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Abstract

Algorithmic stability is a fundamental concept in statistical learning theory to understand the gener-
alization behavior of optimization algorithms. Existing high-probability bounds are developed for the
generalization gap as measured by function values and require the algorithm to be uniformly stable.
In this paper, we introduce a novel stability measure called pointwise uniform stability by considering
the sensitivity of the algorithm with respect to the perturbation of each training example. We show
this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-
probability bound for the generalization gap as measured by gradients. Sharper bounds are given for
strongly convex and smooth problems. We further apply our general result to derive improved general-
ization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities
for a summation of weakly-dependent vector-valued random variables.
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1. Introduction

How to understand the generalization behavior of a learning algorithm is a central problem in
statistical learning theory. A popular approach to developing generalization bounds is based on the
uniform convergence, which controls the uniform deviation between population risks and empirical
risks over a function space [39, 2 [36] [@9]. This approach ignores how an algorithm explores over the
function space, and leads to generalization bounds depending on the complexity of function spaces
such as VC dimension [39], covering numbers [45], 36] and Rademacher complexities [2].

An alternative approach for generalization analysis is based on a fundamental concept of algorith-
mic stability. Roughly speaking, we say a learning algorithm is algorithmically stable if a change of a
single example in the training dataset brings only a small change in the output model, i.e., the algo-
rithm is insensitive with respect to (w.r.t.) the perturbation of training datasets [32, [5]. Algorithmic
stability was introduced in 1970s to derive leave-one-out bounds for certain nonparametric local learn-

ing algorithms (such as nearest-neighbor rules) [I11, [32]. The modern framework of stability analysis
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was established in [5], where a celebrated concept called the uniform stability has been introduced to
study regularization methods.

We need to answer two questions in applying algorithmic stability to get generalization bounds for
an algorithm. The first question is how to guarantee the generalization by stability, i.e., whether a
stable algorithm can always produce models with good generalization behavior. The second question
is how to develop stability bounds for an algorithm in terms of algorithm parameters such as the
regularization parameter, the step size and the number of iterations.

The second question is algorithm-dependent, which allows us to exploit the special property of
algorithms to get bounds better than algorithm-independent bounds based on complexity measures [2].
The stability of various optimization algorithms has been developed in the literature. For example,
the uniform stability has been developed for stochastic gradient descent (SGD) [17], which is one of
the most widely used optimization methods to solve large-scale problems in machine learning.

For the first question, quantitative connection either in expectation or with high probability has
been established. In particular, with probability at least 1 —§ the following generalization bounds were

developed for B-uniformly stable algorithmd!] [6, [14]
[F(A(S)) = Fs(A(S))| < Blognlog(1/6) +log? (1/6)/n, (1.1)

where A(S) denotes the output model by applying an algorithm A to the dataset S, F(w) denotes
the population risk of a model w, Fg(w) denotes the empirical risk of w (definitions are given in
Section and n is the sample size. Eq. (1.1 is a breakthrough result on the high-probability

generalization analysis for uniformly stable algorithms initialized in 2002 [5]. However, some questions

on Eq. (1.1) still remain.

e Eq. provides generalization bounds in terms of function values. For nonconvex problems,
optimization algorithms can only find a local minimizer and therefore we can only get optimiza-
tion error bounds for ||[VF(A(S))| [15], where V denotes the gradient operator. Therefore, it is
interesting to study the generalization behavior of A(S) as measured by VF(A(S)), which moti-
vates the question of developing high-probability bounds on the generalization gap as measured

by gradients, i.e., ||[VF(A(S)) — VFs(A(S))]-

e Eq. (L.1) requires the algorithm to be uniformly stable, which is arguably the strongest concept
of algorithmic stability. Is it possible to relax this uniform stability to a weaker version of uniform
stability, and can we develop better bounds on this weaker stability for popular algorithms such

as SGD?

e The recent sharper generalization bounds in [I8] require the loss function to be simultaneously

Lipschitz continuous and A-strongly convex, which cannot be satisfied globally due to the conflict

1We use the notation < to ignore constant factors in an inequality.
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between the Lipschitz continuity and strong convexity. Furthermore, their generalization bounds
A~ 1 ~

involve A%, where Ay = A7!(Fs(A(S)) — miny, Fg(w)) denotes a weighted suboptimality of

the output model in terms of the empirical risk. This square-root dependency on A, is slow in

practice. Can we address the above conflict and improve the dependency on A\?

In this paper, we aim to provide affirmative answers to the above questions. Our main contributions

are as follows.

e We develop a concentration inequality for a summation of weakly-dependent vector-valued ran-
dom variables, which generalizes a similar result in Bousquet et al. [6] from real-valued random

variables to random variables taking values in a Hilbert space.

e We introduce a new stability measure termed as the pointwise uniform stability. While this
stability is weaker than the uniform stability, we show it guarantees high-probability gener-
alization bounds on F(A(S)) — Fs(A(S)). We also give the first high-probability bound for
IVF(A(S)) — VFs(A(S))| based on stability analysis.

e We improve the high-probability bound in [I8] by considering a loss function of a structure,
which reconciles the conflict between Lipschitz continuity and strong convexity. Furthermore,
A lta
we derive a sharper bound involving A,? to exploit the a-Hélder continuity of gradients. In
A 14

lta N
particular, if o = 1, the term A,?  decays quadratically faster than A3 in [1§].

e We study the pointwise uniform stability of SGD for convex and strongly convex problems,
covering smooth and nonsmooth problems. We then apply our connection between stability and

generalization to give high-probability generalization bounds.

The paper is organized as follows. We review the related work in Section [2] We present our main
results in Section [3] and give applications to SGD in Section [4] We present the proofs on connecting
stability and generalization in Section [f] and the proofs on SGD in Section [6] The conclusion is given

in Section[7} Some lemmas and proofs are given in the Appendix.

2. Related Work

2.1. Connection on Stability and Generalization

Algorithmic stability can imply generalization bounds in expectation and with high probability. We
first consider generalization bounds in expectation. On-average stability can imply generalization under
a Lipschitz condition of loss functions [34]. For non-Lipschitz problems, an on-average model stability
was proposed to give generalization bounds by exploiting the smoothness of loss functions [22], which
can further imply fast rates under a low-noise condition. On-average stability can imply generalization
bounds for any learning algorithms to solve gradient-dominated problems [23] [7]. For nonconvex
and smooth problems, generalization as measured by gradients can be guaranteed by stability in

gradients [21].
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We now consider generalization bounds with high probability. In a seminal paper [5], S-uniform

stability was introduced to give bounds of order O((5+1/n)+/nlog(1/§)), which was extended to ran-

domized learning algorithms [12]. These results were significantly improved to O(/(8 + 1/n)log(1/6))
in [I3] by techniques in adaptive data analysis. Almost optimal generalization bounds in Eq.
were further derived by developing concentration inequalities for a summation of weakly-dependent
random variables [0, [14]. The above-mentioned high-probability analysis can imply bounds of the order
at most O(1/4/n). Under a Bernstein condition on variances, it was shown that S-uniformly stable

algorithms can enjoy high-probability bounds of the order O((Slogn + 1/n)log(1/6)) [18].

2.2. Stability of Learning Algorithms

Algorithmic stability has been studied for various learning algorithms. Uniform stability bounds of
order O(1/(n\)) were developed for empirical risk minimization to solve A-strongly convex problems [5].
In a seminal paper, uniform stability bounds of order O(G? ZtT:l n:/n) were developed for SGD with
T iterations and step size sequences {rn;} for convex, smooth and G-Lipschitz problems [I7]. Data-
dependent stability bounds reflecting the effect of initialization point were established for SGD [20].
For nonsmooth and convex problems, stability bounds of order O(n\/T + nT/n) were developed for
SGD with n; = n either in expectation [22] or with high probability [3]. The Lipschitz constant G in the
existing stability bounds [I7] was replaced by the training error based on on-average model stability,
which can imply fast excess risk bounds under a low-noise condition [22]. On-average model stability
was also used to understand the benefit of overparameterization for shallow neural networks [30} 37, 24],
and the implicit bias of gradient methods for separable data and self-bounding loss functions [33].
Other than the standard SGD/GD, the stability of differentially private SGD [42] [3, 21], gradient-free
optimization methods [28], accelerated methods [41] and noisy SGD [46], 25, [38] 27] was studied in the

literature. Lower bounds on the stability of gradient methods were also developed [3, 19, [J.

3. Main Results

3.1. Problem Setup

Let p be a probability measure defined on a sample space Z = & x ), where & is an input space and
Y is an output space. Let S = (z1,..., 2z,) be a training dataset drawn independently from p, based on
which we aim to find a model i : X — ) for further prediction. We consider a parametric model, i.e., a
model can be indexed by a parameter w € W, where W C R is the parameter space. The performance
of a model w on an example z can be measured by f(w;z), where f : W x Z + R is the loss function.
The empirical behavior of a model w can be quantified by the empirical risk Fg(w) = % Yo f(wsz),
while the prediction behavior can be quantified by the population risk F(w) = E,[f(w; z)], where E,[-]
denotes the expectation w.r.t. z. We often apply an algorithm A onto S to get a model A(S) € W
with a small empirical risk. However, this does not necessarily imply a small population risk referred

to as the overfitting phenomenon. To this aim, we need to handle an important concept called the
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generalization gap F(A(S)) — Fs(A(S9)), i.e., the difference between population risk and empirical risk
at the output model A(S). In this paper, we will leverage the celebrated concept called algorithmic

stability to develop high-probability bounds on the generalization gap.

