1 log n log(1/δ). (5.11)

According to Lemma B.1, we know456

⟨A(S)−Ae(S),∇F (Ae(S))⟩ ≤ ∥A(S)−Ae(S)∥∥∇F (Ae(S))∥

≤ ∥A(S)−Ae(S)∥
(Lr(1 + α)

1
1+α

2L
1

1+α
α

(
F (Ae(S))− F (w∗)

) 1
1+α

+ 2
( Lα

1 + α

) 1
1+α

(
F (Ae(S))− F (w∗)

) α
1+α

)
≤ ∥A(S)−Ae(S)∥

(
F (Ae(S))− F (w∗)

) α
1+α

( C̃Lr(1 + α)
1

1+α

2L
1

1+α
α

+ 2
( Lα

1 + α

) 1
1+α

)
:= C1∥A(S)−Ae(S)∥

(
F (Ae(S))− F (w∗)

) α
1+α

, (5.12)

where we have used the assumption
(
F (Ae(S))−F (w∗)

) 1−α
1+α ≤ C̃ and introduced C1 in the last step.457

Since ℓ has (α,Lα)-Hölder continuous gradients and r is Lr-smooth, Eq. (B.1) implies458

F (A(S))− F (Ae(S)) ≤ ⟨A(S)−Ae(S),∇F (Ae(S))⟩+
Lα∥A(S)−Ae(S)∥1+α

1 + α
+

Lr∥A(S)−Ae(S)∥2

2

≤ C1∥A(S)−Ae(S)∥
(
F (Ae(S))− F (w∗)

) α
1+α

+
Lα∥A(S)−Ae(S)∥1+α

1 + α
+

Lr∥A(S)−Ae(S)∥2

2
.

(5.13)

Since FS(Ae(S)) ≤ FS(w
∗), we can plug Eq. (5.11) to the above inequality and derive the following459

inequality with probability at least 1− δ460

F (A(S))−F (Ae(S)) ≲ ∥A(S)−Ae(S)∥
(
(nλ)−1 log n log(1/δ)

) α
1+α

+∥A(S)−Ae(S)∥1+α+∥A(S)−Ae(S)∥2.

By the following inequality due to the strong convexity of FS ,461

FS(A(S))− FS(Ae(S)) ≥
λ

2
∥A(S)−Ae(S)∥2, (5.14)

we get the following inequality with probability at least 1− δ462

F (A(S))− F (Ae(S)) ≲ ∆̂
1
2

λ

(
(nλ)−1 log n log(1/δ)

) α
1+α

+ ∆̂
1+α
2

λ .
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We can combine the above inequality and Eq. (5.11) to derive the following inequality with probability463

at least 1− δ464

F (A(S))−FS(Ae(S))−F (w∗)+FS(w
∗) ≲ (nλ)−1 log n log(1/δ)+∆̂

1
2

λ

(
(nλ)−1 log n log(1/δ)

) α
1+α

+∆̂
1+α
2

λ .

By the following Young’s inequality465

∆̂
1
2

λ

(
(nλ)−1 log n log(1/δ)

) α
1+α ≤ α

1 + α

(
(nλ)−1 log n log(1/δ)

) α
1+α

1+α
α

+
1

1 + α
∆̂

1+α
2

λ ,

the following inequality holds with probability at least 1− δ466

F (A(S))− FS(Ae(S))− F (w∗) + FS(w
∗) ≲ (nλ)−1 log n log(1/δ) + ∆̂

1+α
2

λ .

The stated bound then follows by noting FS(w
∗) ≥ FS(Ae(S)). The proof is completed.467

6. Proofs on Stochastic Gradient Descent468

In this section, we present the proof on the stability bounds of SGD. Our analysis is based on the469

following lemma in [17], which shows that the gradient update w 7→ w− η∇f(w; z) is nonexpansive if470

f is convex and smooth.471

Lemma 16 ([17]). Suppose the function w 7→ f(w; z) is convex and L-smooth. If η ≤ 2/L, then472 ∥∥(w − η∇f(w; z)
)
−

(
w′ − η∇f(w′; z)

)∥∥ ≤ ∥w −w′∥.

Furthermore, if w 7→ f(w; z) is λ-strongly convex and η ≤ 1/L, then473 ∥∥(w − η∇f(w; z)
)
−

(
w′ − η∇f(w′; z)

)∥∥2 ≤ (1− ηλ)∥w −w′∥2.

Let S(i) be defined by Eq. (5.8). Let {w(i)
t } be produced by SGD w.r.t. S(i).474

Proof of Theorem 8. We build a recurrent formula on estimating ∥wt+1 −w
(i)
t+1∥. Consider two cases475

at the t-th iteration. If jt ̸= i, then Lemma 16 implies that476

∥wt+1 −w
(i)
t+1∥ =

∥∥(wt − ηt∇f(wt; zjt)
)
−
(
w

(i)
t − ηt∇f(w

(i)
t ; zjt)

)∥∥ ≤ ∥wt −w
(i)
t ∥. (6.1)

If jt = i, then ∥wt+1−w
(i)
t+1∥ ≤ ∥wt−w

(i)
t ∥+2Gηt. We can combine the above two inequalities to get477

∥wt+1 −w
(i)
t+1∥ ≤ ∥wt −w

(i)
t ∥ + 2GηtI[jt=i].

