
Minibatch and Local SGD: Algorithmic Stability and Linear Speedup
in Generalization

Yunwen Leia,∗, Tao Sunb, Mingrui Liuc

aDepartment of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong, China
bCollege of Computer, National University of Defense Technology, Changsha, China

cDepartment of Computer Science, George Mason University, Fairfax, USA

Abstract

The increasing scale of data propels the popularity of leveraging parallelism to speed up the optimiza-

tion. Minibatch stochastic gradient descent (minibatch SGD) and local SGD are two popular methods

for parallel optimization. The existing theoretical studies show a linear speedup of these methods

with respect to the number of machines, which, however, is measured by optimization errors in a

multi-pass setting. As a comparison, the stability and generalization of these methods are much less

studied. In this paper, we study the stability and generalization analysis of minibatch and local SGD to

understand their learnability by introducing an expectation-variance decomposition. We incorporate

training errors into the stability analysis, which shows how small training errors help generalization

for overparameterized models. We show minibatch and local SGD achieve a linear speedup to attain

the optimal risk bounds.
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1. Introduction1

Modern machine learning often comes along with models and datasets of massive scale (e.g., millions2

or billions of parameters over enormous training datasets) [52, 28, 38, 22], which renders the training3

with sequential algorithms impractical for large-scale data analysis. To speed up the computation, it4

is appealing to develop learning schemes that can leverage parallelism to reduce the amount of time in5

the training stage [44]. First-order stochastic optimization is especially attractive for parallelism since6

the gradient computation is easy to parallelize across multiple computation devices [38, 27, 45]. For7

distributed optimization, communication has been reported to be a major bottleneck for large-scale8

applications [41]. Therefore, increasing the computation to communication ratio is a major concern in9

developing parallelizable optimization algorithms.10

A simple stochastic first-order method is the minibatch stochastic gradient descent (minibatch11

SGD) [38, 12, 11, 28, 47], where the update at each round is performed based on an average of12
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gradients over several training examples rather than a single example. Using a minibatch helps in13

reducing the variance, and therefore accelerates the optimization. The computation over a minibatch14

of size b can be distributed over M machines, where each machine computes a minibatch of size15

K = b/M before communication. This increases the computation to communication ratio. Due to its16

simplicity, minibatch SGD has found successful applications in a variety of settings [45, 38].17

An orthogonal approach to increase the computation to communication ratio is the local SGD [32,18

41, 50]. For local SGD with M machines, we divide the implementation into R rounds. At each round,19

each machine conducts SGD independently in K iterations, after which an average over M machines is20

taken to get a consensus point. Unlike minibatch SGD, local SGD is constantly improving its behavior21

even when the machines are not communicating with each other. Due to this appealing property, local22

SGD has been widely deployed in many applications [32].23

The promising applications of minibatch SGD and local SGD motivate a lot of theoretical work to24

understand the performance of these methods. A linear speedup with respect to (w.r.t.) the batch size25

was established for minibatch SGD in both online [12] and stochastic setting [38, 11], which is further26

extended to its accelerated variants [12, 45]. The analysis for local SGD is more challenging. A linear27

speedup w.r.t. the number of machines was developed for local SGD with strongly convex [41] and28

convex problems [44, 21]. These results on linear speedup build the theoretical foundation for using29

the parallelism to reduce the computation for large-scale problems.30

The above results on linear speedup are obtained for optimization errors in a multi-pass setting, i.e.,31

the performance of models on training examples. However, in machine learning we care more about the32

generalization behavior of these models on testing examples, which have been scarcely touched for both33

minibatch and local SGD with multi-passes over the data. To our knowledge, other than regression34

with the specific least squares loss [35, 6, 29, 17], there is no generalization analysis of minibatch and35

local SGD that shows a linear speedup measured by testing errors. In this paper, we conduct the36

generalization analysis of minibatch and local SGD based on the concept of algorithmic stability [4].37

Our aim is to show the linear speedup observed in optimization errors also holds for testing errors.38

Our main contributions are summarized as follows.39

1. We develop stability bounds of minibatch SGD for convex, strongly convex, and nonconvex problems.40

Our stability bounds incorporate the property of small training errors, which are often the case for41

overparamterized models. For strongly convex problems, we develop stability bounds independent of42

the iteration number, which is also novel for the vanilla SGD in the sense of removing the Lipschitz43

continuity assumption. Based on these stability bounds, we further develop optimistic bounds on44

excess population risks which imply fast rates under a low noise condition.45

2. We develop stability bounds of local SGD for both convex and strongly convex problems, based on46

which we develop excess risk bounds. This gives the first stability and generalization bounds for local47

SGD.48

3. Our risk bounds for both minibatch SGD and local SGD are optimal. For convex problems our49
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bounds are of the order O(1/
√
n), while for µ-strongly convex problems our bounds are of the order50

O(1/(nµ)), where n is the sample size. These match the existing minimax lower bounds for the51

statistical guarantees [1]. Furthermore, we show that minibatch SGD achieves a linear speedup w.r.t.52

the batch size, and local SGD achieves a linear speedup w.r.t. the number of machines. To our53

knowledge, these are the first linear speedup for minibatch and local SGD in generalization for general54

problems in the multi-pass setting.55

To achieve these results, we develop techniques by introducing the expectation-variance decom-56

position and self-bounding property [24, 25] into the stability analysis based on a reformulation of57

minibatch SGD with binomial variables [14]. Indeed, the existing stability analysis of the vanilla58

SGD [18, 24, 25] does not apply to minibatch SGD. Furthermore, even with our formulation, the59

techniques in [25] would imply suboptimal stability bounds.60

The paper is organized as follows. We survey the related work in Section 2, and formulate the61

problem in Section 3. We study the stability and generalization for minibatch SGD in Section 4, and62

extend these discussions to local SGD in Section 5. We present the proof of minibatch SGD in Section63

6 and the proof of local SGD in Section 7. We conclude the paper in Section 8.64

2. Related Work65

In this section, we survey the related work on algorithmic stability, minibatch and local SGD.66

Algorithmic stability. As a fundamental concept in statistical learning theory (SLT), algorithmic67

stability measures the sensitivity of an algorithm w.r.t. the perturbation of a training dataset. Var-68

ious concepts of stability have been introduced into the literature, including uniform stability [4],69

hypothesis stability [4], on-average stability [37, 24] and on-average model stability [25]. One of70

the most widely used stability concept is the uniform stability, which can imply almost optimal71

high-probability bounds [14, 5, 13]. Stability has found wide applications in stochastic optimiza-72

tion [18, 25, 24, 7, 34, 43, 10, 9]. An important property of the stability analysis is that it considers73

only the particular model produced by the algorithm, and therefore can use the property of the learn-74

ing algorithm to imply capacity-independent generalization bounds. Lower bounds on the stability of75

gradient methods also draw increasing attention [3, 23].76

Minibatch algorithm. Minibatch algorithms are efficient in speeding up optimization for smooth77

problems. Shamir and Srebro [38] showed that minibatch distributed optimization can attain a linear78

speedup w.r.t. the batch size, which was also observed for general algorithms in an online learning79

setting [12]. These results were improved in [11], where the convergence rates involve the training error80

of the best model and would decay fast in an interpolation setting. The above speedup was derived81

if the batch size is not large. Indeed, a large batch size may negatively affect the performance of the82

algorithm [20, 31]. Minibatch stochastic approximation methods were studied for stochastic composite83

optimization problems [15] and nonconvex problems [16]. Recently, minibatch algorithms have been84
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shown to be immune to the heterogeneity of the problem [45]. For problems with nonsmooth loss85

functions, minibatch algorithms do not get any speedup [38].86

Local SGD. Local SGD, also known as “parallel SGD” or “federated averaging”, is widely used87

to solve large-scale convex and nonconvex optimization problems [32]. A linear speedup in the number88

(M) of machines was obtained for local SGD on strongly convex problems [41]. The key observation is89

that local SGD can roughly yield a reduction in the variance by a factor of M . Despite its promising90

performance in practice, the theoretical guarantees on convergence rates are still a bit weak and are91

often dominated by minibatch SGD. Indeed, initial analysis of local SGD failed to derive a convergence92

rate matching minibatch SGD’s performance, due to an additional term proportional to the dispersion93

of the individual machine’s iterates for local SGD [44]. For example, the work [44] also presented a lower94

bound on the performance of local SGD that is worse than the minibatch SGD guarantee in a certain95

regime, showing that local SGD does not dominate minibatch SGD. Until recently, the guarantees96

better than minibatch SGD were obtained under some cases (e.g., case with rare communication) [44,97

21, 39]. These discussions impose different assumptions: Woodworth et al. [44] imposed a bounded98

variance assumption, while Khaled et al. [21] considered an almost sure smoothness assumption without99

the bounded variance assumption. These results were extended to a heterogeneous distributed learning100

setting [21, 45], for which heterogeneity was shown to be particularly problematic for local SGD. A101

linear speedup w.r.t. M was also observed for nonconvex loss functions under a more restrictive102

constraint on the synchronization delay than that in the convex case [49]. Lower bounds of local SGD103

were established [44]. Generalization bounds of federated learning were recently studied based on104