3.2. Concentration Inequality

We give a p-norm bound for a summation of weakly-dependent random variables taking values
in a Hilbert space, whose proof is given in Section It will play a fundamental role in deriving
the connection between stability and generalization. The L,-norm of a real-valued random variable
Z is denoted by [ Z], := (E [\Z|p]) ,p > 1. Let || - || denote the norm in a Hilbert space H. Then

IV f(w; Z)| is a real-valued random variable (as a function of Z). According to our notation, we have

1

V£ 2) = (B2 [IV£(w; 2)17]) ", ¥p > 1.

Theorem 1. Let Z = (Z1,...,7Z,) be a sequence of independent random variables taking values in a

Hilbert space H. Let g1, ...,gn be functions g; : Z" — H such that the following holds.
1. For any i € [n], almost surely we have sup,, |Elg;(Z)|Z; = z]|| < M.
2. For any i € [n], almost surely we have E[g;(Z)|Z\1iy = (2j)2i] = 0,V2z5 € Z,j # 1.

3. For any i € [n], the following inequality holds

sup ng ZAyeey Zjm1y Zjs Zjgls - o5 Zn) —gi(zl,...,zj,l,z;,zjﬂ,...,zn)H <Bj. (31)
Z1yeeey zn,z]’v:];éz

Then, for any p > 2 we have

[H>n

Remark 1. If # = R, a similar bound was established in [6]. That is, let g, ..., g, be real-valued
functions such that [|E[g;(Z)|Z;]|| < M, E[g:(Z)|Zpnp\ i3] = 0 and

‘ <2(V2+ 1)My/mp+2(vV2+ 1)p[ 1og2n( Zﬁ)%

~ !
sup ‘gz Zly ey 251y 255 Zidly ooy Zn) fgi(zl,...,zj_l,zj,zj+1,...,zn)| <pB.
zJ,z

Then, the following inequality was established for any p > 2 [6]
n
H Zgi(Z)H < 4M./ap + 12v2pnB[log, n]. (3.2)
i=1 p

There are two differences between our result and Eq. . First, we extend the discussion in [6]
from real-valued random variables to random variables taking values in a general Hilbert space, and
slightly improve the constant factor. Second, the discussions [6] assume the change of j-th example
inz = (z1,...,2,) would lead to a change of value uniformly bounded by 5. As a comparison, we
allow different §; for different j € [n]. As we will show, this is useful for us to get a new generalization

bound based on our pointwise uniform stability.
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3.8. Stability and Generalization
Stability measures the sensitivity of an algorithm up to the perturbation of the training dataset
by a single example. A very popular stability measure is the uniform stability, which considers the

change of any single example of any training dataset by any z € Z.
Definition 1 (Uniform Stability). Let A be an algorithm and g > 0.

1. We say A is S-uniformly-stable in function values if for all datasets S,S’ such that S and S’

differ by a single example, we have
sup|f(A(S); 2) — f(A(S");2)] < B. (3.3)

2. We say A is S-uniformly-stable in gradients if for all datasets S, S’ such that S and S’ differ by

a single example, we have
sup [[Vf(A(S); 2) — VF(A(S); 2)|| < B. (34)

In this paper, we introduce a new stability measure which we call the pointwise uniform stability.
The basic idea is to give a single stability parameter 3; for perturbing the i-th example of the dataset. It
is clear that if A is S-uniformly stable, then it is also (3, ..., §)-pointwise uniformly stable. Therefore,
pointwise uniform stability is weaker than the uniform stability. In this paper, we will show that this
weaker stability can also imply high-probability generalization bounds. We say two datasets S and
S differ only by the i-th example if S = (#1,-..,2n) and S — (21,3 Zim1, 2y Zit1, - - -, 2n) foOr

some z; € Z.
Definition 2 (Pointwise Uniform Stability). Let A be an algorithm and 3 = (81,...,08,),8; > 0.

1. We say A is B-pointwise uniformly-stable in function values if for all S, S such that S and S®)
differ by the i-th example, we have

sup [ f(A(S); 2) - FIASD);2)] < Bi. (3.5)

2. We say A is B-pointwise uniformly-stable in gradients if for all S, S such that S and S differ

by the i-th example, we have
sup ||V f(A(S); 2) = VF(A(SW); 2)| < Bs. (3.6)

Theorem [2| gives a high-probability bound on the generalization gap F(A(S)) — Fs(A(S)) for

pointwise uniformly stable algorithms. We omit the proof due to its similarity with Theorem

Theorem 2 (Generalization via Function Values). Let 8 = (81,...,8,). Consider an algorithm A
and ¢ € (0,1). Assume for any S and any z, |f(A(S);2)| < M. If A is B-pointwise uniformly-stable
in function values, then the following inequality holds with probability at least 1 — 0

< Mlogz(1/6

|F(A(S)) — Fs(A(9)| < n ) + (% ;ﬁ?)é logn log(1/4).
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Remark 2. If A is S-uniformly stable in function values, the generalization bound in Eq.
was developed [l [14]. As a comparison, our bound involves an average of stability parameters over all
indices, i.e., the term (% Sy Bf) %, which is smaller than the uniform stability parameter 8 = max; §;
considered in [5, [14]. As we will show, for SGD we can establish a bound for (1 " ﬁ?)% which is

smaller than that for max; ;.

Our next result is a high-probability bound on the generalization gap in terms of gradients, which
extends the high-probability generalization bound in function values in [B, [14]. We show that the
deviation between population gradients and empirical gradients at the output model can be bounded
by the stability parameter in gradients. We require f to be differentiable, and do not require a convexity

or smoothness assumption in Theorem |3} The proof is given in Section [5.2

Theorem 3 (Generalization via Gradients). Let 8 = (81,...,8n). Consider an algorithm A and
d €(0,1). Assume for any S and any z, |Vf(A(S); 2)|| < M. If A is B-pointwise uniformly-stable in
gradients, then the following inequality holds with probability at least 1 — ¢

Mlog?(1/5 ~ 2\ %
<A () it

Remark 3. If A is S-uniformly stable in gradients with, then it was shown [21]

IVF(A(S)) — VEs(A(S))]|

BIVFAS) - VRE)] 5 8-+ LBV L) 21,

where Vz[f(A(S); Z)] is the variance of V f(A(S); Z) as a function of Z. This bound was established in
expectation. As a comparison, we develop high-probability bounds on the generalization gap between
population and empirical gradients. High-probability bounds of order \/m were also estab-
lished for supy, ||[VF(w)—VFs(w)]|| based on complexity measures of function spaces, which, however,
depend on the dimensionality d of the problem and are not appealing for high-dimensional learning

problems. As a comparison, our stability analysis implies dimension-free generalization bounds.

3.4. Sharper Generalization Bounds

Theorem [2| implies generalization bounds of the order O(1/4/n). In this section, we improve this
dependency to O(1/n) for pointwise uniformly stable algorithms. The following theorem is an extension

of the stability analysis in [I8]. We consider functions with a composite structure.
Definition 3 (Lipschitzness, Smoothness and Convexity). Let G,L,,L > 0,A >0 and g : W — R.
e We say g is G-Lipschitz continuous if [g(w) — g(w')| < G||lw — w/||, VYw, w’ € W.
e We say g has (a, L, )-Hélder continuous gradients (« € [0, 1]) if
IVg(w) = Vg(W)[| < Laflw — w'[|*, Vw,w" €W.

We say ¢ is L-smooth if g has (1, L)-Holder continuous gradients.
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e We say g is A-strongly convex if

A
g(w) = g(w') + (W — W', Vg(w')) + S |[w —w'[*, Vw,w e W.
We say g is convex if the above inequality holds with A = 0.

Assumption 1. Let A > 0,/ : W x Z2+— Ry andr: W — R;. Assume f: W x Z — R, has the
following structure

flw;z) =4(w; z) + r(w). (3.7)
Assume for any z, the function w — £(w; z) is nonnegative and has (a, L, )-Holder continuous gradi-

ents. Assume r is L,-smooth, and for any z, the function w — f(w;2) is A-strongly convex.

For non-composite problems, our analysis can still imply faster rates if f is strongly convex, smooth
and ||[Vf(A(S); 2)|| < G,||Vf(Ae(S); 2)|| < G, where we denote by Ae the empirical risk minimization
(ERM) algorithm, i.e.,

Ae(S) = arg min Fg(w).

wew
Let Lg(w) = 23"  ((w;z) and L(w) = E.[{(w; 2)]. Let w* = arg minwey F(w) be a minimizer of
the population risk. The proof is given in Section [C}
Theorem 4. Let B8 = (51,...,08n) and [ take a structure in Eq. , Assume A is B-pointwise
uniformly-stable in function values (measured by £), i.e., Eq. holds with f replaced by £. Let
M = sup, [Es[l(A(S)); 2] — £(w*;2)|. Then for any § € (0,1), the following inequality holds with
probability at least 1 — §

F(A(S)) = Fs(A(S)) = F(w") + Fs(w") 5 (%Zgizflognlog(l/éH Mlsgg N (oﬁloi(l/é))é’

where
2

0% =Bz [(Bs[0(A(S); 2)] - e(w; Z))T — (Es[L(A()] - L(w") .
Remark 4. A key difference between Theorem 4| and Theorem [2[is that the term n~2 M log% (1/4) in
Theorem [2] is replaced by n~!'M log(1/8) in Theorem |4l at the cost of introducing oan~2 log%(l/é).
Then, Theorem |4 can imply fast excess risk bounds if the variance % is small. Similar bounds were

derived in [I8] under the following Bernstein assumption
Ez[(f(w; 2) = f(w*; 2))?] < B(F(w) = F(w")), VYweW. (3.8)