We apply the above inequality recursively and get478

∥wt+1 −w
(i)
t+1∥ ≤ 2Gη

t∑
k=1

I[jk=i].

By the Lipschitz continuity, we know that SGD with T iterations is β-pointwise uniformly stable,479

where βi = 2G2η
∑T

k=1 I[jk=i]. It then follows that480

1

n

n∑
i=1

β2
i =

4G4η2

n

n∑
i=1

( T∑
k=1

I[jk=i]

)2

,

1

n

n∑
i=1

βi =
2G2η

n

n∑
i=1

T∑
k=1

I[jk=i] =
2G2η

n

T∑
k=1

n∑
i=1

I[jk=i] =
2G2Tη

n
,

where we have used
∑n

i=1 I[jk=i] = 1 for any k. The proof is completed.481
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Proof of Theorem 9. Consider two cases at the t-th iteration. In the first case, assume jt ̸= i. Then482

the Lipschitz continuity of f implies that483

∥wt+1 −w
(i)
t+1∥2 =

∥∥(wt − ηt∇f(wt; zjt)
)
−

(
w

(i)
t − ηt∇f(w

(i)
t ; zjt)

)∥∥2
=

∥∥wt −w
(i)
t

∥∥2 − 2ηt⟨wt −w
(i)
t ,∇f(wt; zjt)−∇f(w

(i)
t ; zjt)⟩+ η2t ∥∇f(wt; zjt)−∇f(w

(i)
t ; zjt)∥2

≤ ∥wt −w
(i)
t ∥2 + 4G2η2t ,

where we have used the inequality ⟨wt −w
(i)
t ,∇f(wt; zjt)−∇f(w

(i)
t ; zjt)⟩ ≥ 0 due to the convexity of484

f . For the second case, assume jt = i. Then485

∥wt+1 −w
(i)
t+1∥2 =

∥∥(wt − ηt∇f(wt; zjt)
)
−

(
w

(i)
t − ηt∇f(w

(i)
t ; z′jt)

)∥∥2
= ∥wt −w

(i)
t ∥2 + η2t ∥∇f(wt; zjt)−∇f(w

(i)
t ; z′jt)∥

2 − 2ηt
〈
wt −w

(i)
t ,∇f(wt; zjt)−∇f(w

(i)
t ; z′jt)

〉
≤ ∥wt −w

(i)
t ∥2 + 4G2η2t + 4Gηt∥wt −w

(i)
t ∥,

where we have used the Lipschitz continuity of f . We can combine the above two cases to get486

∥wt+1 −w
(i)
t+1∥2 ≤ ∥wt −w

(i)
t ∥2 + 4G2η2t + 4Gηt∥wt −w

(i)
t ∥I[jt=i].

We apply the above inequality recursively and get487

∥wT+1 −w
(i)
T+1∥

2 ≤ 4G2η2T + 4Gη

T∑
t=1

∥wt −w
(i)
t ∥I[jt=i]

and therefore488

sup
S,S(i)

∥wT+1 −w
(i)
T+1∥

2 ≤ 4G2η2T + 4Gη

T∑
t=1

sup
S,S(i)

∥wt −w
(i)
t ∥I[jt=i],

where the supremum is taken over two neighboring datasets differing by the i-th example. Let489

βT+1,i = G sup
S,S(i)

∥wT+1 −w
(i)
T+1∥. (6.2)

Then we know SGD with T iterations is βT+1-pointwise uniformly stable in function values, where490

βT+1,i satisfies the following inequality491

β2
T+1,i ≤ 4G4η2T + 4G2η

T∑
t=1

βt,iI[jt=i]. (6.3)

Let ∆t,i = maxk≤t βk,i. Then the above inequality implies that ∆2
T,i ≤ 4G4η2T+4G2η∆T,i

∑T
t=1 I[jt=i].492

Solving this quadratic inequality of ∆T,i implies that493

∆T,i ≤ 2G2η
√
T + 4G2η

T∑
t=1

I[jt=i]. (6.4)

We can plug the above bound back into Eq. (6.3), and get494

β2
T+1,i ≤ 4G4η2T + 4G2η

T∑
t=1

I[jt=i]

(
2G2η

√
t+ 4G2η

t∑
k=1

I[jk=i]

)
≤ 4G4η2T + 8G4η2

T∑
t=1

√
tI[jt=i] + 16G4η2

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i].
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It then follows that (
∑n

i=1 I[jt=i] = 1)495

n∑
i=1

β2
T+1,i ≤ 4G4η2Tn+

16

3
G4η2(T + 1)

3
2 + 16G4η2

n∑
i=1

T∑
t=1

t∑
k=1

I[jt=i]I[jk=i].