Rademacher complexity [33] and stability [42, 8].105

The above results on the linear speedup for minibatch and local SGD were obtained for optimization106

errors, which is the focus of the paper. The benefit of minibatch in generalization was studied for SGD107

with the square loss function [35, 29, 6]. These discussions use the analytic representation of iterators108

in terms of integral operators, which do not apply to general problems considered here.109

3. Problem Setup110

Let ρ be a probability measure defined on a sample space Z, from which we independently draw a111

dataset S = {z1, . . . , zn} ⊂ Z of n examples. Based on S, we wish to learn a model w in a model space112

W = Rd for prediction, where d ∈ N is the dimension. The performance of w on a single example113

z ∈ Z can be measured by a nonnegative loss function f(w; z). The empirical behavior of w can be114

quantified by the empirical risk FS(w) := 1
n

∑n
i=1 f(w; zi). Usually, we apply a randomized algorithm115

A to minimize FS over W to get a model A(S). Then an algorithm can be considered as a map from the116

set of samples to W, i.e., A : ∪∞
n=1Zn 7→ W. A good behavior on training examples does not necessarily117

mean a good behavior on testing examples, which is the quantity of real interest in machine learning118

and can be quantified by the population risk F (w) := EZ [f(w;Z)]. Here EZ [·] denotes the expectation119

w.r.t. Z. In this paper, we study the excess population risk of a model w defined by F (w) − F (w∗),120
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which measures the suboptimality as compared to the best model w∗ = arg minw∈W F (w). Our basic121

strategy is to use the following error decomposition122

ES,A

[
F (A(S)) − F (w∗)

]
= ES,A

[
F (A(S)) − FS(A(S))

]
+ ES,A

[
FS(A(S)) − FS(w∗)

]
, (3.1)

where we have used the identity ES,A[FS(w∗)] = F (w∗) and ES,A[·] denotes the expectation w.r.t. S123

and A. We refer to the first term E
[
F (A(S)) − FS(A(S))

]
as the generalization error (generalization124

gap), which measures the discrepancy between training and testing at the output model A(S). We call125

the second term E
[
FS(A(S)) − FS(w∗)

]
the optimization error, which measures the suboptimality in126

terms of the empirical risk. One can control the optimization error by tools in optimization theory.127

As a comparison, there is little work on the generalization error of minibatch SGD and local SGD in128

the multi-pass setting, the key challenge of which is the dependency of A(S) on S.129

In this paper, we will use a specific algorithmic stability —on-average model stability— to address130

the generalization error. We use ∥ · ∥2 to denote the Euclidean norm. We denote S ∼ S′ if S and S′
131

differ by at most a single example.132

Definition 1 (Uniform Stability). Let ϵ > 0. We say a randomized algorithm A is ϵ-uniformly stable133

if supS∼S′,z EA[|f(A(S); z) − f(A(S′); z)|] ≤ ϵ.134

Definition 2 (On-average Model Stability [25]). Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be drawn135

independently from ρ. For any i ∈ [n] := {1, . . . , n}, define S(i) = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn} as the136

set formed from S by replacing the i-th element with z′i. Let ϵ > 0. We say a randomized algorithm137

A is ℓ1 on-average model ϵ-stable if ES,S′,A

[
1
n

∑n
i=1 ∥A(S) − A(S(i))∥2

]
≤ ϵ, and ℓ2 on-average model138

ϵ-stable if ES,S′,A

[
1
n

∑n
i=1 ∥A(S) −A(S(i))∥22

]
≤ ϵ2.139

According to the above definition, on-average model stability considers the perturbation of each sin-140

gle example, and measures how these perturbations would affect the output models on average. Lemma141

1 gives a quantitative connection between the generalization error and on-average model stability. We142

first introduce some necessary definitions. We use ∇g to denote the gradient of g.143

Definition 3. Let g : W 7→ R, G,L > 0 and µ ≥ 0.144

1. We say g is G-Lipschitz continuous if |g(w) − g(w′)| ≤ G∥w −w′∥2 for all w,w′ ∈ W.145

2. We say g is L-smooth if ∥∇g(w) −∇g(w′)∥2 ≤ L∥w −w′∥2 for all w,w′ ∈ W.146

3. We say g is µ-strongly convex if g(w) ≥ g(w′) + ⟨w−w′,∇g(w′)⟩+ µ
2 ∥w−w′∥22 for all w,w′ ∈ W.147

We say g is convex if it is µ-strongly convex with µ = 0.148

A non-negative and L-smooth function g enjoys the self-bounding property, meaning ∥∇g(w)∥22 ≤149

2Lg(w) [40]. Examples of smooth and convex loss functions include the logistic loss, least square loss150

and Huber loss. Examples of Lipschitz and convex loss functions include the hinge loss, logistic loss151

and Huber loss.152
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Lemma 1 ([25]). Let S, S′ and S(i) be constructed as in Definition 2, and γ > 0.153

(a) Suppose for any z, the function w 7→ f(w; z) is convex. If A is ℓ1 on-average model ϵ-stable and154

supz ∥∇f(A(S); z)∥2 ≤ G for any S, then
∣∣ES,A

[
FS(A(S)) − F (A(S))

]∣∣ ≤ Gϵ.155

(b) Suppose for any z, the function w 7→ f(w; z) is nonnegative and L-smooth. If A is ℓ2 on-average156

model ϵ-stable, then the following inequality holds157

ES,A

[
F (A(S)) − FS(A(S))

]
≤ L

γ
ES,A

[
FS(A(S))

]
+

L + γ

2n

n∑
i=1

ES,S′,A

[
∥A(S(i)) −A(S)∥22

]
.

Part (a) gives the connection between generalization and ℓ1 on-average model stability under a158

convexity condition, while Part (b) relates generalization to ℓ2 on-average model stability under a159

smoothness condition (without a Lipschitzness condition). Note Part (a) differs slightly from that in160

[25] by replacing the Lipschitz condition with a convexity condition and supz ∥∇f(A(S); z)∥2 ≤ G.161

However, the analysis is almost identical and we omit the proof. An advantage of ℓ2 on-average model162

stability is that the upper bound involves the training errors, and improves if FS(A(S)) is small.163

4. Generalization of Minibatch SGD164

In this section, we consider the minibatch SGD for convex, strongly convex and nonconvex problems.165

Minibatch SGD is implemented in several rounds/iterations. Let w1 ∈ W be an initial point. At the166

t-th round, minibatch SGD randomly draws (with replacement) b numbers it,1, . . . , it,b independently167

from the uniform distribution over [n], where b ∈ [n] is the batch size. Then it updates {wt} by168

(t ∈ [R] = {1, 2, . . . , R})169

wt+1 = wt −
ηt
b

b∑
j=1

∇f(wt; zit,j ), (4.1)

where {ηt} is a positive step size sequence. If b = 1, then Eq. (4.1) recovers the vanilla SGD. If b = n,170

the above scheme is still different from gradient descent since we consider selection with replacement.171

For simplicity, we always assume b ≥ 2. We summarize the results of minibatch SGD in Table 1.172

4.1. Convex Case173

We first present stability bounds to be proved in Section 6.1. Eq. (4.2) considers the ℓ1 on-average174

model stability, while Eq. (4.3) considers the ℓ2 on-average model stability. An advantage of the175

analysis with ℓ2 on-average model stability over ℓ1 on-average model stability is that it can imply176

generalization bounds without a Lipschitzness condition. We denote A ≲ B if there exists a universal177

constant C such that A ≤ CB. We denote A ≳ B if there exists a universal constant C such that178

A ≥ CB. We denote A ≍ B if A ≲ B and A ≳ B.179

Theorem 2 (Stability Bounds for Minibatch SGD: Convex Case). Assume for all z ∈ Z, the map180

w 7→ f(w; z) is nonnegative, convex and L-smooth. Let S, S′ and S(m) be given in Definition 2. Let181
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Table 1: Excess population risks of Minibatch SGD for convex, strongly convex and gradient-dominated problems. We

consider smooth problems and only show the dependency on n, b, µ and F (w∗). The column “Risk” denotes the excess

population risk, the column “R” denotes the number of iterations, the column “Constraint” indicates the constraint on

the batch size b and the column “Optimal R” is derived by putting the largest b in R. We achieve a linear speedup w.r.t.

the batch size for convex, strongly convex and nonconvex problems (PL condition is defined in Eq. (4.7)). For convex

problems, we derive optimistic bounds which improve to O(n−1) in a low noise case, i.e., F (w∗) < n−1.