The bound in [I8] involves the uniform stability. As a comparison, our analysis uses the pointwise
uniform stability. Furthermore, we do not impose a Bernstein assumption, and instead include the
variance term o2 in the upper bound. Finally, we consider a problem with a composite structure and
our stability assumption is imposed to ¢ instead of f. The underlying reason is that it is possible ¢
is Lipschitz continuous but f not. In this case, if we can derive a bound on ||A(S) — A(S™)]|, we
can use the Lipschitz continuity of ¢ to get a bound on £(A(S);z) — £(A(S®™);z) but not a bound
on f(A(S);z) — f(A(S™);2). As a comparison, the analysis in [I8] does not consider this composite

structure.
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To apply Theorem we need to estimate the variance term 0%, which can be related to the excess
risk F(A(S))—F(w*). In the following theorem to be proved in Section[5.3] we show that the Bernstein
condition holds if Assumption[I|holds. Furthermore, we also give generalization bounds in expectation,

which involves optimization error Fs(A(S))— Fs(Ae(S)) and the strong convexity parameter A. Define

(1+1/a)™a L™, ifae€(0,1],
Ca = (39)
sup, |[V£(0; 2)|| + Lo, if a=0.
The proof is given in Section

Lemma 5. Let Assumption[]] hold. Then
0% < OAT'ES[F(A(S)) — F(w*)], (3.10)

where

C =22 Es [ max {755 (A(S); Z), 075 (w*; 2)}]. (3.11)

11—« ~ ~
Furthermore, if (F(Ae(S)) — F(w*))™* < C for some C' > 0 independent of n or X, then any
algorithm A satisfies

14a
E[F(A(S))] - F(w") < @(A; A+ vA), (3.12)
where € is a constant independent of A or n (may depend on «, Ly, L, and is explicitly given in Eq.
(0)) and
1 2o 20
Ax = ATE[F5(A(S)) - Fs(4e(S))],  Va = —E[LF7 (Ae(8)) + LT (4e(S))].

1o
The assumption (F(Ae(S)) — F(w*)) ™™ < C is introduced just for simplifying the analysis, and
can be removed with more complicated computation. This assumption holds automatically if a = 1.

We can combine Eq. (3.10) and Eq. (3.12) to derive

14«

2a 2

0% < 22 C(E[F(A(S))])T+s

(e (BIFS(A(5) ~ Fs(ac(9))

E[F5(A(S)) — Fs(Ae(S))] _ 2(E [L(Ae<5))]>ﬁ°a>

+ A2 nA2

where we have used the Jensen’s inequality. We can plug the above bound back into Theorem [4] and
get the following high-probability bound. We omit the proof for simplicity. For simplicity, we assume
Ay = O(1) and absorb all constant factors independent of 5;,n, A (e.g., «, Ly, L,) into the < notation.

Corollary 6. Let Assumptions in Lemma@ hold. Let B = (61,...,5,) and assume A is B-pointwise
uniformly-stable in function values (measured by ¢). Let M = sup, ‘ES[E(A(S)); z) — €(w*;z)|. Then
for any § € (0,1), the following inequality holds with probability at least 1 — §

FIA(S)) ~ FS(A()) — Fiw) + Fs(w') £ (537 52) logmlog(1/0) + 21285
i=1

+ log'/?(1/6)(B[F (A(S))]) =
Vn

4

(2 (BFs(a(9) ~ Fotacsy)) © + ELEALDNTY



201 If we further assume ¢ is Lipschitz continuous, we can have the following high-probability bounds

22 for any algorithm to solve strongly convex problems. The proof is given in Section |5.3

2«3 Theorem 7. Let Assumptions in Lemma@ hold and ¢ be G-Lipschitz continuous. Ifsup, |Es[¢(A(S)); z]—
ue U(W*;z)| < oo, then for any & € (0,1) with probability at least 1 — § we have

14«

F(A(S)) — F(w*) < (n\)"tlognlog(1/6) + A2,
us where Ay = A"V (Fs(A(S)) — Fs(Ae(9))).

26 Remark 5. The term Fs(A(S)) — Fs(Ae(S)) is the optimization error, which measures the subopti-
27 mality of A(S) to the minimal empirical risk. The recent work [I8] gives the following high probability

2s  bound if Fyg is A-strongly convex and f is Lipschitz continuous

F(A(S)) - F(w") < (%—I—A%)lognlog(l/é), (3.13)

~

2o where Ay is a deterministic number and an upper bound of A,. However, a strongly convex function
0 cannot be Lipschitz continuous in the whole region. Therefore, the strong convexity assumption is
s contradictory to the Lipschitz condition. As a comparison, we consider an objective with a composite
»2  structure where ¢ has a-Holder continuous gradients and is Lipschitz continuous. Our assumption is

3 satisfied by various machine learning problems. For example, for logistic regression we have
F(w;2) = log(1 + exp(—yw @) + 27| w]|?,

x4 which satisfies Assumptionwith a = 1. Moreover, the function z + log(1+exp(—yw ' z)) is Lipschitz
25 continuous.

256 Furthermore, we show that the term Aé in Eq. can be replaced by a faster-decaying term
257 A;Ta In particular, if £ is smooth, we have A;Ta =A x, which decays quadratically faster than A%
»s  in Eq. . This shows that we can stop the algorithm earlier if we impose a stronger assumption
9 on the smoothness, and shows the benefit of smoothness in improving the generalization. Indeed, the
20 analysis in [I8] first shows that the algorithm A is S-uniformly stable with 8 = 4G2/(An) + 1/8G2A .
2 Then, they apply the high-probability bound on uniform stability to A and give the bound in Eq.
262 . Since a smoothness assumption would not affect the uniform stability, the uniform stability
%3 parameter there involves A%, and the strategy fails to use the smoothness assumption to improve the
2 bound. We take a different strategy. We apply Theorem [4] to the algorithm Ae to first give a bound
s on F(Ae(S)) — Fs(Ae(S)) — F(w*) + Fs(w*), which does not involve Ay since Ae outputs the ERM
x model. Then we control F(A(S)) — Ae(S)) in terms of Ay, and use the smoothness assumption to
27 show this bound improves as f is becoming more and more smooth. Finally, Eq. requires A, to

s be upper bounded by a deterministic number Ay. As a comparison, our result directly involves A,.

%0 4. Applications to Stochastic Gradient Descent

270 In this section, we apply our connection between stability and generalization to derive generalization

21 bounds for SGD.
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Definition 4 (SGD). Let wy € W and {n;} be a sequence of positive step sizes. At each iteration, we
first randomly select an index j; according to the uniform distribution over [n] and update the model

as follows

Wiy = Wy — 1V (W3 25,).

4.1. Stability Bounds

We first develop the pointwise uniform stability bounds for SGD. We consider three classes of
problems: convex and smooth problems, convex and nonsmooth problems, and strongly convex and
smooth problems. Let Iz be the indicator function, i.e., [jg; = 1 if the event £ happens, and 0

otherwise. The proofs are given in Section [0}

Theorem 8 (Stability of SGD: Smooth Case). Assume f : W x Z — RY is convex, L-smooth and

G-Lipschitz. Let {w;}ien be produced by SGD with ny = n < 2/L. Then SGD with T iterations is
26°Ty g

B-pointwise uniformly stable in function values, where - EZ 1Bi =

1 AGH? N 2
g;@z U Z(;Hm_i]) . (4.1)

Remark 6. Under the same condition, one can show that SGD is Synis-uniformly stable in function

values with (implicitly shown in the proof of Theorem
T
ﬁunlf = 2G n maX Z ]I[Jt—l (42)

zErL

To see the comparison between the uniform stability bound in Eq. (4.2]) and the pointwise stability
bound in Eq. (4.1)), we introduce

T n T 1
. _ 1 23
Bunit = maxz ]I[jt,=i]7 5point = (* Z (Z ]I[jt=i]> ) ’ . (43)
el s =
It is clear that Bumi, Bpoint differ from the above uniform/pointwise stability bounds by a factor of

2G?n. For simplicity, we set T = n as this implies the optimal excess risk bounds [17]. Then, we have

Bpoint < ( Z (ZH[Jf l]) max (Zl[m—z ))% ( Zzlm—l )% u%ni' = Bénif? (4.4)

i€[n]

where we have used the identity Z?:l Ijj,—q = 1 for any ¢. The term Bunif is related to the balls and

bins problem [29]. It was shown that with probability at least 1 —1/n, Bunit = @(logi gn) [29]. Then,

~ 1
by Eq. (4.4), with probabi}ity at least 1 — 1/n we have Bpoint = O((bz)i%)%)). Note Eq. (4.4) is not
tight, and we expect that SBpeint has a tighter upper bound. For example, we can show that the second

moment of Bpomt is bounded by a constant independent of n:

B 1 n n 9 1 n n 1 n
EBoim] = ~ > E[(D_Ty=) 1=~ D Bl g+ - > Bl =T, =i
i=1 t=1 =1 t=1 1=1 t#t'€[n]
1 n o n 1 n Tl2 —-n
n ZZE[H[jt:i]] + n B[y, =g Bl =] = 1 + 7 =2
t=1 i=1 i=1 t£t' €[n]

11
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Figure 1: Bunif (blue curve) and Bpoint (red curve) as a function of n for SGD applied to convex and Lipschitz problems.
Left panel considers the smooth case with T' = n, where Bunif and Bpoint are defined in Eq. (4.3). Right panel considers
the nonsmooth case with 7' = n2, where Bunif and Bpoim are defined in Eq. (4.6).

As a comparison, E[Bunif] = 9(1og)i Zn) [29], which grows as n increases. We perform a simulation to
compare Bunif and Bpoim. We set T' = n, and get a sequence of indices { jt}tE[T] by drawing j; from the
uniform distribution over [n]. Then, we compute Bunit and Bpoint according to Eq. . We repeat
the experiments 25 times, and report the average of the experimental results. In Figure [l (left panel),
we plot Bunif and Bpoim as functions of n. The plot shows that Bunif is substantially larger than Bpoint;

and the difference grows as n increases. This shows the benefit of using pointwise uniform stability to

study generalization.