The proof is completed.496

Proof of Theorem 10. It is clear that for any z, the function w 7→ f(w; z) is L-smooth. We now build497

a recurrent formula on estimating ∥wt+1−w
(i)
t+1∥. Consider two cases at the t-th iteration. In the first498

case, assume jt ̸= i. Then Lemma 16 implies that499

∥wt+1 −w
(i)
t+1∥ =

∥∥(wt − ηt∇f(wt; zjt)
)
−

(
w

(i)
t − ηt∇f(w

(i)
t ; zjt)

)∥∥ ≤ (1− ηtλ/2)∥wt −w
(i)
t ∥.

(6.5)

For the second case, assume jt = i. Then500

∥wt+1 −w
(i)
t+1∥ =

∥∥(wt − ηt∇f(wt; zjt)
)
−
(
w

(i)
t − ηt∇f(w

(i)
t ; z′jt)

)∥∥
≤

∥∥(wt − ηt∇f(wt; zjt)
)
−
(
w

(i)
t − ηt∇f(w

(i)
t ; zjt)

)∥∥ + ηt
∥∥∇f(w

(i)
t ; zjt)−∇f(w

(i)
t ; z′jt)

∥∥
=

∥∥(wt − ηt∇f(wt; zjt)
)
−
(
w

(i)
t − ηt∇f(w

(i)
t ; zjt)

)∥∥ + ηt
∥∥∇ℓ(w

(i)
t ; zjt)−∇ℓ(w

(i)
t ; z′jt)

∥∥
≤ (1− ηtλ/2)∥wt −w

(i)
t ∥ + 2Gηt, (6.6)

where we have used the Lipschitz continuity of ℓ. We can combine Eq. (6.5) and Eq. (6.6) to get501

∥wt+1 −w
(i)
t+1∥ ≤ (1− ηtλ/2)∥wt −w

(i)
t ∥ + 2GηtI[jt=i]. (6.7)

We apply the above inequality recursively, and derive502

∥wT+1 −w
(i)
T+1∥ ≤ 2G

T∑
t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2). (6.8)

Therefore, SGD is β-pointwise uniformly stable in function values, where503

βi = 2G2
T∑

t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2). (6.9)

It then follows that504

1

n

n∑
i=1

β2
i =

4G4

n

n∑
i=1

( T∑
t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2)
)2

and505

1

n

n∑
i=1

βi =
2G2

n

n∑
i=1

T∑
t=1

ηtI[jt=i]

T∏
t′=t+1

(1− ηt′λ/2) =
2G2

n

T∑
t=1

ηt

n∑
i=1

I[jt=i]

T∏
t′=t+1

(1− ηt′λ/2)

=
2G2

n

T∑
t=1

ηt

T∏
t′=t+1

(1− ηt′λ/2) =
4G2

nλ

T∑
t=1

(
1− (1− ηtλ/2)

) T∏
t′=t+1

(1− ηt′λ/2
)

=
4G2

nλ

T∑
t=1

( T∏
t′=t+1

(1− ηt′λ/2
)
−

T∏
t′=t

(1− ηt′λ/2
))

=
4G2

nλ

(
1−

T∏
t=1

(1− ηtλ/2
))

,

where we have used
∑n

i=1 I[jt=i] = 1 for any t ∈ [T ]. The proof is completed.506
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7. Conclusion507

In this paper, we introduce the pointwise uniform stability to develop high-probability generaliza-508

tion bounds. The pointwise uniform stability considers the effect of changing each example in the509

dataset, which is weaker than the uniform stability. We first develop a moment bound for a sum-510

mation of weakly-dependent vector-valued random variables, and apply it to develop bounds for the511

generalization gap as measured by either function values or gradients. We improve the recently fast512

high-probability rates in [18] by relaxing the requirement on strong convexity and Lipschitz continu-513

ity, and improving the dependency on optimization errors. Finally, we apply our results to develop514

improved generalization bounds for SGD.515

Our generalization bounds involve a factor of log(n) in front of
(
1
n

∑n
i=1 β

2
i

) 1
2 . A very interesting516

question is to see whether this logarithmic factor can be removed. Indeed, if we can remove this517

logarithmic factor, the resulting generalization bound would be optimal up to a constant factor. It is518

also interesting to apply the stability analysis to study SGD with functional data [8, 16].519
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Appendix527

A. Useful Inequalities in Probability528

A.1. McDiarmid’s Inequality529

We first consider Mcdiarmid’s inequality for real-valued functions of random variables, which follows530

from the standard tail-bound of McDiarmid’s inequality and Proposition 2.5.2 in [40].531

Lemma A.1 (McDiarmid’s Inequality for Real-Valued Functions). Let Z1, . . . , Zn be independent ran-532

dom variables, and f : Zn 7→ R such that the following inequality holds for any i and z1, . . . , zi−1, zi+1, . . . , zn533

sup
zi,z′

i

∣∣f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∣∣ ≤ βi.