Assumption Risk R Constraint Optimal R

convex
F (w∗) ≥ 1/n

√
F (w∗)/n n/b b ≤

√
nF (w∗)

2L

√
n√

F (w∗)

F (w∗) < 1/n 1
n n — n

µ-strongly convex 1/(nµ) max{n/b, µ−1 log n} — µ−1 log n

µ-PL condition 1/(nµ) n/(bµ2) b ≤
√
n/µ µ−1 log n

{wt} and {w(m)
t } be produced by (4.1) with ηt ≤ 2/L based on S and S(m), respectively. Then182

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤

t∑
k=1

2ηk
√

2LE[FS(wk)]

n
(4.2)

and183

1

n

n∑
m=1

E
[
∥wt+1 −w

(m)
t+1∥22

]
≤ 16L

nb

t∑
k=1

η2kE
[
FS(wk)] +

8

n3

n∑
m=1

E
[( t∑

k=1

ηk∥∇f(wk; zm)∥2
)2]

. (4.3)

Remark 1 (Explanation and comparison). A property of these stability bounds is that they involve the184

empirical risks of wk, which would be small since we are minimizing the empirical risk by stochastic185

optimization algorithms. Similar stability bounds involving FS(wk) were developed for the vanilla186

SGD [25]. Their argument needs to distinguish two cases according to whether the algorithm chooses187

a particular example at each iteration. This argument does not work for the minibatch SGD since188

we draw b examples per iteration, and we can draw the particular example several times. We bypass189

this difficulty by introducing the expectation-variance decomposition and self-bounding property into190

the stability analysis based on a reformulation of minibatch SGD [24, 25, 14]. We refer the readers to191

Remark 8 for the detailed discussions on the novelty of our analysis.192

The stability of minibatch SGD with ηt = η has also been studied recently [47, 2]. The discussions in193

Theorem 9 in [47] give a stability bound of the order O(ηt/n+γηt), where γ = Pr{infw,w′ B̄S(w,w′) <194

(b− 1)/(2/(Lη) − n/(n− 1))} and B̄S(w,w′) is a measure on the gradient diversity defined below195

B̄S(w,w′) :=
n
∑n

i=1 ∥∇f(w; zi) −∇f(w′; zi)∥22
∥
∑n

i=1(∇f(w; zi) −∇f(w′; zi))∥22
.

If γ is not very small, their stability bounds would be vacuous due to the term γηt. The stability bound196

order O(ηt/n) was developed in [2]. These discussions require f to be convex, smooth and Lipschitz197

continuous. Furthermore, these discussions do not incorporate training errors into the stability bounds,198
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and cannot imply optimistic bounds. We remove the Lipschitz condition in our analysis and obtain199

optimistic bounds.200

We plug the stability bounds in Theorem 2 into Lemma 1 to control generalization errors, which201

together with the optimization error bounds in Lemma 15, implies the following excess risk bounds. It202

should be noted that we do not require the function f to be Lipschitz continuous. The proof is given203

in Section 6.2.204

Theorem 3 (Risk Bounds for Minibatch SGD: Convex Case). Assume for all z ∈ Z, the function205

w 7→ f(w; z) is nonnegative, convex and L-smooth. Let {wt} be produced by (4.1) with ηt = η ≤206

1/(2L). Then the following inequality holds for w̄R := 1
R

∑R
t=1 wt and any γ > 0207

E[F (w̄R)]−F (w∗) ≲
ηLF (w∗)

b
+
∥w∗∥22
ηR

+ L
(
F (w∗)+

∥w∗∥22
ηR

)( 1

γ
+ (L+γ)η2

( R

nb
+
R2

n2

))
.

Note the above excess risk bounds involve F (w∗) and would improve if F (w∗) is small, which is208

true in many learning problems. The terms involving F (w∗) also correspond to gradient noise since209

the variance of gradients can be bounded by function values according to the self-bounding property210

of smooth functions. The risk bounds of this type are called optimistic bounds in the literature [40].211

As a corollary, we develop explicit excess risk bounds by choosing suitable step sizes and number of212

rounds, using the idea of early-stopping [46]. Note the step size depends on F (w∗) which is unknown213

to us. However, this is not a big issue since we can choose step sizes independent of F (w∗) to derive214

bounds of the same order of n but worse order of F (w∗). It shows that minibatch SGD can achieve the215

excess risk bounds of the order
√
F (w∗)/n if F (w∗) ≥ 1/n, and can imply much better error bounds216

of the order 1/n if F (w∗) < 1/n. The proof is given in Section 6.2.217

Corollary 4. Let assumptions in Theorem 3 hold and η = min
{ ∥w∗∥2b√

LnF (w∗)
, 1
2L

}
.218

1. If F (w∗) ≥ 4Lb2∥w∗∥22/n, we can take R ≍ n
b to derive E[F (w̄R)] − F (w∗) ≲ (LF (w∗))

1
2 ∥w∗∥2√
n

.219

2. If F (w∗) ≤ 4Lb2∥w∗∥22/n, we take R ≍ n to get E[F (w̄R)] ≲ F (w∗) +
L∥w∗∥2

2

n .220

Remark 2 (Linear speedup). We now give some explanations on linear speedup. For the case221

F (w∗) ≳ 1/n, a larger batch size allows for a larger step size, which further decreases the number222

R of rounds. It shows that minibatch SGD achieves a linear speedup if the batch size is not large, i.e.,223

it only requires O(n/b) rounds to achieve the excess risk bound O(n− 1
2 ) if b ≲

√
nF (w∗)/(

√
L∥w∗∥2).224

Such a linear speedup was observed for optimization errors for multi-pass SGD [11]. Indeed, it225

was shown that minibatch SGD requires O(n/b) rounds to achieve the optimization error bounds226

E[FS(w̄R)] − FS(w∗) ≲
√
FS(w∗)/n if b ≲

√
nF (w∗)/(

√
L∥w∗∥2). We extend the existing optimiza-227

tion error analysis to generalization, and develop the first linear speedup of the minibatch multi-pass228

SGD as measured by risks for general convex problems. In particular, our regime b ≲
√

nF (w∗)229

for linear speedup in generalization matches the regime b ≲
√
nFS(w∗) for the linear speedup in230

optimization [11].231
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For the case F (w∗) ≲ 1/n, Corollary 4 shows that a larger batch size does not bring any gain in232

speeding up the risk bounds. The underlying reason is that the variance is already very small in this233

case, and a further reduction of variance by minibatch does not bring essential benefits in the learning234

process.235

4.2. Strongly Convex Case236

We now consider strongly convex problems. Theorem 5 gives stability bounds, while Theorem 6237

gives excess population risk bounds. The proofs are given in Section 6.3.238

Theorem 5 (Stability Bounds for Minibatch SGD: Strongly Convex Case). Assume for all z ∈ Z, the239

map w 7→ f(w; z) is nonnegative, µ-strongly convex and L-smooth. Let S, S′ and S(m) be constructed240

as in Definition 2. Let {wt} and {w(m)
t } be produced by (4.1) based on S and S(m), respectively. Then241

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

√
2L

n

t∑
k=1

ηk
√
E[FS(wk)]

t∏
k′=k+1

(1 − µηk′/2), (4.4)

242

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≲ 1/(nµ), (4.5)

243

1

n

n∑
m=1

E
[
∥wt+1 −w

(m)
t+1∥22

]
≤

t∑
k=1

(16Lη2k
nb

+
32Lηk
n2µ

)
E[FS(wk)]

t∏
k′=k+1

(1 − µηk′/2). (4.6)

Remark 3 (Explanation). Eq. (4.4) and Eq. (4.5) consider the ℓ1 on-average stability. The former244

involves the empirical risks in the upper bound and therefore can benefit from small empirical risks,245

while the latter shows minibatch SGD is always stable in the strongly convex case, no matter how246

many iterations it takes. Eq. (4.5) is also new in the vanilla SGD case with b = 1. Indeed, the work247

[18] also derived the iteration-independent stability bound O(1/nµ). However, their discussion requires248

the function f to be strongly-convex, smooth and Lipschitz. We show that the Lipschitz condition249

can be removed without affecting the stability bounds. Eq. (4.6) addresses the ℓ2 on-average stability,250

which shows that increasing the batch size is beneficial to stability.251

Theorem 6 (Risk Bounds for Minibatch SGD: Strongly Convex Case). Let assumptions in Theorem252

5 hold and assume supz ∥∇f(A(S); z)∥2 ≤ G. Let σ2
∗ = Eit [∥∇f(w∗; zit)∥22]. If R ≥ L

µ log nL
G and253

b ≥ nσ2
∗/(GR), then we can find appropriate step size sequences and an average ŵR of {wt}Rt=1 such254

that E[F (ŵR)] − F (w∗) ≲ G/(nµ).255

Note that the assumption supz ∥∇f(A(S); z)∥2 ≤ G is much milder than the Lipschitz condition256

since it only requires a bound of the gradient on the output model, which can be achieved by a257

projection to the final output. To obtain the excess population risk bounds of the order O(G/(nµ)),258

we require R = max{nσ2
∗

Gb ,
L
µ log nL

G }. Then, if b ≲ nµσ2
∗/(GL log(nL/G)), we know L

µ log nL
G ≲ nσ2

∗
Gb259

and choose R ≍ nσ2
∗

Gb to obtain a linear speedup w.r.t. the batch size.260

9



4.3. Nonconvex Case261

In this subsection, we consider minibatch SGD for nonconvex problems. The following theorem262

presents the stability bounds for smooth problems without the convexity and Lipschitzness assumption.263

The proof is given in Section 6.4.264

Theorem 7. Assume for all z ∈ Z, the map w 7→ f(w; z) is nonnegative and L-smooth. Let S, S′
265

and S(m) be given in Definition 2. Let {wt} and {w(m)
t } be produced by (4.1) with ηt ≤ 2/L based on266

S and S(m), respectively. Then267

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

√
2L

n

t∑
k=1

ηkE
[√

FS(wk)
] t∏
k′=k+1

(1 + ηk′L).