Remark 7. Recently, fast excess risk bounds were derived for SGD based on the on-average model
stability in the realizable (low-noise) setting [22]. Their bounds are stated in expectation, and their
key idea is to incorporate the empirical risk in the stability bounds by using the expectation over S.
For example, for SGD in a convex and smooth case, we can build the following inequality for two

datasets S, S differing by the i-th example
Iwess = Wil < liwe = will + el (19£ (wes 20) | + V£ (w5 D)) (45)

where z; and 2/ are respectively the i-th example in S and S, and {w;}, {ng)} are SGD iterates
on S and S, respectively. Then, the self-bounding property of smooth functions and the symmetry

between z; and z, imply

\/77715

!/

[ %(Wtyzz)—"f (Wt 721)] :E[||Wt_W§i)”]+@

El|wir1—wi ] < Elw,—wi”||]+

An average over i € [n] further includes the empirical risks in the stability bounds

i 2v2Ln %
—ZE [wipr —wi ] < ZE we = wi? ] + == RE(F (w),

which implies fast rates if Fg(w;) are small.

12
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As a comparison, the pointwise uniform stability takes a supremum over all neighboring datasets,
and this supremum comes from the bounded increment condition in Eq. (A.l), which takes the
supremum over all z;. Then, we need to take supremum over S on both sides of Eq. (4.5) to get

sup [[wess = wih || < sup lwi = wi”| + iy =y sup (195 (wes 20) |+ [V Fwi?: 1)),
3% 325

Lad )

from which we fail to incorporate empirical risks in the stability bounds for a fast rate.

We now consider the convex and nonsmooth case. The following theorem shows that the stability

of SGD in the nonsmooth case is worse than that in the smooth case.

Theorem 9 (Stability of SGD: Nonsmooth Case). Assume f : W x Z — RT is conver and G-
Lipschitz. Let {w;}ien be produced by SGD with ny = n. Then SGD with T iterations is B-pointwise
uniformly-stable in function values, where

n

T ¢
7Zﬂ2 4G77 (T +4(T+1) /3+4ZZZHﬁ il lgj= l])

i=1 t=1 k=1
Remark 8. As we will show in the proof of Theorem EI, we can show that SGD is Buni-uniformly
stable with

T
Bunit < 2G2VT + 4G% ?é%f](zﬂ[jt:i]'
t=1

Analogous to Remark [0 we introduce

N

AT 1% 4 gn
(T+ AT+1)? + +gzzzﬂ[jf,:z‘]ﬂ[jk:ﬂ> - (46)

=1 t=1 k=1

T
Bunif = \/T+ 2?61?;5](2}1[%:2]7 5p0int =
t=1

It is clear that Bunif, Bpoint differ from the above uniform/pointwise stability bounds by a factor of

. T t—1 T T T T
2G?n. Since 32,y >ty Tyo=aTi=i = Yohe1 Yotmpsr W= lgu=i) = Doim1 2herr Ljo=iiTpja=as We

know

n T t T n T T n T
2ZZZH[Jt 1]]Ijk 1]*ZZH[2jt=i]+ Zzﬂjz Z]I[]k =] :TJFZ(ZHM 1])
i=1 t=1 k=1 i=1 t=1 i=1 t=1 k=1 i=1  t=1
T T
<T ( I ) I _a=T+T Tjj,—s
+Z Z [je=1] ?el%L ; le=i] =14+ ?Ela;l}](; Je=i]-
It then follows that
. AT+1)2 2T 2T 3
ﬁpoint < (T + T + 7 + 7 ?el?'rf](zﬂ[h_z]) < Bumf (4'7)

For the nonsmooth case, Bpoint and Bunif are of similar order. Indeed, if T' = O(n2), the dominating
term in both Bpoint and Bunit is VT. Furthermore, if T' = Q(n?), then max;e ] 23:1 ljj,—q = ©(T/n)
with high probability [29], which implies that Bpeine = ©(T/n) and Bunir = O(T/n) in this case. In
Figure [1| (right panel), we also plot ﬂpomt and ﬂumf as a function of n. We set T = n?, and get a

sequence of indices {4 };c[r) by drawing j; from the uniform distribution over [n]. Then, we compute

13
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ﬁunif and Bpoint according to Eq. (4.6). We repeat the experiments 25 times, and report the average
of the experimental results. The experimental results show that Bpoim and Bunif behave as linear
functions of n in the nonsmooth case (note T'/n = n in our experiments), which is consistent with our

theoretical analysis.
Finally, we consider SGD for strongly convex and smooth problems.

Theorem 10 (Stability of SGD: Strongly Convex Case). Let Assumption hold with a =1 and ¢ be

G-Lipschitz. Let {w;}ien be produced by SGD with ny < 1/L, where L := Lo, + L,.. Then SGD with T
< 4G2

iterations is B-pointwise uniformly-stable in function values (measured by £), where + ZZ 1 Bi

and . . . .
%Z@Z = 4754 (Zntﬂ[jt:i] H (1_77t’)\/2))2-
i=1 i=1 =1 t=t+1
Remark 9. Under the same condition, one can show that SGD is Sunit-uniformly stable in function val-
ues with (implicitly shown in the proof of Theoreml ) Bunit = 2G? max;e|n] Z;‘le Ny, =i HZ::Hl(l -
neA/2). It is clear that 2, > 2 >°" | 57 for f; in Theorem.

Remark 10 (Lower bounds). Recently, lower bounds on the uniform stability were also developed for
Lipschitz problems [3] 44 [19] [1]. A lower bound of order Q(min{l, t/n}nyt + nt/n) was established
for SGD with convex and nonsmooth problems [3], a lower bound of order €2(nt/n) was established for
convex and smooth problems [44], and a lower bound of order (n?n) was established for nonconvex
problems [19]. These bounds are developed for uniform stability and are stated in expectation. As a
comparison, this paper considers pointwise uniform stability. It is interesting to develop lower bounds

on pointwise uniform stability with high probability.

4.2. Generalization Bounds

We now apply the above stability bounds to get high-probability generalization bounds of SGD.
To our knowledge, Corollary [L1|gives the first high-probability bounds on ||[VF(A(S)) — VFs(A(S))|
based on algorithmic stability. The bounds can be directly derived by plugging the stability bounds
in Section to Theorem [2| (Theorem . We omit the proofs for simplicity.

Corollary 11 (Generalization of SGD: Smooth Case). Assume f: W x Z +— RT is convex, L-smooth
and G-Lipschitz. Let {w}ien be produced by SGD with ny = n. Let 6 € (0,1). Then with probability

at least 1 — & we have
|F(A(S)) — Fs(A(S)| S T1 and ||[VF(A(S)) — VFs(A(9))|| £ T,

where

D (S ) )

=1 k=1

We now turn to high-probability bounds for SGD applied to nonsmooth problems.
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Corollary 12 (Generalization of SGD: Nonsmooth Case). Assume f : W x Z +— R is convezr and
G-Lipschitz. Let {w}ien be produced by SGD with ny = 1 and 6 € (0,1). With probability at least

1 -6, we have

log%(l/d) nlognlog(1/0) R
| F(A( s(A(S))] 7 NG ( ;;; =il ])

Finally, we can directly plug Theorem [I0] to Corollary [6] to get high-probability bounds for SGD

N

applied to strongly convex problems.

Corollary 13 (Generalization of SGD: Strongly Convex Case). Let Assumptions in Lemma @ hold
with o = 1 and £ be G-Lipschitz continuous. Let A be SGD with T iterations and n, < 1/L. If
sup, |Es[€(A(S)); 2] — ((w*;z)| < oo, then for any & € (0,1) with probability at least 1 — & we have

F(A(S)) = Fs(A(S)) = F(w") + Fs(w") S Ta and  [VF(A(S)) = VEs(A(S)) + VEs(w')|| $ Ta,

where

1

1 T T 2\ 2
= (230 (Xnta I] 0-nov2)") lognlog(1/s

=1 t=1 t'=t+1

log"/?(1/8) (E[F(A(S))])?
AV

((BIFs(AS) - Fs(Ae(s)])" +

5. Proofs on Connecting Stability and Generalization

5.1. Proof of Theorem[]]
To prove Theorem (1 we need the following Marcinkiewicz-Zygmund’s inequality for random vari-
ables taking values in a Hilbert space. It shows that the p-norm of a summation of independent random

variables can be bounded by the summation of the p-norm of random variables.

Lemma 14. Let Xi,...,X, be independent random wvariables taking values in a Hilbert space with

E[X;] =0 for alli € [n]. Then for any p > 2 we have

x|, = 2vm(E X inxal)

The Marcinkiewicz-Zygmund’s inequality can be proved by using its connection to Khintchine-

Kahane’s inequality [4, page 441], where the Marcinkiewicz-Zygmund’s inequality was established for
real-valued random variables. To get Marcinkiewicz-Zygmund’s inequality for vector-valued random

variables, we need to use the following Khintchine-Kahane’s inequality [10, Theorem 1.3.1]

Enzezxuumax (ann) p>2,

where X1, ..., X, are elements in a Hilbert space, and €1, . . . , €, are independent Rademacher variables
(i.e., taking values in {1, —1} with the same probability). For brevity, we omit the proof of Lemma

We now give the proof of Theorem [I} which is motivated by the analysis in [6]. For f(Z1,...,Z,)
and A C [n], we write || f]|,(Za) = (E[|f|p|ZA])%

15
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Proof of Theorem/[]] For simplicity, we assume n = 2¥. Define a sequence of partitions By, . .., By with
B, ={1,2,...,2F}, where B; is derived from By, by splitting each subset in B;, into two equal parts.
Then, there holds

Bo = {{1},{2},...,{2"}}, By = {{1,2},{3,4},...,{2" — 1,2"}},..., B, = {[n]}.