Then for any p ≥ 1 we have534

∥∥f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)
∥∥
p
≤

(
2p

n∑
i=1

β2
i

) 1
2

.
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Now we consider vector-valued functions of independent random variables. The following lemma535

gives the expected distance between f(Z1, . . . , Zn) and its expectation.536

Lemma A.2 ([31]). Let Z1, . . . , Zn be independent random variables, and f : Zn 7→ H a function into537

a Hilbert space H such that the following inequality holds for any i and z1, . . . , zi−1, zi+1, . . . , zn538

sup
zi,z′

i

∥∥f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∥∥ ≤ βi. (A.1)

Then539

E
[∥∥f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)]

∥∥] ≤ ( n∑
i=1

β2
i

) 1
2

.

The following lemma controls the p-norm for the vector-valued random variable f(Z1, . . . , Zn) −540

E[f(Z1, . . . , Zn)].541

Lemma A.3 (McDiarmid’s Inequality for Vector-Valued Functions). Let assumptions in Lemma A.2542

hold. Then for any p ≥ 1 we have543 ∥∥∥∥∥f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)]
∥∥∥∥∥

p
≤ (

√
2 + 1)

(
p

n∑
i=1

β2
i

) 1
2

. (A.2)

Proof. We define a real-valued function g : Zn 7→ R as544

g(z1, . . . , zn) =
∥∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]

∥∥.
We first show this function satisfies the increment condition. Indeed, for any i and z1, . . . , zi−1, zi+1, . . . , zn545

we have546

sup
zi,z′

i

∣∣g(z1, . . . , zi−1, zi, zi+1, . . . , zn)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∣∣
= sup

zi,z′
i

∣∣∣∥∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]
∥∥ −

∥∥f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)− E[f(Z1, . . . , Zn)]

∥∥∣∣∣
≤ sup

zi,z′
i

∥∥∥f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∥∥∥ ≤ βi.

Therefore, we can apply Lemma A.1 to the real-valued function g and derive the following inequality547 ∥∥∥g(Z1, . . . , Zn)− E[g(Z1, . . . , Zn)]
∥∥∥
p
≤

(
2p

n∑
i=1

β2
i

) 1
2

.

According to Lemma A.2, we know the following inequality E
[
g(Z1, . . . , Zn)

]
≤

(∑n
i=1 β

2
i

) 1
2 . We can548

combine the above two inequalities together and derive the stated inequality.549

A.2. Bernstein Inequality and Tails550

The following lemma gives a Bernstein inequality to incorporate the variance information in bound-551

ing a summation of independent random variables [9].552
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Lemma A.4 (Bernstein inequality). Let {ξ(zi)}ni=1 be a sequence of independent and identically553

distributed real-valued random variables and M̃ be a constant such that |ξ| ≤ M̃ and the variance554

Var(ξ) < ∞. Then, for any 0 < δ < 1 with probability at least 1− δ there holds555

E[ξ]− 1

n

n∑
i=1

ξ(zi) ≤
2M̃ log 1

δ

3n
+

√
2Var(ξ) log 1

δ

n
.

The following lemma shows the relationship between tails and moments [6].556

Lemma A.5. Let Y be a random variable. If ∥Y ∥p ≤ √
pa for any p ≥ 2, then for any δ ∈ (0, 1) with557

probability at least 1− δ: |Y | ≤ ea
√

log(e/δ).558

B. Self-Bounding Property559

We present some useful self-bounding properties for functions of a composite structure in Assump-560

tion 1. The self-bounding property will be very important for our stability and generalization analysis.561

Lemma B.1. Assume F (w) = L(w) + r(w), where L has (α,Lα)-Hölder continuous gradients and r562

is Lr-smooth. Then we have563

∥∇F (w)∥ ≤ Lr(1 + α)
1

1+α

2L
1

1+α
α

(
F (w)− F (w∗)

) 1
1+α

+ 2
( Lα

1 + α

) 1
1+α

(
F (w)− F (w∗)

) α
1+α

.

Lemma B.2. Assume F (w) = L(w) + r(w), where L has (α,Lα)-Hölder continuous gradients and r564

is Lr-smooth. If F is nonnegative, then we have565

∥∇F (w)∥ ≤ Lr(1 + α)
1

1+α

2L
1

1+α
α

F
1

1+α (w) + 2
( Lα

1 + α

) 1
1+α

F
α

1+α (w).