Now, we consider a special nonconvex problem under a Polyak- Lojasiewicz (PL) condition. The268

PL condition was shown to hold for deep (linear) and shallow neural networks [7].269

Assumption 1 (Polyak- Lojasiewicz Condition). Let wS = arg minw∈W FS(w). We assume FS satis-270

fies the PL condition with parameter µ > 0, i.e., for all w ∈ W271

ES

[
FS(w) − FS(wS)

]
≤ 1

2µ
ES

[
∥∇FS(w)∥22

]
. (4.7)

Theorem 8 gives risk bounds for minibatch SGD under the PL condition, whose proof is given in272

Section 6.4.273

Theorem 8 (Risk Bounds for Minibatch SGD: PL Condition). Assume for all z ∈ Z, the map274

w 7→ f(w; z) is nonnegative and L-smooth. Let {wt} be produced by Eq. (4.1) with ηt = 2/(µ(t+a)) and275

a ≥ 4L/µ. Let Assumption 1 hold and Ez

[
∥∇f(wt; zik)−∇FS(wt)∥22

]
≤ σ2, where ik follows from the276

uniform distribution over [n]. If R ≥ max
{
L
√
n/µ, Lσ2n/(bµ2)

}
, then E[F (wR)] − F (w∗) ≲ L/(nµ).277

According to Theorem 8, we require R ≥ max
{
L
√
n/µ, Lσ2n/(bµ2)

}
to obtain the excess risk278

bounds O(1/(nµ)). If b ≤ σ2
√
n/µ, we have Lσ2n/(bµ2) ≥ L

√
n/µ and therefore we can choose279

R ≍ Lσ2n/(bµ2) to obtain a linear speedup w.r.t. the batch size. In particular, we can choose280

b ≍ σ2
√
n/µ and R ≍ L

√
n/µ to get the bound E[F (wR)] − F (w∗) ≲ L/(nµ).281

5. Generalization of Local SGD282

In this section, we consider local SGD with M machines and R rounds. At the r-th round, each283

machine starts with the same iterate wr and independently applies SGD with K steps. After that, we284

take an average of the iterates in each machine to get a consensus point wr+1. Let wm,r,t+1 be the285

(t + 1)-th iterate in the machine m at round r. Then, the formulation of local SGD is given below286

wm,r,1 = wr, m ∈ [M ],

wm,r,t+1 = wm,r,t − ηr,t∇f(wm,r,t; zim,r,t
), t ∈ [K],

wr+1 =
1

M

M∑
m=1

wm,r,K+1, r ∈ [R], (5.1)
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where ηr,t is the step size for the t-th update at round r, and im,r,t is drawn independently from the287

uniform distribution over [n]. The pseudo-code is given in Algorithm 1. If R = 1, then local SGD288

becomes the one-shot SGD, i.e., one only takes an average once in the end of the optimization [52,289

30, 19]. If K = 1, then local SGD becomes the minibatch SGD. Note that the computation cost290

per machine is KR. We summarize the results on local SGD in Table 2, where we consider smooth291

problems and ignore constant factors.292

Algorithm 1 Local SGD

1: Inputs: step sizes {ηm,r,t} and S

2: Initialize: w1 ∈ W

3: for r = 1, 2, . . . , R do

4: for m = 1, 2, . . . ,M in parallel do

5: wm,r,1 = wr

6: for t = 1, 2, . . . ,K do

7: wm,r,t+1 = wm,r,t − ηr,t∇f(wm,r,t; zim,r,t)

8: end for

9: end for

10: wr+1 = 1
M

∑M
m=1 wm,r,K+1

11: end for

12: Outputs: an average of wm,r,t

Table 2: Excess population risks of Local SGD for convex and strongly convex problems. The column “Risk” denotes the

excess population risk, the column “KR” denotes the number of iterations per local machine, the column “R” denotes

the communication cost, the column “Constraint” indicates the constraint on the number of machines M and the column

“Optimal KR” is derived by putting the largest M in KR. We achieve a linear speedup w.r.t. the number of machines

for both convex and strongly convex problems, under different regimes of M .

Assumption Risk KR R Constraint Optimal KR

convex O(1/
√
n) n/M n/(KM) M ≤ n

1
2

√
n

µ-strongly convex O((nµ)−1 log(KR)) n/M n/(KM) M ≤ √
nµ

√
n/µ

In the following theorem, we develop the stability bounds for local SGD to be proved in Section293

7.1. We consider both ℓ1 and ℓ2 on-average model stabilities.294

Theorem 9 (Stability Bound for Local SGD). Assume for all z ∈ Z, the map w 7→ f(w; z) is295

nonnegative, convex and L-smooth. Let S, S′ and S(k) be constructed as in Definition 2. Let {wr} and296

{w(k)
r } be produced by (5.1) with ηr,t ≤ 2/L based on S and S(k), respectively. Then297

1

n

n∑
k=1

E
[
∥wR+1 −w

(k)
R+1∥2

]
≤ 2

√
2L

nM

R∑
r=1

M∑
m=1

K∑
t=1

ηr,tE
[√

FS(wm,r,t)
]
, (5.2)
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1

n

n∑
k=1

E
[∥∥wR+1 −w

(k)
R+1

∥∥2
2

]
≤ 16L

nM2

R∑
r=1

M∑
m=1

K∑
t=1

η2r,tE
[
FS(wm,r,t)

]
+

2

n3M2

n∑
k=1

E
[( R∑

r=1

M∑
m=1

K∑
t=1

ηr,t∥∇f(wm,r,t; zk) −∇f(w
(k)
m,r,t; z

′
k)∥2

)2]
. (5.3)

Remark 4 (Simplification). Note that the above stability bounds involve empirical risks, and can298

benefit from small empirical risks. Assume ηr,t = η and E
[√

FS(wm,r,t)
]
≲ 1 (this is a reasonable299

assumption since we are minimizing FS). Then Eq. (5.2) implies 1
n

∑n
k=1 E

[
∥wR+1 − w

(k)
R+1∥2

]
≲300

KRη/n. Eq. (5.3) implies 1
n

∑n
k=1 E

[∥∥wR+1 −w
(k)
R+1

∥∥2
2

]
≲ KRη2/(nM) + R2K2η2/n2, which shows301

that increasing the number of machines improves the stability and generalization. It was shown that302

increasing M can improve the optimization [44]. For example, the optimization error bound of the order303

O
(

1

K
1
3 R

2
3

+ 1√
MKR

)
was developed in [44]. Therefore, we expect that increasing M would accelerate304

the learning process.305

Remark 5 (Effect of M). We give some explanation on the effect of M on stability analysis. Note the306

above ℓ1 on-average stability bounds are independent of M , while the ℓ2 on-average stability bounds307

improve as M increases. These phenomena can be explained by how the average operator affects the308

expectation and variance. Indeed, both the ℓ1 and ℓ2 stability analysis are based on the following309

inequality in Eq. (7.3)310

∥∥wR+1 −w
(k)
R+1

∥∥
2
≤

R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,kI[im,r,t=k], (5.4)

where Cm,r,t,k = ∥∇f(wm,r,t; zk) −∇f(w
(k)
m,r,t; z

′
k)∥2, and I[im,r,t=k] = 1 if im,r,t = k, and 0 otherwise.311

Note the above upper bound is an average of ξm :=
∑R

r=1

∑K
t=1 ηr,tCm,r,t,kI[im,r,t=k] over m ∈ [M ],312

which comes from the average scheme in local SGD. We take an expectation over both sides of Eq.313

(5.4) to get ℓ1 on-average stability bounds. An average operator does not affect the expectation, which314

explains why the ℓ1 on-average stability bounds are independent of M . We take an expectation-variance315

decomposition to conduct the ℓ2 stability analysis, and the resulting bound involves a term related316

to variance and a term related to expectation. The variance of an average of M random variables317

decreases by a factor of M , which explains why the first term on the right-hand side of Eq. (5.3)318

involves a factor of 1/M . The second term in Eq. (5.3) is independent of M since the average does319

not affect expectation. This phenomenon also happens for minibatch SGD, where the average over a320

batch of size b decreases the variance by a factor of b, and does not affect the expectation.321