For each i € [n] and [ = 0,1,...,k, denote by B'(i) € B; the only set from B; containing i. According
to this definition, we know B°(i) = {i} and B*(i) = [n].

For each i € [n] and each { = 0,1,...,k, we introduce random vectors as follows

94 = 94(Zi, Ziup i iy) = Bloil Zi, Zinp pra)-

That is, we condition on Z; and all the variables that are not in the same set as Z; in B;. This definition

shows that ¢ = g; and g¥ = E[g;|Z;]. For each i € [n], we can decompose g; as follows

k—1
—E91|Z _|_Z l+1
=0

It then follows from the triangle inequality that

n n k—1
HH;g Hp: HH;(E[QZ'IZiH;(gg g )HH
n k—1 n
<[l miz] |+ 3 St - st 6.1

Since ||E[g;|Z:]|| < M, one can check that f(Z1,...,2,) = > ., E[g:|Z;] satisfies Eq. (A.1)) with
B; = 2M. Furthermore, we have E[E[g;|Z;]] = 0. Now we can apply Lemma with ; = 2M to

derive the following inequality

I35
=1

The definition of g} implies that

< 2(V2+1)/npM. (5.2)

RS
EZBHI()\BM[QZ] Yi

We view ¢! as a function of Z;, j € B'*1(i)\B!(i). Changing any Z; would change g! by ;. Therefore,
one can apply Lemma with f = g} to derive the following inequality with (there are 2/ random

variables)

N

Hy|g§ —g§+1||H (Zi, Zppsin ) < (V2 + 1)(]3 3 55.) . (5.3)

P JEBUHL()\BL(i)
We now turn to the sum Y, 5(g! — g1 for any B € B;. Consider any i € B € B;. Note
Z! =gt — gf*l is a function of Z;, Z},,)\ g. We now condition on Zj,)\ g and then Z] is a function of

Z;, which are independent. We can apply Lemma |14 to derive the following inequality
p|B|)”
ISt =t o) < Y5 St = o),
icB
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413
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416

417

Taking integration over Z},,)\ g gives

I ot

p (2 p|B ! p
< St -

which implies

=

et sk, = 25817 2 st -1 )
i€B

This together with Eq. (5.3)) implies that

1

ISut-soll, cmirom (E( £ @ e

€8 jeB!TI(i)\B'(i)

The rest of the proof is where we depart from the analysis of [6]. Note for any i,i’ € B € B!, we have
BFL@\BI(i) = B (/)\B(7).
Therefore, for any B € B! we have the following well-defined notation
B:={j:je BT (i)\B'(i)}, VieB,

which implies

Z 5]2:25]?, ifie BeB. (5.5)

JEBFL()\B (i) jeB
One can interpret Basa sibling set of B in B' (they have the same parent set in B'*!). For example,
if B = {5,6}, then B = {7,8}. If B = {7,8}, then B = {5,6}. The parent set in B2 is {5,6,7,8}. It
then follows from Eq. and Eq. ) the following inequality for any B € B! (|B| = 2})

[t - st <2z i (5 2)°) =z 2k ()"

jEB ]EB

Nl

It then follows from the fact |B;| = 2¥=! and the Cauchy-Schwartz inequality that

IS t-atwl, < 2 Mot -aoll], <2 (3 ISt -a])*
< 2p(V2 +1)2 %(ZZﬁQ)%

BeB; JEB

According to our definition of B, one can check BeB 2jeB B3 =1, B} and therefore
n 1
I 6=, <22+ nvm(oa2)”
i€[n] i=1

This further gives

k—1 n n 1
Sl Sttt < 2p2 s 0k(n 3 2)
i=1 =1

1=0
We can plug Eq. (5.2)) and the above inequality back into Eq. (5.1)) to derive

[H>2

The proof is completed. O

1
2

‘ < 2(V2+ 1)y/mpM + 2p(v2 + 1) ( 252)
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Remark 11. We highlight the difference between our proof and the analysis in [6]. We adopt the
analysis in [6] to derive Eq. (5.4), excepting considering vector-valued random variables here. If the

algorithm is B,pnie-uniformly stable, then the analysis in [6] gives the following inequality similar to Eq.

(>-4)
13- =] < 20v2+ )2 Bunss, B € B
i€B p

Then one immediately gets

S 6t = 3 Sttt =222 s =2 . 55
i€[n] BeB; i€B

l+1 g

As a comparison, we get Eq. to control H H ZieB(gZ 9; H Hp intermsof (deBHl(z)\Bl(z) ﬁ )

Our observation is that Zg‘eBHl(i)\Bl(i) [3]2 is the same for any i € B € B!, based on which we show

H H > (gt - gﬁ“)H Hz <4pP(Va+ 1220y 2 (5.7)
i€EB =

JjEB

where B is a sibling of B. We then apply the Cauchy-Schwartz inequality to get

Il 2 wi=stfl], < 32 N5t -alll, <2 (3 [ 30 -am)

Finally, we can apply Eq. (5.7) to derive a bound similar to Eq. (5.6).

1
)2
p

5.2. Proof of Theorem[3

In this section, we give the proof of Theorem

Proof of Theorem[3 Let S’ = {z1,...,2,,} be drawn independently from p. For any i € [n], define
S0 = {21, ,Z¢—1722a21‘+17 ey Zn ) (5.8)

Since Ez[Vf(A(S); Z)] = VF(A(S)), we can decompose VF(A(S)) — VFs(A(S)) as follows
n(VF(A(S)) - VFs(A ZEZZ VI(A(S);2) = V(A(SD): 2)]

+§:Ez;[Ez[Vf(A(S“));Z)]—Vf( (59 }+ZE [V HAGS):2) - VH(AS): 2]
=1

Since A is B-pointwise uniformly stable in gradients, we know

nl|VF(A(S) - VEs(AS)] <23 8+ | Y (5.9)
=1 i=1

where g; = E., [Ez[Vf(A(SD); Z)] — Vf(A(S®); 2;)]. According to our assumption, we know | g;|| <
2M and

E,[9i] = BB [EZ[VF(A(SY); 2)] = VF(A(SD); 2)]
=E, [EZ[VF(A(SW); 2)] - E.,[Vf(A(SD); 21)]] =0,
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where we have used the fact that z; and Z follow from the same distribution. For any ¢ € [n], any

j # i and any z;/, we have

Hgi(zh...,Zj_l,Zj,Zj+17...,Zn)—gi(Zl,...,Zj_l,Z;/7Zj+1,...,Zn)||
= B [E£[VF(A(SD); 2)] = VF(A(SD); 2)] — Bt [E4[VF(A(S); 2)] = VF(ASS); 2]
< [ [Ex[VF(A(SD); 2) = VFASS); 2)]|| + [[Bo, [VA(ASD); ) — VAAS ) 2] < 285,
where
S](Z) = {Zl,--.,zi717zl/‘,zi+1’...7Zj71,z~;‘/’zj+1,...,zn}. (510)

Therefore, all the assumptions in Theorem |1 hold (with M replaced by 2M and 3; replaced by 28;)

and we can apply Theorem (1| to derive

[H>2

We can combine the above inequality and Eq. (5.9) to derive the following inequality

R

nHHVF(A(S)) — VFs(A(S))|| H < 22@ +A(V2 + 1)\ /apM + 4p(V2 + 1)[logy 1] ( 252)5
By Lemma [A75] the following inequality holds with probability at least 1 — ¢
n||VF(A(S)~VFs(A(S))|| < 22/32+4e (V24+1)y/nlog(1/8) M +4e(v/2+1) [log, n] log(1/9) ( 252)5

and therefore

[VF(A(S)) — VFs(A(S))|| < 221 B,

1
2

de(V2 + 1)M log? (1/6)n" % + 4e(v/2 + 1)[log, n] log(1/6) ( Zﬁz>
The proof is completed. O

5.8. Proof of Theorem[7

To prove Theorem [7] we require the following lemma on the uniform stability of ERM for strongly
convex problems. It is a direct extension of a similar result in [5] to functions with a structure in
Assumption Since the proof is identical to the classical stability analysis, we omit the proof for

brevity.