Proof. If ∇F (w) = 0, the inequality holds immediately. Now we only consider the case that ∇F (w) ̸=566

0. Since L has (α,Lα)-Hölder continuous gradients, we know L(w′) ≤ L(w) + ⟨w′ − w,∇L(w)⟩ +567

Lα

1+α∥w − w′∥1+α [43]. Since r is Lr-smooth, we know r(w′) ≤ r(w) + ⟨w′ − w,∇r(w)⟩ + Lr

2 ∥w −568

w′∥2 [26]. It then follows that569

F (w′) ≤ F (w) + ⟨w′ −w,∇F (w)⟩+ Lα

1 + α
∥w −w′∥1+α +

Lr

2
∥w −w′∥2. (B.1)

We choose570

w′ = w −A∥∇F (w)∥−1∇F (w), A :=
( (1 + α)F (w)

Lα

) 1
1+α

.

It then follows that571

0 ≤ F (w′) ≤ F (w)−A∥∇F (w)∥ +
LrA

2

2
+

LαA
1+α

1 + α
.

That is,572

∥∇F (w)∥ ≤ LrA

2
+

LαA
α

1 + α
+

F (w)

A
.
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According to our construction of A, we further have573

∥∇F (w)∥ ≤ Lr

2

( (1 + α)F (w)

Lα

) 1
1+α

+
Lα

1 + α

( (1 + α)F (w)

Lα

) α
1+α

+ F (w)
( Lα

(1 + α)F (w)

) 1
1+α

=
Lr

2

( (1 + α)F (w)

Lα

) 1
1+α

+ 2
( Lα

1 + α

) 1
1+α

F
α

1+α (w).

The proof is completed.574

We now prove Lemma B.1 as a direct corollary of Lemma B.2.575

Proof of Lemma B.1. Define F̃ : W 7→ R as F̃ (w) = F (w) − F (w∗). It is clear that F̃ (w) ≥ 0 and576

F̃ (w) = L̃(w)+r(w), where L̃(w) = L(w)−F (w∗) and L̃(w) has (α,Lα)-Hölder continuous gradients.577

Therefore, we can apply Lemma B.2 to F̃ and derive578

∥∇F̃ (w)∥ ≤ Lr(1 + α)
1

1+α

2L
1

1+α
α

F̃
1

1+α (w) + 2
( Lα

1 + α

) 1
1+α

F̃
α

1+α (w).

The stated bound then follows directly. The proof is completed.579

The following lemma gives the self-bounding property for a nonnegative function with Hölder580

continuous gradients [35, 43].581

Lemma B.3. Assume the map w 7→ g(w) is nonnegative, and w 7→ ∇g(w) is (α,Lα)-Hölder contin-582

uous with α ∈ [0, 1]. Let cα be defined in Eq. (3.9). Then583

∥∇g(w)∥2 ≤ cαg
α

1+α (w), ∀w ∈ W. (B.2)

C. Proof of Theorem 4584

Proof of Theorem 4. Let S = {z1, . . . , zn}, S′ = {z′1, . . . , z′n}, S′′ = {z′′1 , . . . , z′′n} be drawn indepen-585

dently from ρ. For any i ∈ [n] := {1, . . . , n}, define586

gi(S) = Ez′
i

[
EZ

[
ℓ(A(S(i));Z)

]
− ℓ(A(S(i)); zi)

]
,

where S(i) is defined in Eq. (5.8). Due to the symmetry between S and S′, we have587

ES\zi [gi(S)] = ES\ziEz′
i

[
EZ

[
ℓ(A(S(i));Z)

]
− ℓ(A(S(i)); zi)

]
= ES(i) [L(A(S(i)))]− ES(i) [ℓ(A(S(i)); zi)] = ES [L(A(S))]− ES(i) [ℓ(A(S(i)); zi)]. (C.1)

According to the definition of pointwise uniform stability, we know588 ∣∣∣EZ

[
ℓ(A(S);Z)

]
− 1

n

n∑
i=1

ℓ(A(S); zi)−
1

n

n∑
i=1

gi(S)
∣∣∣

≤ 1

n

n∑
i=1

∣∣∣EZ

[
ℓ(A(S);Z)

]
− Ez′

i,Z

[
ℓ(A(S(i));Z)

]∣∣∣+ 1

n

n∑
i=1

∣∣∣ℓ(A(S); zi)− Ez′
i

[
ℓ(A(S(i)); zi)

]∣∣∣
≤ 1

n

n∑
i=1

Ez′
i,Z

[∣∣∣ℓ(A(S);Z)− ℓ(A(S(i));Z)
∣∣∣]+ 1

n

n∑
i=1

Ez′
i

[∣∣∣ℓ(A(S); zi)− ℓ(A(S(i)); zi)
∣∣∣] ≤ 2

n

n∑
i=1

βi.
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It then follows that589 ∣∣∣L(A(S))− LS(A(S))− 1

n

n∑
i=1

ES\zi [gi(S)]
∣∣∣

=
∣∣∣L(A(S))− LS(A(S))− 1

n

n∑
i=1

(
ES\zi [gi(S)]− gi(S) + gi(S)

)∣∣∣
≤

∣∣∣L(A(S))− LS(A(S))− 1

n

n∑
i=1

gi(S)
∣∣∣+ ∣∣∣ 1

n

n∑
i=1

(
ES\zi [gi(S)]− gi(S)

)∣∣∣
≤ 2

n

n∑
i=1

βi +
1

n

∣∣∣ n∑
i=1

hi(S)
∣∣∣, (C.2)

where we introduce590

hi(S) = gi(S)− ES\zi [gi(S)], ∀i ∈ [n].