In the following table, we summarize the comparison on the stability bounds of minibatch and local322

SGD for convex and smooth problems. Here T is the number of iterations per machine, which is R323

for minibatch SGD and RK for local SGD. For simplicity, we ignore the discussion with optimistic324

bounds, and simply assume the empirical risks are bounded in expectation.325

Problems ℓ1 on-average model stability ℓ2 on-average model stability

minibatch SGD Tη
n

√
Tη√
nb

+ Tη
n

local SGD Tη
n

√
Tη√
nM

+ Tη
n

326
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Note that all the above bounds involve Tη
n , which corresponds to an expectation term in controlling327

the distance between two sequences of SGD iterates. We have either the term
√
Tη√
nb

or
√
Tη√
nM

for ℓ2328

stability analysis, which corresponds to a variance and decreases as the batch size (number of machines)329

increases.330

We now use the above stability bounds to develop excess population risk bounds for local SGD.331

We first consider a convex case. The proof is given in Section 7.2. Note our stability analysis for332

local SGD is data-dependent in the sense of involving training errors. Our excess risk bounds are333

not data-dependent since the existing optimization error bounds are not data-dependent [44]. It is334

interesting to develop data-dependent bounds for local SGD.335

Theorem 10 (Risk Bound for Local SGD: Convex Case). Assume for all z ∈ Z, the map w 7→ f(w; z)336

is nonnegative, convex and L-smooth. Let {wm,r,t} be produced by the algorithm A defined in (5.1)337

with ηr,t = η ≤ 2/L. Assume for all r ∈ [R], t ∈ [K], Eim,r,t
[∥∇f(wm,r,t; zim,r,t

) − ∇FS(wm,r,t)∥22] ≤338

σ2. Suppose we choose η ≍ ∥w∗∥2
√
n/(KR

√
L). If KRM ≍ n, η ≲ (K − 1)−

1
2 ∥w∗∥

1
2
2 /(nL)

1
4 and339

η ≤ 1/(2L), then E[F (w̄R,1)] − F (w∗) ≲
√
L∥w∗∥2√

n
, where w̄R,1 = 1

MKR

∑M
m=1

∑R
r=1

∑K
t=1 wm,r,t.340

Remark 6 (Linear speedup). Theorem 10 shows that local SGD can achieve the minimax optimal341

excess population risk bounds 1/
√
n in the sense of matching the existing lower bounds [1]. We342

now discuss the speedup in the computation and we have η ≍ ∥w∗∥2M/
√
nL. Note η ≤ 2/L re-343

quires M ≲
√
nL/∥w∗∥2. Furthermore, the condition η ≲ (K − 1)−

1
2 ∥w∗∥

1
2
2 /(nL)

1
4 requires M ≲344

(nL)
1
4 /

√
(K − 1)∥w∗∥2. Under these conditions, local SGD achieves a linear speedup in the sense345

that the computation per machine is of the order of KR ≍ n/M .346

Finally, we give risk bounds of local SGD for strongly convex problems to be proved in Section 7.3.347

Theorem 11 (Risk Bounds for Local SGD: Strongly Convex Case). Assume for all z ∈ Z, the348

map w 7→ f(w; z) is nonnegative, µ-strongly convex and L-smooth. Let {wm,r,t} be produced by349

the algorithm A defined in (5.1) with ηr,t = 4
µ(a+(r−1)K+t) ≤ 2/L and a ≥ 2L/µ. Assume for all350

r ∈ [R], t ∈ [K], Eim,r,t [∥∇f(wm,r,t; zim,r,t)−∇FS(wm,r,t)∥22] ≤ σ2. Assume supz ∥∇f(A(S); z)∥2 ≤ G.351

If KR ≳ nσ2

MG
√
L

and µKR2 ≳ n
√
L

G , then352

E[F (w̄R,2)] − F (w∗) ≲ G
√
L log(KR)/(nµ),

where353

SR =

R∑
r=1

K∑
t=1

(a + (r − 1)K + t) and w̄R,2 =
1

MSR

M∑
m=1

R∑
r=1

K∑
t=1

(a + (r − 1)K + t)wm,r,t.

If M ≲
√
nµσ2

√
GL

3
4
√
K

, we can choose R ≍ nσ2

G
√
LKM

to show that µKR2 ≍ µn2σ4

G2LKM2 ≳ n
√
L

G . Therefore,354

all the conditions of Theorem 11 hold, and we get the rate G
√
L log(KR)/(nµ).355

Remark 7 (Comparison). Generalization bounds for agnostic federated learning were developed from356

a uniform convergence approach [33], which involve Rademacher complexities of function spaces and357
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are algorithm-independent. As a comparison, we study generalization from an algorithmic stability358

approach and get complexity-independent bounds.359

A federated stability was introduced to study the generalization of federated learning algorithms [8]360

in a strongly convex setting. As a comparison, our analysis also applies to general convex problems.361

Furthermore, their stability analysis was conducted for abstract approximate minimizers, while our362

stability analysis is developed for local SGD. Finally, their bound involves an upper bound of the loss363

function over a compact domain, and therefore cannot imply optimistic bounds.364

There is a recent work on the generalization of federated learning algorithms on a heterogeneous365

setup where the i-th local machine has its own dataset Si [42]. For local SGD with a constant366

step size η, their generalization bounds are of the order of O(n−1RKση(1 + Kη)) under a Lipschitz367

continuity assumption and a bounded variance assumption E[∥∇f(w; zi) − ∇FSi
(w)∥22] ≤ σ2, where368

zi is drawn uniformly from Si. While the bounds in [42] also involve ∥∇F (wt)∥, it is dominated by σ369

and therefore cannot imply fast rates in an interpolation setting. As a comparison, our bounds in Eq.370

(5.3) are optimistic and decay fast if FS(wm,r,t) decays to 0. Furthermore, the analysis in [42] requires371

a Lipschitz condition on the loss function, which is removed in our analysis. Finally, we also develop372

ℓ2 on-average stability bounds, which are more challenging and illustrate the second-order information373

on the stability.374

6. Proofs on Minibatch SGD375

6.1. Proof of Theorem 2376

To prove Theorem 2, we first introduce several lemmas. The following lemma shows the self-377

bounding property for nonnegative and smooth functions, meaning the magnitude of gradients can be378

bounded by function values [40, 48].379

Lemma 12 ([40]). Assume for all z, the function w 7→ f(w; z) is nonnegative and L-smooth. Then380

∥∇f(w; z)∥22 ≤ 2Lf(w; z).381

In our analysis, we will use the concept of binomial distribution. Let Var(X) denote the variance382

of a random variable X.383

Definition 4 (Binomial distribution). The binomial distribution with parameters n and p is the384

discrete probability distribution of the number of successes in a sequence of n independent trials,385

with the probability of success on a single trial denoted by p. We use B(n, p) to denote the binomial386

distribution with parameters n and p.387

Lemma 13. If X ∼ B(n, p), then388

E[X] = np and Var(X) = np(1 − p).

A key property on establishing the stability of SGD is the non-expansiveness of the gradient-update389

operator established in the following lemma.390
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Lemma 14 ([18]). Assume for all z ∈ Z, the function w 7→ f(w; z) is convex and L-smooth. Then391

for η ≤ 2/L we know392

∥w − η∇f(w; z) −w′ + η∇f(w′; z)∥2 ≤ ∥w −w′∥2. (6.1)

Furthermore, if w 7→ f(w; z) is µ-strongly convex and η ≤ 1/L then393

∥w − η∇f(w; z) −w′ + η∇f(w′; z)∥2 ≤ (1 − ηµ/2)∥w −w′∥2, (6.2)

∥w − η∇f(w; z) −w′ + η∇f(w′; z)∥22 ≤ (1 − ηµ)∥w −w′∥22. (6.3)

We are now ready to prove Theorem 2. The analysis for ℓ1-stability bounds is standard [25]. As a394

comparison, the analysis with the ℓ2-stability bounds requires new techniques such as the expectation-395

variance decomposition based on a representation of SGD with Binomial random variables. For sim-396

plicity, we define Jt = {it,1, . . . , it,b}, t ∈ N.397

Proof of Theorem 2. Define398

αt,m =
∣∣{j : it,j = m}

∣∣, ∀t ∈ N,m ∈ [n], (6.4)

where we use |S′| to denote the cardinality of a set S′. That is, αt,m is the number of indices equal to399

m in the t-th iteration. Then the SGD update in Eq. (4.1) can be reformulated as400

wt+1 = wt −
ηt
b

n∑
k=1

αt,k∇f(wt; zk),

w
(m)
t+1 = w

(m)
t − ηt

b

∑
k:k ̸=m

αt,k∇f(w
(m)
t ; zk) − ηtαt,m

b
∇f(w

(m)
t ; z′m),

(6.5)

from which we know401

∥wt+1 −w
(m)
t+1∥2 =

∥∥wt −
ηt
b

∑
k:k ̸=m

αt,k∇f(wt; zk) − ηtαt,m

b
∇f(wt; zm)