Lemma 15. Let Assumption[d] hold and ¢ be G-Lipschitz continuous. Then

mz[u]( sup sup [((Ae(S); 2) fE(A@(S(i));z)} < 4G?/(n\),
t€n] g 5 =z

where SO is defined in Eq. (5.5).
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Proof of Theorem [} According to Lemma[L5] we know that Ae is 4G?/(n))-uniformly stable in func-
tion values (measured by ¢). According to Theorem |4} the following inequality holds with probability
at least 1 — 0

o3 log(l/(S))%

F(Ae(S)) — Fs(Ae(S)) — F(w*) + Fs(w*) < (n\) "' lognlog(1/6) + ( -

where (by Lemma [5)
04 < ON'Eg[F(Ae(S)) — F(w")].
We know

Es[F(Ae(S)) — F(w")] = Eg[F(Ae(S)) — Fs(Ae(9))] + Es[Fs(Ae(S)) — Fs(w™)] + Eg[Fs(w™) — F(w™)]

< Ba[P(Ac(S)) - Fs(Ae(S)] < 22,

We can combine the above inequalities to derive the following inequality with probability at least 1 —§
F(Ae(S)) — Fs(Ae(S)) — F(w*) + Fs(w*) S (nA) " logn log(1/9). (5.11)
According to Lemma [B.I] we know

(A(S) = 4e(5), VF(4e(95))) < [[A(S) = Ae(9)[VF(Ae(S))]

L(;a) (Flae(s) — Fiw)) ™™ 1 2(72 )7 (Faets)) - Fow)) )

< J|A(S) - Ae()II(

< ||A(S) — Ae(5)||(p(,4€(5)) _ F(W*>>&(6LT;1LJ$)1L} +2<1L+aa)l+%>

= CLIA(S) — Ae(S) ]| (F(4e(S)) — F(w)) ™", (5.12)
where we have used the assumption (F(Ae(S)) — F(w*)) " < € and introduced C} in the last step.
Since ¢ has (o, L, )-Holder continuous gradients and r is L,-smooth, Eq. (B.1]) implies
LallA(S) = Ae(S)I™ | LrllA(S) — Ae(S)II”

14+« 2
LallAGS) = Ae(S)I'™ | LrllAGS) = Ae(5)]
1+a 2 '

F(A(S)) = F(Ae(9)) < (A(S) = Ae(5), VF(Ae(9))) +

< CLIA(S) ~ Ae(S)l| (F(4e($)) ~ Fw)) T +
(5.13)

Since Fs(Ae(S)) < Fs(w*), we can plug Eq. (5.11) to the above inequality and derive the following
inequality with probability at least 1 — §

= .
14+«

F(A(S))-F(Ae(9)) < HA(S)*Ae(S)H((n/\)’llognlog(l/&) HIA(S) = Ac(S) [T+ A(S) —Ae(S) 1.
By the following inequality due to the strong convexity of Fg,
Fs(A(S)) = Fs(Ae(9)) = %HA(S) — Ae(S)II?, (5.14)

we get the following inequality with probability at least 1 — ¢

14+

F(A(S)) — F(Ae(S)) S Aé ((n)\)*l lognlog(l/(;))l%(1 +A7.
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We can combine the above inequality and Eq. (5.11]) to derive the following inequality with probability
at least 1 — &

F(A(S))~ Fs(Ae(S)) - F(w*)+ Fs(w*) < (nX) ™ lognlog(1/0)+ A () lognlog(1/5)) " +4,5"

By the following Young’s inequality

L{'T‘l 1 14a

(67 1 Tra A =%
O[((n)\) lognlog(l/é)) +—A7,

A% ((n)\)_l lognlog(l/é)) < T

the following inequality holds with probability at least 1 — §
. lfa
F(A(S)) — Fs(Ae(S)) — F(w*) + Fs(w*) < (n\) " 'lognlog(1/8) + A% .

The stated bound then follows by noting Fg(w*) > Fs(Ae(S)). The proof is completed. O

6. Proofs on Stochastic Gradient Descent

In this section, we present the proof on the stability bounds of SGD. Our analysis is based on the
following lemma in [I7], which shows that the gradient update w — w — nV f(w; z) is nonexpansive if

f is convex and smooth.
Lemma 16 ([I7]). Suppose the function w — f(w; z) is convex and L-smooth. If n <2/L, then
I(w =19 f(ws2) = (w' =19 f(w's2)]| < [w = w|.
Furthermore, if w — f(w; z) is A-strongly convex and n < 1/L, then
l(w =0V i(ws2) = (W' =0V F(w2)) [P < (1= ) fw — W'
Let S® be defined by Eq. . Let {wti)} be produced by SGD w.r.t. S®).

Proof of Theorem[§ We build a recurrent formula on estimating ||[w4q — wgle Consider two cases

at the t-th iteration. If j; # i, then Lemma[I0] implies that
[Wes1 — W£21|| = H(Wt - Utvf(Wt;th)) - ( 2 ntVf(Wt $2j.) )H < flwe — i”H (6.1)
If j, = i, then |wi4q1 — w§21|| < ||wy —wgi) Il +2Gn;. We can combine the above two inequalities to get
Iweir — Wity |l < l[we = wi || + 2G Ty, =

We apply the above inequality recursively and get

t
Iwerr —wity | <260 Ty,
k=1

By the Lipschitz continuity, we know that SGD with T iterations is B-pointwise uniformly stable,
where 3; = 2G*n Zle Ijj,=i- It then follows that

7262 4Gn i(iﬂgk z]) ,

i=1 k=1
T n
2G? 2G™n 2G%n 2G? T77
DWEEE) W IMEELL) S S NS
i=1 k=1 k=1 i=1
where we have used Zi:l I}j,—q = 1 for any k. The proof is completed. O
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Proof of Theorem[9 Consider two cases at the ¢-th iteration. In the first case, assume j; # i. Then

the Lipschitz continuity of f implies that

7 7 3 2
[Wip1 — W§+)1||2 = ||(wi = meV f(w; 25,)) — (Wg ) Utvf(Wt( )?th))H
w12 = 2wy — Wi Y f(wii25,) = VAW 2,)) + 2V F(wis 23,) — Vw5212

< flwe — w2 + 4G22,

=i

where we have used the inequality (w; — wgi), Vf(wy; 25,) — Vf(wt 125,)) > 0 due to the convexity of

f. For the second case, assume j; = i. Then

HWt+1 - W§21||2 = H(Wt — eV f(wy; th)) - (ng) - Utvf(wgi)ﬂ;t))uz
= Iwe = wi [P 4 01V f(wis 23,) = VI 21 = 20w = wi Y f(wis 23,) = V(w3 25,))
< llwe = wi|* + 4620 + 4G [we —wi'|,

where we have used the Lipschitz continuity of f. We can combine the above two cases to get

[Werr — Wi < lwe — w22 + 4G%07 + 4G | we — wi” [T, —-

We apply the above inequality recursively and get

T
w1 — Wiy |2 < AGPPT +4Gn > [lwe — wi? [T,y

t=1
and therefore
T
Sup Wit — WT+1H2 < 402 2T+4G772 sup ||w th ||]I]t—z
5,80 127 8,80

where the supremum is taken over two neighboring datasets differing by the i-th example. Let
Briai =G sup [wris = wi, | (6.2)
5,5
Then we know SGD with T iterations is Bp41-pointwise uniformly stable in function values, where
Br41,; satisfies the following inequality

T

Br1,i < AGPT + 4Gy Z Beilljj, =) (6.3)

=1
Let At ; = maxg<¢ Bk,;. Then the above inequality implies that A%’i <AG*N*T+4G*nAr; Zthl Ipj, =i
Solving this quadratic inequality of A7, implies that

T
ATJ‘ < 2G277\/T + 4G277 Z H[jtzi]' (64)

t=1

We can plug the above bound back into Eq. (6.3]), and get

T t
B2y < AGYPT +4G% > Ty, (zczm/i +46% Y H[jk:i])

t=1 k=1
T T t
<AG*T +8G* S Vit _q + 16G*n? T gl —s
= nL+ n Z le=i] T n ZZ [Fe=i]*[jr=1]-
t=1 t=1 k=1
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It then follows that (37 Ijj,= = 1)

n n T t
16
> By SAGHPTn + ?G“nZ(T +1)2 16642 > DS T,y

=1 i=1 t=1 k=1

The proof is completed. O

Proof of Theorem[I0 It is clear that for any z, the function w — f(wy;2) is L-smooth. We now build
a recurrent formula on estimating ||wyy; — wgi)l |l. Consider two cases at the t-th iteration. In the first

case, assume j; # i. Then Lemma [I6] implies that

Iwerr = wi [l = [[(we =V F(wei2;,)) = (Wi =V f(wi?25,) || < (1= med/2)[[we — wi”|.

(6.5)
For the second case, assume j; = i. Then

Wi = wilyll = || (we = an(vvt;zjt)) — (W Vw52

<[ (we =V F(wis23,) = (Wi =V F w5 25)) |+ mel |V (w0l 25,) = O F(wi; 25|

= [[(we = mV f(we;25,)) — ( — Vw2, )| +Tht||V5(W,Ei);ij,) ve(wi; 2! 25,

< (1= mA/2)wi — wi || +2Gm, (6.6)

where we have used the Lipschitz continuity of /. We can combine Eq. (6.5) and Eq. to get
Wi = witsll < (1= mA/2)[we —wi || + 2GmiTj,—. (6.7)

We apply the above inequality recursively, and derive

T T
lwrsr —wil | <26 mly—g [ (1 —ner/2). (6.8)
t=1 t/'=t+4+1

Therefore, SGD is B-pointwise uniformly stable in function values, where

T T
B =2G*> “ndy,—g [[ (4 —ner/2). (6.9)
t=1 t'=t+1
It then follows that
n T T 2
~ Z B = (Zmﬂbt:z‘] [T 0 -ma/2)
i=1  t=1 t'=t+1
and
1 n 2G2 n T T T
EZ@ T Zntﬂ[jt=i] H (1=meA/2) = 7277:5211@ =i H (1—mA/2)
i=1 i=1 t=1 t=t+1 i= t'=t+1
9z I T a2 I T
:T i H (I—mA/2)=—+ (1_(1—7%)\/2)) H (1—7715')\/2)
t=1  t'=t+1 t=1 t'=t+1
4G? 4G> -
- Z( II -2 - H(l—w/z)) = (1-TIa-mv2),
nA
=1 t'=t+1 t'=t t=1
where we have used 7", Ijj,—; = 1 for any ¢ € [T']. The proof is completed. O
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s7 7. Conclusion

508 In this paper, we introduce the pointwise uniform stability to develop high-probability generaliza-
s0  tion bounds. The pointwise uniform stability considers the effect of changing each example in the
sio  dataset, which is weaker than the uniform stability. We first develop a moment bound for a sum-
su  mation of weakly-dependent vector-valued random variables, and apply it to develop bounds for the
sz generalization gap as measured by either function values or gradients. We improve the recently fast
si3  high-probability rates in [I8] by relaxing the requirement on strong convexity and Lipschitz continu-
sie ity, and improving the dependency on optimization errors. Finally, we apply our results to develop
sis improved generalization bounds for SGD.

s16 Our generalization bounds involve a factor of log(n) in front of (X 37 | Bg)%. A very interesting
si7 - question is to see whether this logarithmic factor can be removed. Indeed, if we can remove this

sis logarithmic factor, the resulting generalization bound would be optimal up to a constant factor. It is

s also interesting to apply the stability analysis to study SGD with functional data [, [16].
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s Appendix

s A. Useful Inequalities in Probability

s0 A.1. McDiarmid’s Inequality

530 We first consider Mcdiarmid’s inequality for real-valued functions of random variables, which follows

sn  from the standard tail-bound of McDiarmid’s inequality and Proposition 2.5.2 in [40].