We now show that the above hi satisfies the conditions in Theorem 1. According to the definition of591

hi, we know that592

ES\zi [hi(S)] = ES\zi [gi(S)]− ES\zi [gi(S)] = 0. (C.3)

It is clear that593

Ezi [gi(S)] = Ezi

[
Ez′

i

[
EZ

[
ℓ(A(S(i));Z)

]
− ℓ(A(S(i)); zi)

]]
= Ez′

i

[
EZ

[
ℓ(A(S(i));Z)

]
− Ezi [ℓ(A(S(i)); zi)]

]
= 0.

It then follows that594

Ezi [hi(S)] = Ezi [gi(S)]− ES\ziEzi [gi(S)] = 0. (C.4)

Finally, for any j ∈ [n] with j ̸= i, we have595

∣∣hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∣∣ (C.5)

=
∣∣∣(gi(S)− ES\zi [gi(S)]

)
−

(
gi(S

′′
j )− ES′′

j \zi [gi(S
′′
j )]

)∣∣∣
≤

∣∣gi(S)− gi(S
′′
j )
∣∣+ ∣∣∣ES\zi [gi(S)]− ES′′

j \zi [gi(S
′′
j )]

∣∣∣
≤

∣∣gi(S)− gi(S
′′
j )
∣∣+ ES\ziES′′

j \zi

∣∣∣gi(S)− gi(S
′′
j )
∣∣∣, (C.6)

where596

S′′
j =

{
z1, . . . , zj−1, z

′′
j , zj+1, . . . , zn

}
, ∀j ∈ [n].

Note that597

∣∣gi(S)− gi(S
′′
j )
∣∣

=
∣∣∣(Ez′

i

[
EZ

[
ℓ(A(S(i));Z)

]
− ℓ(A(S(i)); zi)

])
− Ez′

i

[
EZ

[
ℓ(A(S

(i)
j );Z)

]
− ℓ(A(S

(i)
j ); zi)

]∣∣∣
≤

∣∣∣Ez′
i
EZ

[
ℓ(A(S(i));Z)

]
− Ez′

i
EZ

[
ℓ(A(S

(i)
j );Z)

]∣∣∣+ ∣∣∣Ez′
i
[ℓ(A(S(i)); zi)]− Ez′

i
[ℓ(A(S

(i)
j ); zi)]

∣∣∣ ≤ 2βj ,

where S
(i)
j is defined in Eq. (5.10). We combine the above inequality and Eq. (C.6) together to get598

∣∣hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∣∣ ≤ 4βj .
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According to Eq. (C.3), (C.4) and the above inequality, the conditions of Theorem 1 hold with M = 0.599

Therefore, we can apply Theorem 1 to derive the following inequality600 ∣∣∣ n∑
i=1

hi(S)
∣∣∣ ≲ p log2 n

(
n

n∑
i=1

β2
i

) 1
2

.

It then follows the following inequality with probability at least 1− δ/2601 ∣∣∣ n∑
i=1

hi(S)
∣∣∣ ≲ (

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ).

The above inequality together with Eq. (C.1), (C.2) gives the following inequality with probability at602

least 1− δ/2603 ∣∣∣L(A(S))− LS(A(S))− ES [L(A(S))] +
1

n

n∑
i=1

ES(i) [ℓ(A(S(i)); zi)]
∣∣∣

=
∣∣∣L(A(S))− LS(A(S))− 1

n

n∑
i=1

ES\zi [gi(S)]
∣∣∣ ≲ 1

n

n∑
i=1

βi +
( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ). (C.7)

We have the following identity604

L(A(S))−LS(A(S))−L(w∗)+LS(w
∗) =

(
L(A(S))−LS(A(S))−ES [L(A(S))]+

1

n

n∑
i=1

ES′
[
ℓ(A(S′); zi)

])
+
(
ES [L(A(S))]− L(w∗)− 1

n

n∑
i=1

ES′
[
ℓ(A(S′); zi)

]
+ LS(w

∗)
)
. (C.8)

The first term can be controlled by Eq. (C.7) and the identity ES(i) [ℓ(A(S(i)); zi)] = ES′ [ℓ(A(S′); zi)].605

We now control the second term by Bernstein’s inequality. To this aim, we introduce ξ(z) = ES′
[
ℓ(A(S′); z)

]
−606

ℓ(w∗; z). Due to the symmetry between S and S′, we further get607

ES [L(A(S))]− L(w∗)− 1

n

n∑
i=1

ES′
[
ℓ(A(S′); zi)

]
+ LS(w

∗)

= ES′ [L(A(S′))]− L(w∗)− 1

n

n∑
i=1

ES′
[
ℓ(A(S′); zi)

]
+ LS(w

∗) = EZ [ξ(Z)]− 1

n

n∑
i=1

ξ(zi).