−w
(m)
t +

ηt
b

∑
k:k ̸=m

αt,k∇f(w
(m)
t ; zk) +

ηtαt,m

b
∇f(w

(m)
t ; z′m)

∥∥
2
. (6.6)

For simplicity, introduce the notations for any t ∈ [T ] and m ∈ [n]402

∆t,m = ∥wt −w
(m)
t ∥2, Ct,m = ∥∇f(wt; zm) −∇f(w

(m)
t ; z′m)∥2. (6.7)

Since f is L-smooth and
∑

k:k ̸=m αt,k ≤ b, we know the function w 7→ 1
b

∑
k:k ̸=m αt,kf(w; zk) is403

L-smooth. By Lemma 14 and the assumption ηt ≤ 1/L, we know404

∆t+1,m ≤
∥∥wt −

ηt
b

∑
k:k ̸=m

αt,k∇f(wt; zk) −w
(m)
t +

ηt
b

∑
k:k ̸=m

αt,k∇f(w
(m)
t ; zk)

∥∥
2

+
ηtαt,mCt,m

b

≤ ∆t,m +
ηtαt,mCt,m

b
.

We can apply the above inequality recursively and derive (note w1 = w
(m)
1 )405

∆t+1,m ≤ 1

b

t∑
k=1

ηkαk,mCk,m. (6.8)
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According to the definition of αt,k, we know that αt,k is a random variable following from the binomial406

distribution B(b, 1/n) with parameters b and 1/n, from which we know407

E[αt,k] = b/n, Var(αt,k) = b(1 − 1/n) · (1/n) ≤ b/n. (6.9)

Furthermore, Lemma 12 implies408

Ck,m ≤ ∥∇f(wk; zm)∥2 + ∥∇f(w
(m)
k ; z′m)∥2 ≤

√
2Lf(wk; zm) +

√
2Lf(w

(m)
k ; z′m). (6.10)

We can combine the above inequality, Eq. (6.9) and Eq. (6.8) together to derive409

E[∆t+1,m] ≤ 1

b

t∑
k=1

ηkE
[
αk,mCk,m

]
=

1

b

t∑
k=1

ηkE
[
EJk

[αk,m]Ck,m

]
=

1

n

t∑
k=1

ηkE
[
Ck,m

]
, (6.11)

where we have used the fact that Ck,m is independent of Jk. According to the symmetry between410

zm and z′m, we know E[f(w
(m)
t ; z′m)] = E[f(wt; zm)] and therefore Eq. (6.10) implies E

[
Ck,m

]
≤411

2
√

2LE
[√

f(wk; zm)
]
. It then follows that412

E[∆t+1,m] ≤ 2
√

2L

n

t∑
k=1

ηkE
[√

f(wk; zm)
]
.

It then follows from the concavity of x 7→
√
x that413

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

n

n∑
m=1

t∑
k=1

ηk
n
E
[√

2Lf(wk; zm)
]

≤
t∑

k=1

2ηk
n

√√√√2L

n

n∑
m=1

E[f(wk; zm)] =

t∑
k=1

2ηk
√

2LE[FS(wk)]

n
. (6.12)

This establishes the stated bound (4.2).414

We now prove Eq. (4.3). We introduce an expectation-variance decomposition in (6.8) as follows415

∆t+1,m ≤ 1

b

t∑
k=1

ηk
(
αk,m − b/n

)
Ck,m +

1

n

t∑
k=1

ηkCk,m.

We take square on both sides followed with an expectation (w.r.t. S and J1, . . . , Jt) and use (a+ b)2 ≤416

2(a2 + b2) to show417

E
[
∆2

t+1,m

]
≤ 2

b2
E
[( t∑

k=1

ηk
(
αk,m − b/n

)
Ck,m

)2]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
=

2

b2
E
[ t∑
k,k′=1

ηkηk′
(
αk,m − b/n

)(
αk′,m − b/n

)
Ck,mCk′,m

]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
.

For any k ̸= k′, it follows from EJk′ [αk′,m] = b/n (we can assume k < k′ without loss of generality)418

E
[(
αk,m − b/n

)(
αk′,m − b/n

)
Ck,mCk′,m

]
= EEJk′

[(
αk,m − b/n

)(
αk′,m − b/n

)
Ck,mCk′,m

]
= E

[(
αk,m − b/n

)
EJk′

[
αk′,m − b/n

]
Ck,mCk′,m

]
= 0, (6.13)
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where we have used the fact that αk,m,Ck,m and Ck′,m are independent of Jk′ . It then follows from419

Eq. (6.9) that420

E
[
∆2

t+1,m

]
≤ 2

b2
E
[ t∑
k=1

η2k
(
αk,m − b/n

)2
C2
k,m

]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
=

2

b2
E
[ t∑
k=1

η2kVar(αk,m)C2
k,m

]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
≤ 2

nb
E
[ t∑
k=1

η2kC
2
k,m

]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
≤ 2

nb
E
[ t∑
k=1

η2kC
2
k,m

]
+

8

n2
E
[( t∑

k=1

ηk∥∇f(wk; zm)∥2
)2]

,

where we have used the following inequality in the last step421

E
[( t∑

k=1

ηkCk,m

)2]
≤ 2E

[( t∑
k=1

ηk∥∇f(wk; zm)∥2
)2]

+ 2E
[( t∑

k=1

ηk∥∇f(w
(m)
k ; z′m)∥2

)2]
= 4E

[( t∑
k=1

ηk∥∇f(wk; zm)∥2
)2]

. (6.14)

Analogous to Eq. (6.10), we have422

E[C2
k,m] ≤ 2E[∥∇f(wk; zm)∥22] + 2E[∥∇f(w

(m)
k ; z′m)∥22]

≤ 4LE
[
f(wk; zm) + f(w

(m)
k ; z′m)

]
= 8LE

[
f(wk; zm)]. (6.15)

It then follows that423

E
[
∆2

t+1,m

]
≤ 16L

nb

t∑
k=1

η2kE
[
f(wk; zm)] +

8

n2
E
[( t∑

k=1

ηk∥∇f(wk; zm)∥2
)2]

.

We take an average over all m ∈ [n] and get424

1

n

n∑
m=1

E
[
∆2

t+1,m

]
≤ 16L

n2b

t∑
k=1

n∑
m=1

η2kE
[
f(wk; zm)] +

8

n3

n∑
m=1

E
[( t∑

k=1

ηk∥∇f(wk; zm)∥2
)2]

=
16L

nb

t∑
k=1

η2kE
[
FS(wk)] +

8

n3

n∑
m=1

E
[( t∑

k=1

ηk∥∇f(wk; zm)∥2
)2]

.

The proof is completed.425

Remark 8 (Novelty in the analysis). Similar stability bounds involving FS(wk) were developed for the426

vanilla SGD [25]. Their argument needs to distinguish two cases according to whether the algorithm427

chooses a particular example at each iteration. This argument does not work for the minibatch SGD428

since we draw b examples per iteration and we can draw the particular example several times. We429

bypass this difficulty by introducing the expectation-variance decomposition and self-bounding prop-430

erty [24, 25] into the stability analysis based on a reformulation of minibatch SGD with binomial431

variables. Indeed, the paper [25] considers SGD with w̃t+1 = w̃t − ηt∇f(w̃t; zit). Their discussion432

controls ∥w̃t+1 − w̃
(m)
t+1∥22 by considering two cases: it = m or it ̸= m. If it = m, they use433

∥v1 + v2∥22 ≤ (1 + p)∥v1∥22 + (1 + 1/p)∥v2∥22 (6.16)
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and get ∥w̃t+1−w̃
(m)
t+1∥22≤(1+p)∥w̃t−w̃

(m)
t ∥22+(1+1/p)η2tC

2
t,m. Since it = m happens with probability434

1/n, they derive435

E[∥w̃t+1 − w̃
(m)
t+1∥22] ≤ (1 + p/n)E[∥w̃t − w̃

(m)
t ∥22] + O

(( 1

n
+

1

np

)
η2tE[C2

t,m]
)
. (6.17)

For minibatch SGD, we may select im several times and cannot divide the discussions into two cases436

as in [25]. Instead, we reformulate SGD as Eq. (6.5) with αt,k being a binomial random variable.437

Furthermore, even with the formulation, the existing techniques [25] would imply suboptimal bounds.438

Indeed, applying (6.16) to Eq. (6.6) would imply439

E[∆2
t+1,m] ≤ (1 + p)E[∆2

t,m] + η2t b
−2(1 + 1/p)E[α2

t,mC2
t,m]