52 Lemma A.1 (McDiarmid’s Inequality for Real-Valued Functions). Let Z1, ..., Z, be independent ran-

s3 dom variables, and f 1 Z™ — R such that the following inequality holds for anyi and 21, ..., 2;-1,2i41, -+, 2n
sup |f(21, s Zi1y Ziy Zidds e Zn) — J(Z1y ey i1y Zhy Zid 1y e e s zn)| < B;.

ZiyZ;

s Then for any p > 1 we have

[N

1£(Z0s 0 Z0) = B2, Za)], < (2030 62)
i=1
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535 Now we consider vector-valued functions of independent random variables. The following lemma

s gives the expected distance between f(Z1,...,Z,) and its expectation.
s Lemma A.2 ([31]). Let Z,...,Z, be independent random variables, and f : Z™ — H a function into
sis  a Hilbert space H such that the following inequality holds for any i and z1,...,2;—1,2i41, -+, 2n

fuf ||f Py ey Zi 1y Ziy Ziddy ooy Zn) — F(Z1s e ey 21y 2 Zit 1y s zn)H < B;. (A1)
s Then

E[||f(Z1,....Z0) = E[f(Z1,..., Zn)]||] < <Zﬁl‘2>§

540 The following lemma controls the p-norm for the vector-valued random variable f(Z1,...,%,) —

wi E[f(Z1s...,2Z0)].

s2  Lemma A.3 (McDiarmid’s Inequality for Vector-Valued Functions). Let assumptions in Lemma
ses hold. Then for any p > 1 we have

1
|z, 2) ~Elfz .zl < V2+D(p 25)2. (A2)
i=1
s Proof. We define a real-valued function g : Z” — R as

921,y 2n) = ||f(z1,,zn) —IE[f(Zl,...,Zn)]H.

sis  We first show this function satisfies the increment condition. Indeed, for any i and 21, ..., 2;—1, Zi+1, -+, 2n

s6  We have

/
(217...,Zi717zi7zi+17...,zn) —g(zl,...,zi,l,zi,zi+1,...,zn)|

o zn) =Bl (Zry o Z)l| = e 210 2 2t 20) —E[f(Zh...,Zn)]H‘

= sup
2i,2]

(Zla"’7zn) _f(zl7’"7Zi71>zzl‘7zi+l7~-‘>zn)

’
2%

se7  Therefore, we can apply Lemma [A71] to the real-valued function g and derive the following inequality
n 1
lozi,... 20 ~Elgzn, . 2| < (203 82)°
P i=1

ss  According to Lemma we know the following inequality ]E[g(Zl, cee Zn)} < (Z?Zl Bf)% We can

s0  combine the above two inequalities together and derive the stated inequality. O

sso A.2. Bernstein Inequality and Tails

551 The following lemma gives a Bernstein inequality to incorporate the variance information in bound-

52 ing a summation of independent random variables [9].
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Lemma A.4 (Bernstein inequality). Let {&(z;)}; be a sequence of independent and identically

distributed real-valued random variables and M be a constant such that €] < M and the variance

Var(€) < co. Then, for any 0 < § < 1 with probability at least 1 — § there holds

2M log 3 2Var(¢)log
+ .
3n n

1 n
E[¢] — — i) <
CEXEOE
The following lemma shows the relationship between tails and moments [6].

Lemma A.5. Let Y be a random variable. If Y|, < \/pa for any p > 2, then for any § € (0,1) with
probability at least 1 — §: |Y| < ear/log(e/d).

B. Self-Bounding Property

We present some useful self-bounding properties for functions of a composite structure in Assump-

tion[I}] The self-bounding property will be very important for our stability and generalization analysis.

Lemma B.1. Assume F(w) = L(w) + r(w), where L has (o, L, )-Hdlder continuous gradients and r

1s L,.-smooth. Then we have

L.(14a)ta

IVE(w)| < =
L5

(P(w) - F(w") Ly 2(1L+‘la) S (Fow) - F(w*))l%a.

Lemma B.2. Assume F(w) = L(w) + r(w), where L has («, Ly, )-Holder continuous gradients and r

is L.-smooth. If F' is nonnegative, then we have

L,.(1—|—o¢)1+%

[VE(w)| < 1
2LaT

1 Ly \T ., o
Fita 2( ) Fita .
(w) +2(2 (w)

Proof. If VF(w) = 0, the inequality holds immediately. Now we only consider the case that VF'(w) #
0. Since L has («, L,)-Holder continuous gradients, we know L(w') < L(w) + (w' — w,VL(w)) +

1L+"a||w — w/[|**Fe [3]. Since r is L,-smooth, we know r(w’) < r(w) + (w' — w,Vr(w)) + £ ||lw —

w'[|2 [26]. It then follows that

FW) £ F(w)+ (W = w, VE(w) + 72w = w5 S w (B)
We choose
w =w— A|VE(W)||T'VE(w), A:= (M) e
La
It then follows that
L,A?2 L[, Al*e
0< F(w') < F(w)— A|VF(w)| + +

2 14a

That is,

LA L,A®  F(w)
< .
IVRw)l < 2=+ 72+ =
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588

According to our construction of A, we further have

L. ((1+a)F(w)\ = L, /(14+a)F(w)\tta Lo, ™=
F < —|—— F —_
IVEMwI < 5 ( La ) + 1—|—a( La ) + (w)((1+a)F(w))
Ly (14 a)F(w)\ = Lo \Tis e
_7( L. ) +2(1+a> Frve (w).
The proof is completed. O

We now prove Lemma [B.I] as a direct corollary of Lemma [B:2]
Proof of Lemma[B.1, Define F : W — R as F(w) = F(w) — F(w*). It is clear that F(w) > 0 and

F(w) = L(w)+r(w), where L(w) = L(w)— F(w*) and L(w) has (o, Lo )-Hélder continuous gradients.
Therefore, we can apply Lemma to F and derive

IVE(w)|| < 5 (w).

1

L.(1 a ~ Lo \19s ~

L‘f‘)”plla(w)+ ( )* r
2Lé+a 1+«

The stated bound then follows directly. The proof is completed. O

The following lemma gives the self-bounding property for a nonnegative function with Holder

continuous gradients [35], 43].

Lemma B.3. Assume the map w — g(w) is nonnegative, and w — Vg(w) is (a, Ly)-Hélder contin-

uous with a € [0,1]. Let ¢, be defined in Eq. (3.9). Then

IVg(w)l2 < cag™= (w), Vw €W, (B.2)

C. Proof of Theorem [4]

Proof of Theorem[j) Let S = {z1,...,2,},5" = {7},...,2,},5" = {2{,...,2]/} be drawn indepen-

dently from p. For any i € [n] :={1,...,n}, define
9:(S) = E.. [EZ [((A(SD); Z)] — £(A(SD); zi)} :
where S is defined in Eq. (5.8). Due to the symmetry between S and S’, we have

Eo\=.[9:(S)] = Eo\=,Ex; [Ez [£(A(SD); 2)] — £(A(SD); 2)

= Eso [L(A(S))] — Ege [((A(SD); 20)] = Es[L(A(S))] — Es [((A(SD); 20)]. (C.1)

According to the definition of pointwise uniform stability, we know

’EZ [6(A(S); 2)] - % Ze(A(S); z;) — % Zgi(S)\

S|

N
Il
-

< ([0AGS ;2]

i

£ [(A(S): 2)] ~ Ber 5 [0(AGSD); 2)] | + - 3 |e(A(S); 20) B
i=1

n

} < %Zﬂz

i=1

U(A(S); 2:) = LA(SW); 21)

IN
S

&
Il
—

B [J0a9):2) — sy 2] + Ly m |
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ss0 It then follows that

[L(A(S)) — Ls(AS)) - = Y Esia 9]

[L0A(S)) = Ls(A(S) = 2 37 (Bsras(8)] - ai(9) + 0:(9))|

=1

IN

[LAS) - Ls(AS) - _angxsﬂ e Z (Es-.l0:(5)] - 9:(9) ) |

255+ S ns)| (C2)
n nle

s00  where we introduce

IN

hi(S) = gi(S) — Es\z,[9:(5)], Vi€ [n].

s We now show that the above h; satisfies the conditions in Theorem [I] According to the definition of

s hy, we know that
Eg\z; [1i(9)] = Es\2,[9:(9)] — Es\2,[9:(S)] = 0. (C.3)

s3It is clear that
E..[0:(5)] = B, [Exf[E2 [((A(SD); 2)] — (A(SD); )| | = E.; [E2 [6(A(SD); 2)] - Eo, [6(A(SD); )] | = 0.
se¢ 1t then follows that
E [hi(S)] = Ez [9:(5)] — Es\z, Bz, [9:(S)] = 0. (C.4)
sos  Finally, for any j € [n] with j # i, we have
‘hZ(S) — hi(Zl, sy Ri—1, Z}l, Zj41y-- ,Zn)‘ (C5)
= |(9:(8) = Es\2,19:(S)]) = (06(5)) = Espne,[oa(S)]) |
< [9:(S) = 6i(S))] + [Esve,9:(5)] = B loa(S))]

< |9:(S) = g:(S])| + Es\zEsi\z[9i(S) — 9i(S})

: (C.6)

s6  where
" " .
Sj :{Zl,...,Zj_l,Zj,Zj+1,...,Zn}, VI]E[TL]

so7 Note that

|gi(S) - gi(S;',”
= | (B [E2 [0(A(S): 2)] = €A(SD):2)] ) = Bay [B2 [1(A(SS); 2)] = (AGS("); )|

<

BBy [((A(SD); 2)] - B Ex[U(A(S"); 2)] j +

J )

E;[((A(SD); )] — Eo; [(A(SS"); 20)]

ss  Where Sj(-i) is defined in Eq. (5.10). We combine the above inequality and Eq. (C.6) together to get

|hz(5) —hi(21, 5 2521525, Zjg1s - - zn)| <465
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According to Eq. (C.3)), (C.4) and the above inequality, the conditions of Theorem hold with M = 0.