We can control the variance of ξ as follows608

Var(ξ(Z)) = EZ

[(
ES′

[
ℓ(A(S′);Z)

]
− ℓ(w∗;Z)

)2]
−

(
EZ

[
ES′

[
ℓ(A(S′);Z)

]
− ℓ(w∗;Z)

])2

= EZ

[(
ES

[
ℓ(A(S);Z)

]
− ℓ(w∗;Z)

)2]
−

(
ES

[
L(A(S))

]
− L(w∗)

)2

,

where we have used the symmetry between S and S′. According to Bernstein’s inequality (Lemma609

A.4), the following inequality holds with probability at least 1− δ/2610

EZ [ξ(Z)]− 1

n

n∑
i=1

ξ(zi) ≤
2M log 2

δ

3n
+

(2σ2
A log(2/δ)

n

) 1
2

.

We can plug the above inequality and Eq. (C.7) into Eq. (C.8), and derive the following inequality611

with probability at least 1− δ612

L(A(S))− LS(A(S))− L(w∗) + LS(w
∗) ≲

( 1

n

n∑
i=1

β2
i

) 1
2

log n log(1/δ) +
M log 1

δ

n
+

(σ2
A log(1/δ)

n

) 1
2

.

The proof is completed by noting the structure of f .613
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D. Proof of Lemma 5614

Proof of Lemma 5. We first prove Eq. (3.10). Since F is λ-strongly convex, we know615

F (A(S))− F (w∗) ≥ λ∥A(S)−w∗∥2/2. (D.1)

According to the definition of σ2
A, we know σ2

A ≤ EZ

[(
ES

[
ℓ(A(S);Z)

]
−ℓ(w∗;Z)

)2]
. Since ℓ is convex,616

we know617 ∣∣ℓ(A(S);Z)− ℓ(w∗;Z)
∣∣ ≤ ∥A(S)−w∗∥max

{
∥∇ℓ(A(S);Z)∥, ∥∇ℓ(w∗;Z)∥

}
.

It then follows from Eq. (B.2) that618 (
ES

[
ℓ(A(S);Z)

]
− ℓ(w∗;Z)

)2

≤ ES [∥A(S)−w∗∥2]ES

[
max

{
∥∇ℓ(A(S);Z)∥2, ∥∇ℓ(w∗;Z)∥2

}]
≤ c2αES [∥A(S)−w∗∥2]ES

[
max

{
ℓ

2α
1+α (A(S);Z), ℓ

2α
1+α (w∗;Z)

}]
.

Therefore, we have619

σ2
A ≤ c2αES [∥A(S)−w∗∥2]ES,Z

[
max

{
ℓ

2α
1+α (A(S);Z), ℓ

2α
1+α (w∗;Z)

}]
.

Eq. (3.10) then follows by combining the above inequality and Eq. (D.1) together.620

We now turn to Eq. (3.12) on generalization bounds in expectation. We first study the generaliza-621

tion error for the algorithm Ae. By the definition FS , S, S
(i), we get622

f(Ae(S
(i)); zi) = nFS(Ae(S

(i)))− nFS(i)(Ae(S
(i))) + f(Ae(S

(i)); z′i).

By symmetry on zi and z′i, we get E[f(Ae(S
(i)); z′i)]=E[f(Ae(S); zi)],E[FS(i)(Ae(S

(i)))]=E[FS(Ae(S))] and623

E
[
f(Ae(S

(i)); zi)−f(Ae(S); zi)
]
= nE

[
FS(Ae(S

(i)))−FS(i)(Ae(S
(i)))

]
= nE

[
FS(Ae(S

(i)))−FS(Ae(S))
]
.

Since FS is λ-strongly convex, we further know FS(Ae(S
(i)))−FS(Ae(S)) ≤ ∥∇FS(Ae(S

(i)))∥2/(2λ) [26].624

We can combine the above two inequalities to get625

E
[
f(Ae(S

(i)); zi)− f(Ae(S); zi)
]
≤ n

2λ
E
[
∥∇FS(Ae(S

(i)))∥2
]
. (D.2)

The definition of Ae(S
(i)) implies ∇FS(i)(Ae(S

(i))) = 0, and626

E
[
∥∇FS(Ae(S

(i)))∥2
]
= E

[∥∥∥∇FS(i)(Ae(S
(i)))− 1

n
∇f(Ae(S

(i)); z′i) +
1

n
∇f(Ae(S

(i)); zi)
∥∥∥2]

=
1

n2
E
[∥∥∥∇f(Ae(S

(i)); z′i)−∇f(Ae(S
(i)); zi)

∥∥∥2] =
1

n2
E
[∥∥∥∇f(Ae(S); zi)−∇f(Ae(S); z

′
i)
∥∥∥2],

where the last step is due to the symmetry between zi and z′i. We can combine the above inequality627

and Eq (D.2) together to derive628

E
[
F (Ae(S))− FS(Ae(S))