≤ (1 + p)E[∆2
t,m] + 2η2t b

−1n−1(1 + 1/p)E[C2
t,m], (6.18)

where we have used EJt [α
2
t,m] ≤ 2b/n. The key difference is we have a factor of 1 + p/n for SGD440

and 1 + p for minibatch SGD. To see how Eq. (6.18) implies sub-optimal bounds, we continue the441

deduction as follows. We apply Eq. (6.18) recursively and get442

E[∆2
t+1,m] ≤ 2b−1n−1(1 + 1/p)

t∑
k=1

(1 + p)t+1−kη2kE[C2
k,m] ≤ 2b−1n−1(1 + 1/p)(1 + p)t

t∑
k=1

η2kE[C2
k,m]

≤ 2b−1n−1(1 + t)e

t∑
k=1

η2kE[C2
k,m] ≤ 16Lb−1n−1(1 + t)e

t∑
k=1

η2kE[f(wk; zm)],

where we choose p = 1/t and use (1 + 1/t)t ≤ e in the last second inequality, and use Eq. (6.15) in the443

last inequality. An average over all m ∈ [n] implies444

1

n

n∑
m=1

E[∆2
t+1,m] ≤ 16L(1 + t)eη2

nb

t∑
k=1

E[FS(wk)], (6.19)

which is much worse than Eq. (4.3). Indeed, if E[FS(wk)] ≲ 1, then Eq. (6.19) implies 1
n

∑n
m=1 E[∆2

t+1,m] ≲445

t2η2/(nb). As a comparison, Eq. (4.3) implies 1
n

∑n
m=1 E[∆2

t+1,m] ≲ tη2/(nb)+t2η2/n2. Note tη2/(nb)446

outperforms t2η2/(nb) by a factor of t, and t2η2/n2 outperforms t2η2/(nb) by a factor of n/b.447

We significantly improve the analysis in [25] by introducing new techniques in the analysis with448

ℓ2 on-average model stability. Our idea is to use an expectation-variance decomposition ∆t+1,m ≤449

1
b

∑t
k=1 ηk

(
αk,m−b/n

)
Ck,m+ 1

n

∑t
k=1 ηkCk,m. The key observation is that E

[(
αk,m−b/n

)
Ck,m

(
αk′,m−450

b/n
)
Ck′,m

]
= 0 if k ̸= k′. This removes the cross-over terms when taking a square followed by an451

expectation, and implies452

E
[
∆2

t+1,m

]
≤ 2

b2
E
[ t∑
k=1

η2k
(
αk,m − b/n

)2
C2
k,m

]
+

2

n2
E
[( t∑

k=1

ηkCk,m

)2]
.

It is also possible to derive high-order stability bounds under a Lipschitzness assumption. We omit453

the discussions for simplicity.454

Remark 9 (Lower bounds). Recently, lower bounds on the uniform stability have also received in-455

creasing attention. Let ϵunif be the uniform stability of SGD with t iterations and a constant step456
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size η. For nonsmooth and Lipschitz loss functions, it was shown ϵunif ≳ min{1, t/n}η
√
t + ηt/n for457

convex problems [3], ϵunif ≳ 1/µ
√
n for µ-strongly convex problems (µ ≥ 1/

√
n) and ϵunif ≳ η2n for458

nonconvex problems (η ≤ 1/
√
n) [23]. For smooth loss functions, it was shown ϵunif ≳ ηt/n for convex459

and Lipschitz problems, and ϵunif ≳ 1/(µn) for µ-strongly convex problems [51]. It is clear that our460

on-average stability bounds in Eq. (4.2) match the existing lower bounds on uniform stability in the461

convex and smooth case.462

Finally, we give some direct corollaries of Theorem 2. By the Cauchy-Schwarz’s inequality (
∑t

k=1 ak)2 ≤463

t
∑t

k=1 a
2
k, Eq. (4.3) further implies464

1

n

n∑
m=1

E
[
∥wt+1−w

(m)
t+1∥22

]
≤ 16L

nb

t∑
k=1

η2kE
[
FS(wk)]+

8t

n3

n∑
m=1

t∑
k=1

η2kE
[
∥∇f(wk; zm)∥22

]
≤

(16L

nb
+

16Lt

n2

) t∑
k=1

η2kE
[
FS(wk)], (6.20)

where we use ∥∇f(wk; zm)∥22 ≤ 2Lf(wk; zm) due to the self-bounding property. If b = 1, our analysis465

implies stability bounds of order L
(
1
n + t

n2

)∑t
k=1 η

2
kE

[
FS(wk)], which match the stability bounds for466

SGD [25]. Furthermore, under a stronger self-bounding property ∥∇f(wk; zm)∥2 ≤ f(wk; zm) (e.g.,467

logistic loss) [36], Eq. (4.3) implies468

1

n

n∑
m=1

E
[
∥wt+1 −w

(m)
t+1∥22

]
≤ 16L

nb

t∑
k=1

η2kE
[
FS(wk)] +

8

n3

n∑
m=1

E
[( t∑

k=1

ηkf(wk; zm)
)2]

. (6.21)

6.2. Proof of Theorem 3469

In this section, we present the proof of Theorem 3 on excess population risk bounds of minibatch470

SGD. We first introduce the following optimization error bounds.471

Lemma 15 (Optimization Errors of Minibatch SGD: Convex Case). Assume for all z ∈ Z, the map472

w 7→ f(w; z) is nonnegative, convex and L-smooth. Let {wt} be produced by Eq. (4.1) with η ≤ 1/L.473

Then the following inequality holds for all w474

1

R

R∑
t=1

EA

[
FS(wt)

]
− FS(w) ≤ 2ηL

bR

R∑
t=1

EA[FS(wt)] +
∥w∥22
2ηR

+
FS(w1)

R
. (6.22)

Proof. Denote Bt = {zit,1 , . . . , zit,b} and f(w;Bt) = 1
b

∑b
j=1 f(w; zit,j ). Then the update of minibatch475

SGD can be written as476

wt+1 = wt − η∇f(wt;Bt).
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Since EBt
[f(wt;Bt)] = FS(wt) we know477

EA[∥∇f(wt;Bt)∥22] = EA[∥∇f(wt;Bt) −∇FS(wt)∥22] + EA[∥∇FS(wt)∥22]

=
1

b
EA[∥∇f(wt; zit,1) −∇FS(wt)∥22] + EA[∥∇FS(wt)∥22]

=
EA[∥∇f(wt; zit,1)∥22]

b
− EA[∥∇FS(wt)∥22]

b
+ EA[∥∇FS(wt)∥22]

≤
2LEA[f(wt; zit,1)]

b
− EA[∥∇FS(wt)∥22]

b
+ EA[∥∇FS(wt)∥22]

≤ 2LEA[FS(wt)]

b
+ EA[∥∇FS(wt)∥22], (6.23)

where we have used the self-bounding property of smooth functions. Furthermore, by the convexity of478

f we know479

∥wt+1 −w∥22 = ∥wt −w∥22 + η2∥∇f(wt;Bt)∥22 + 2η⟨w −wt,∇f(wt;Bt)⟩

≤ ∥wt −w∥22 + η2∥∇f(wt;Bt)∥22 + 2η(f(w;Bt) − f(wt;Bt)).

It then follows that480

EA[∥wt+1−w∥22] ≤ EA[∥wt−w∥22] +
2Lη2EA[FS(wt)]

b
+η2EA[∥∇FS(wt)∥22] + 2ηEA[FS(w)−FS(wt)].

Taking a summation of the above inequality gives (w1 = 0)481

2η

R∑
t=1

EA[FS(wt) − FS(w)] ≤ ∥w∥22 +
2Lη2

b

R∑
t=1

EA[FS(wt)] + η2
R∑

t=1

EA[∥∇FS(wt)∥22]. (6.24)

By the L-smoothness of FS and Eq. (6.23) we have482

EA[FS(wt+1)] ≤ EA[FS(wt)] + EA[⟨∇FS(wt),wt+1 −wt⟩] +
LEA[∥wt+1 −wt∥22]

2

= EA[FS(wt)] − ηEA[⟨∇FS(wt),∇f(wt;Bt)⟩] +
Lη2EA[∥∇f(wt;Bt)∥22]

2

≤ EA[FS(wt)] − ηEA[∥∇FS(wt)∥22] +
L2η2EA[FS(wt)]

b
+

Lη2EA[∥∇FS(wt)∥22]

2
.

It then follows from η ≤ 1/L that483

η

2

R∑
t=1

EA[∥∇FS(wt)∥22] ≤ EA[FS(w1)] +
L2η2

∑R
t=1 EA[FS(wt)]

b
.