Therefore, we can apply Theorem [1| to derive the following inequality
n n 1
> hi(S)| S plogan(nd 52)".
i=1 i=1
It then follows the following inequality with probability at least 1 — 6/2
n n 1
> ni)]| 5 (nY282) 10gnlog(1/).
i=1 i=1

The above inequality together with Eq. (C.1)), (C.2) gives the following inequality with probability at
least 1 —§/2

‘L(A(S))—LS(A(S))—]ES Z]ES<> ASD); 2)]

n

=\L(A(S))—Ls(A(S))—%ZEm [9:(S \ ZBZ (ﬁZﬁ?)ilognlog(l/d). (C.7)
=1

i=1

We have the following identity
1 « ,
L(A(S))~Ls(A(S) ~L(w )+ Ls(w") = (L(A(8)~Ls(A(S)~Es[LAS)+ DB [(AS):20)])

+ (ESIL(A(S)) - Lw') = - Y Esr [HAGS)520)] + Ls(w")). (C8)

The first term can be controlled by Eq. (C.7) and the identity Egq) [((A(S™); z;)] = Eg [L(A(S"); 2)].

We now control the second term by Bernstein’s inequality. To this aim, we introduce £(z) = Eg/ [((A(S"); 2)| -

£(w*; z). Due to the symmetry between S and S, we further get
Es[L(A(S))] - - Z Eg [((A(S"); 2:)] + Ls(w")

1
= Es/[L(A(S)] = L(w) - ~ ZES/ 121)] + Lo (w") = Bz[€(2)] - - 3 &(=0).
We can control the variance of ¢ as follows

Var(6(2)) = By [ (Es [(A(S): 2)] — " 2)) | - (B2 [Bs [004(8); 2)] ~ w5 2)])
= B[ (Bs[0(A(S): 2)] — 6w 2)) | — (Bs[L(A(S))] - Liw")) .
where we have used the symmetry between S and S’. According to Bernstein’s inequality (Lemma

1A 4)), the following inequality holds with probability at least 1 — §/2

N 725 Zz =~ 2M10g5 + (20—Alog(2/(5)>%

n

We can plug the above inequality and Eq. into Eq. (C.8), and derive the following inequality
with probability at least 1 — §

L(A(S)) — Ls(A(S)) = L(wW") + Ls(w ( 262)% lognlog(1/8) + Ml;)g% + (Ui 10g(1/5))%.

n

The proof is completed by noting the structure of f. 0
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s D. Proof of Lemma [5]
ais  Proof of Lemma[j We first prove Eq. (3.10). Since F' is A-strongly convex, we know
F(A(S)) = F(w*) = A A(S) — w*|]?/2. (D.1)

s According to the definition of 6%, we know 0 < Ez[(Es[€(A(S); Z)] —(w*; Z))2}. Since £ is convex,

617 W€ know
[U(A(S); Z) — t(w™; Z2)| < [|A(S) — w* || max { || VL(A(S); Z2)]|, | Ve(w™; Z2)][}-
eis It then follows from Eq. that
. *, 2 * (|2 . 2 *, 2
(Es[e(A(); 2)] - tw*; 2)) " < Es[IA(S) — w*|2|Es [max {|VLA(S); 2)|I%, [V e(w"; Z)|2}]
< AEs[|A(S) — w*[|*Es [ max {£355 (A(S); 2), (7%= (w*; 2) }].
s0 Therefore, we have
0% < RES[|A(S) — w*[|*|Es,z [ max {£775 (A(S); Z), 075 (w*; Z) }].

s20 Eq. (3.10) then follows by combining the above inequality and Eq. (D.1]) together.
621 We now turn to Eq. (3.12) on generalization bounds in expectation. We first study the generaliza-
2 tion error for the algorithm Ae. By the definition Fyg, S, 5@, we get

F(Ae(8D);2:) = nFs(Ae(S1) = nFgi (Ae(S) + f(Ae(S); 7).
@3 By symmetry on z; and z;, we get E[f(Ae(S™); 2))| =E[f(Ae(S); 2:)], E[Fse) (Ae(SD))] =E[Fs(Ae(S))] and
E[£(Ae(S9);2:)= f(Ae(S): 2.)] = nE[F5(Ae(SD))=Fsio (Ae(SD))] = nE|Fs(Ae(S))~Fs(Ae(S))] -

s Since Fg is A-strongly convex, we further know Fig(Ae(S®))—Fs(Ae(S)) < [|[VEs(Ae(S™))[2/(2)) [26].

65 We can combine the above two inequalities to get
. n .
E[f(Ae(SW):2:) = f(Ac(S):2:)] < 5y E[|[VFs(Ae(S™))]%]. (D.2)
es The definition of Ae(S®) implies VFgu) (Ae(S™)) = 0, and
y))2] = (y) _ 1 @y gy 4 G
E[IIVFs(Ae(SD)12] = E[|[VFsi0 (4e(87)) = ~VF(Ae(D):2) + ~V f(Ae(s);2) | ]

2} _ %E[HVf(AQ(S);Zi) — Vf(Ae(S); )

]
)
s where the last step is due to the symmetry between z; and z,. We can combine the above inequality

ws and Eq (D.2) together to derive

1 ) .
= —E[|V/(4e(59):2)) - V#(Ae(S); )

n

E[F(Ae(S)) — Fs(4e(S))] = % Y E[f(Ae(8D);2:) — f(Ae(S);24)]
i=1
<o ;E[HVf(Ae(S);zi) Ve ]. 03
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640

where we have used E[F(A4e(9))] = E[F(Ae(S™W))] = E[f(Ae(S¥);2;)]. By the structure of f, we get
|V#(Ae(S)i2) = V(Ae(9):2) (8);) - Ve(Ae(S): )|

< 2| VE(Ae(S); zi)||* + 2| VE(Ae(S); z)||* < 2035%(1‘1&5);%) + QCif%(Ae(SﬁZ;)-

It then follows that

2 2 2a
Ca Zwa Ae(S); ) + ; Zem(Ae(S);zg).

i=1

—Z |V F(Ae(8);:) ~ T (Ae(S)

We can use the above inequality, the concavity of the function x — zTe and Eq. (D.3) to derive
2 2a
B[P (4e(S) - F(Ae(S))] < B[ LI (40(9)) + LI (40(5)] < 2 B[LFF (Ae(S)4L7 (4e(5))]

nA
(D.4)
By Eq. and the Cauchy-Schwartz’s inequality, we know
B[(A(S) - Ae(S), VF(4e(5))] < 1 (E[IA(S) ~ 4e($)|))” (B[ (F(ae(5)) ~ Fw)) 7).
Since E[Fs(A4e(S))] < F(w*), we can plug the above inequality back into Eq. (5.13)), and derive
E[F(A(S)) ~ F(4e(9))] < C1 (E[IAS) ~ 4e(9)])) ((B[F(4e()) — Fs(ae(s)]) )"

LoE[||[A(S) — Ae(S)['F*] | LE[JA(S) — Ae(S)]1?]
+ 1+« + 2 ’

where we have used the concavity of = +— 27¥% and the Jensen’s inequality. We can plug Eq. (D.4))
and Eq. (5.14)) into the above inequality to show

LaB{(2A (F5(A(S) = Fs(Ae(5))) "] | LE[Fs(A(S)) — Fs(Ac(S))
1+« A

+C1 (20 EIFS(A(S)) - Fs(4e(9))]) (%E[LST (Ae(S)) + L%(Ads))})ﬁ.

E[F(A(S))—F(4e(9))] <

S

According to Eq. (D.4)), the concavity of the function x 275" and the decomposition
E[F(A(S)) — Fs(4e(S))] = E[F(A(S)) — F(Ae(S))] + E[F(Ae(S)) — Fs(Ae(S))],

we further get

1+a

27La 1ta 2a 1 _a
E[F(A(S)) — Fs(Ae(9))] < 1: AVE 4 LAy + V201 AV 4 2V,
1+O¢ 2o
\[Clc V20 ed o
A s (YO g,
7(1+O[ + 1+ ) A + A+ 1—|—O{ +Co¢ V)\
1o —a_lta o+l
where we have used the Young’s inequality A2V ™ < HQVH“ “ 4+ mAAQ . The proof is com-
pleted by noting E[Fs(Ae(S5))] < E[Fs(w*)] = F(w*) and
1*”‘ l+a 1+a
¢ = max{ =+ V20iea™ , Ly, V20 4 ci} (D.5)
14+« 14+« 14+«
The proof is completed. O
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