]
=

1

n

n∑
i=1

E
[
f(Ae(S

(i)); zi)− f(Ae(S); zi)
]

≤ 1

2n2λ

n∑
i=1

E
[∥∥∥∇f(Ae(S); zi)−∇f(Ae(S); z

′
i)
∥∥∥2], (D.3)
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where we have used E
[
F (Ae(S))] = E[F (Ae(S

(i)))] = E[f(Ae(S
(i)); zi)]. By the structure of f , we get629 ∥∥∥∇f(Ae(S); zi)−∇f(Ae(S); z

′
i)
∥∥∥2 =

∥∥∥∇ℓ(Ae(S); zi)−∇ℓ(Ae(S); z
′
i)
∥∥∥2

≤ 2∥∇ℓ(Ae(S); zi)∥2 + 2∥∇ℓ(Ae(S); z
′
i)∥2 ≤ 2c2αℓ

2α
1+α (Ae(S); zi) + 2c2αℓ

2α
1+α (Ae(S); z

′
i).

It then follows that630

1

n

n∑
i=1

∥∥∥∇f(Ae(S); zi)−∇f(Ae(S); z
′
i)
∥∥∥2 ≤ 2c2α

n

n∑
i=1

ℓ
2α

1+α (Ae(S); zi) +
2c2α
n

n∑
i=1

ℓ
2α

1+α (Ae(S); z
′
i).

We can use the above inequality, the concavity of the function x 7→ x
2α

1+α and Eq. (D.3) to derive631

E
[
F (Ae(S))−FS(Ae(S))

]
≤ c2α

nλ
E
[
L

2α
1+α

S (Ae(S))+L
2α

1+α

S′ (Ae(S))
]
≤ c2α

nλ
E
[
L

2α
1+α

S (Ae(S))+L
2α

1+α (Ae(S))
]
.

(D.4)

By Eq. (5.12) and the Cauchy-Schwartz’s inequality, we know632

E
[
⟨A(S)−Ae(S),∇F (Ae(S))

]
≤ C1

(
E[∥A(S)−Ae(S)∥2]

) 1
2
(
E
[(

F (Ae(S))− F (w∗)
) 2α

1+α
]) 1

2

.

Since E[FS(Ae(S))] ≤ F (w∗), we can plug the above inequality back into Eq. (5.13), and derive633

E
[
F (A(S))− F (Ae(S))

]
≤ C1

(
E[∥A(S)−Ae(S)∥2]

) 1
2
((

E
[
F (Ae(S))− FS(Ae(S))

]) 2α
1+α

) 1
2

+
LαE[∥A(S)−Ae(S)∥1+α]

1 + α
+

LrE[∥A(S)−Ae(S)∥2]
2

,

where we have used the concavity of x 7→ x
2α

1+α and the Jensen’s inequality. We can plug Eq. (D.4)634

and Eq. (5.14) into the above inequality to show635

E
[
F (A(S))−F (Ae(S))

]
≤

LαE[
(
2λ−1(FS(A(S))− FS(Ae(S)))

) 1+α
2 ]

1 + α
+
LrE[FS(A(S))− FS(Ae(S))]

λ

+ C1

(
2λ−1E[FS(A(S))− FS(Ae(S))]

) 1
2
( c2α
nλ

E
[
L

2α
1+α

S (Ae(S)) + L
2α

1+α (Ae(S))
]) α

1+α

.

According to Eq. (D.4), the concavity of the function x 7→ x
1+α
2 and the decomposition636

E
[
F (A(S))− FS(Ae(S))

]
= E

[
F (A(S))− F (Ae(S))

]
+ E

[
F (Ae(S))− FS(Ae(S))

]
,

we further get637

E
[
F (A(S))− FS(Ae(S))

]
≤ 2

1+α
2 Lα

1 + α
∆

1+α
2

λ + Lr∆λ +
√
2C1c

2α
1+α
α ∆

1
2

λ∇
α

1+α

λ + c2α∇λ

≤
(2 1+α

2 Lα

1 + α
+

√
2C1c

2α
1+α
α

1 + α

)
∆

1+α
2

λ + Lr∆λ +
(√2C1c

2α
1+α
α α

1 + α
+ c2α

)
∇λ,

where we have used the Young’s inequality ∆
1
2

λ∇
α

1+α

λ ≤ α
1+α∇

α
1+α

1+α
α

λ + 1
1+α∆

α+1
2

λ . The proof is com-638

pleted by noting E[FS(Ae(S))] ≤ E[FS(w
∗)] = F (w∗) and639

C = max
{2

1+α
2 Lα

1 + α
+

√
2C1c

2α
1+α
α

1 + α
,Lr,

√
2C1c

2α
1+α
α α

1 + α
+ c2α

}
. (D.5)

The proof is completed.640
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