We combine the above inequality and Eq. (6.24) to derive (note η ≤ 1/L)484

2η

R∑
t=1

EA[FS(wt) − FS(w)] ≤ ∥w∥22 +
2Lη2

b

R∑
t=1

EA[FS(wt)] + 2ηFS(w1) +
2L2η3

∑R
t=1 EA[FS(wt)]

b

≤ ∥w∥22 +
4Lη2

b

R∑
t=1

EA[FS(wt)] + 2ηFS(w1).

The proof is completed.485
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Proof of Theorem 3. We choose w = w∗ and take expectations w.r.t. S over both sides of Eq. (6.22)486

to get487

1

R

R∑
t=1

E
[
FS(wt)

]
− F (w∗) ≤ 2ηL

bR

R∑
t=1

E[FS(wt)] +
∥w∗∥22
2ηR

+
F (w1)

R
. (6.25)

We consider two cases. If 1
R

∑R
t=1 E[FS(wt)] ≤ F (w∗), then this means that the optimization error in488

Eq. (3.1) is non-positive (this is the easier case since one does not need to consider the optimization489

error)490

E[FS(w̄R)] ≤ 1

R

R∑
t=1

E[FS(wt)] ≤ F (w∗) = E[FS(w∗)].

We now consider the case 1
R

∑R
t=1 E[FS(wt)] ≥ F (w∗). Then it follows from Eq. (6.25) that491

1

R

R∑
t=1

E
[
FS(wt)

]
− F (w∗) ≤ 2ηL

bR

R∑
t=1

E[FS(wt) − F (w∗)] +
2ηL

bR

R∑
t=1

F (w∗) +
∥w∗∥22
2ηR

+
F (w1)

R

≤ 1

2R

R∑
t=1

E[FS(wt) − F (w∗)] +
2ηL

bR

R∑
t=1

F (w∗) +
∥w∗∥22
2ηR

+
F (w1)

R
,

where we have used η ≤ b/(4L) due to b ≥ 2. It then follows that492

1

R

R∑
t=1

E
[
FS(wt)

]
− F (w∗) ≤ 4ηLF (w∗)

b
+

∥w∗∥22
ηR

+
2F (w1)

R
. (6.26)

By Lemma 1 (Part (b)) and Eq. (6.20), we know493

E[F (w̄R) − FS(w̄R)] ≤ L

γ
E[FS(w̄R)] + (L + γ)

(8L

nb
+

8LR

n2

) R∑
t=1

η2tE
[
FS(wt)].

Eq. (6.26) implies that494

1

R

R∑
t=1

E
[
FS(wt)

]
≲ F (w∗) + ∥w∗∥22/(ηR).

We combine the above two inequalities together and derive (note FS(w̄R) ≤ 1
R

∑R
t=1 FS(wt))495

E[F (w̄R) − FS(w̄R)] ≲ L
(F (w∗) + ∥w∗∥22/(ηR)

γ

)
+ L(L + γ)η2

( 1

nb
+

R

n2

)(
RF (w∗) + ∥w∗∥22/η

)
.

We plug the above generalization error bounds, the optimization error bounds in Eq. (6.26) back into496

Eq. (3.1), and derive497

E[F (w̄R)] − F (w∗) ≲
ηLF (w∗)

b
+

∥w∗∥22
ηR

+
LF (w∗) + L∥w∗∥22/(ηR)

γ

+ L(L + γ)η2
( 1

nb
+

R

n2

)(
RF (w∗) + ∥w∗∥22/η

)
.

The proof is completed.498

Proof of Corollary 4. We first consider the case that F (w∗) ≥ 4Lb2∥w∗∥22/n. In this case, we have499

∥w∗∥2b√
LnF (w∗)

≤ 1
2L and therefore η = ∥w∗∥2b√

LnF (w∗)
. We have500

ηR ≍ ∥w∗∥2b√
LnF (w∗)

n

b
=

√
n∥w∗∥2√
LF (w∗)

(6.27)
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and therefore501

F (w∗)ηR ≍
√
nF (w∗)∥w∗∥2√

L
≥ 2

√
Lb∥w∗∥22√

L
= 2b∥w∗∥22.

Theorem 3 together with R ≍ n/b then implies502

E[F (w̄R)]−F (w∗) ≲
ηLF (w∗)

b
+
∥w∗∥22
ηR

+ LF (w∗)

(
1

γ
+ (L+γ)η2

R2

n2

)
.

Since η = ∥w∗∥2b√
nLF (w∗)

, R ≍ n
b and γ =

√
LnF (w∗)/∥w∗∥2, we know503

ηLF (w∗)

b
≍ Lb∥w∗∥√

LnF (w∗)

F (w∗)

b
≍ ∥w∗∥2(LF (w∗))

1
2

√
n

,

LF (w∗)

γ
≍ LF (w∗)∥w∗∥2√

LnF (w∗)
≍ (LF (w∗))

1
2 ∥w∗∥2√
n

and504

L(L + γ)η2R2F (w∗)

n2
≍ L(L + (LnF (w∗))

1
2 /∥w∗∥2)∥w∗∥22b2R2F (w∗)

n2LnF (w∗)

≍ (L + (LnF (w∗))
1
2 /∥w∗∥2)∥w∗∥22

n
≲

(LF (w∗))
1
2 ∥w∗∥2√
n

.

We plug the above inequalities back into Eq. (6.27) and get E[F (w̄R)] − F (w∗) ≲ (LF (w∗))
1
2 ∥w∗∥2√
n

.505

We now consider the case F (w∗) ≤ 4Lb2∥w∗∥22/n. In this case, we have η = 1/(2L), R ≍ n and506

choose γ ≍ L. Theorem 3 implies507

E[F (w̄R)] − F (w∗) ≲
F (w∗)

b
+

L∥w∗∥22
n

+ L
(
F (w∗) +

L∥w∗∥22
n

)(
L−1 + LL−2

)
≲ F (w∗) +

L∥w∗∥22
n

.

The proof is completed.508

6.3. Proof of Theorem 5 and Theorem 6509

In this section, we prove stability and risk bounds for minibatch SGD applied to strongly convex510

problems.511

Proof of Theorem 5. For simplicity, we assume f(w; z) = g(w; z) + r(w) with r : W 7→ R+ being µ-512

strongly convex and g : W×Z 7→ R+ being convex (this is a typical form for strongly convex problems513

in machine learning). According to Eq. (6.5) and the sub-additivity of ∥ · ∥2, we know514

∥wt+1 −w
(m)
t+1∥2 ≤ ηtαt,m

b
∥∇g(wt; zm) −∇g(w

(m)
t ; z′m)∥2+∥∥wt −

ηt
b

∑
k:k ̸=m

αt,k∇g(wt; zk) − ηt∇r(wt) −w
(m)
t +

ηt
b

∑
k:k ̸=m

αt,k∇g(w
(m)
t ; zk) + ηt∇r(w

(m)
t )

∥∥
2
.

Since f is L-smooth and
∑

k:k ̸=m αt,k ≤ b, we know the function w 7→ 1
b

∑
k:k ̸=m αt,kf(w; zk) + r(w)515

is L-smooth and µ-strongly convex. By Lemma 14 and the assumption ηt ≤ 1/L, we know516

∥wt+1 −w
(m)
t+1∥2 ≤ (1 − µηt/2)∥wt −w

(m)
t ∥2 +

ηtαt,m

b
∥∇g(wt; zm) −∇g(w

(m)
t ; z′m)∥2. (6.28)
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Taking an expectation over both sides yields (note wt,w
(m)
t are independent of Jt)517

E[∥wt+1 −w
(m)
t+1∥2] ≤ (1 − µηt/2)E[∥wt −w

(m)
t ∥2] +

2ηt
√

2LE[f(wt; zm)]

n
,

where we have used Eq. (6.10) and Eq. (6.9). It then follows that518

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

√
2L

n

t∑
k=1

ηk
√
E[f(wk; zm)]

t∏
k′=k+1

(1 − µηk′/2).

We take an average over m to derive519

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

√
2L

n2

t∑
k=1

n∑
m=1

ηk
√
E[f(wk; zm)]

t∏
k′=k+1

(1 − µηk′/2)

≤ 2
√

2L

n

t∑
k=1

ηk

( 1

n

n∑
m=1

E[f(wk; zm)]
) 1

2
t∏

k′=k+1

(1 − µηk′/2)

=
2
√

2L

n

t∑
k=1

ηk
√

E[FS(wk)]

t∏
k′=k+1

(1 − µηk′/2),

where we have used the concavity of x 7→
√
x. This proves Eq. (4.4).520

We now turn to Eq. (4.5). Let wS = arg minw∈W FS(w). The following inequality was established521

in [45]522

E[∥wk+1 −wS∥22] ≤ (1 − µηk)E[∥wk −wS∥22] − ηkE[FS(wk) − FS(wS)] +
2η2kσ

2
S

b
,

where σ2
S = Eit [∥∇f(wS ; zit) − ∇FS(wS)∥22]. We multiply both sides by

∏t
k′=k+1(1 − µηk′/2) and523

derive524

t∏
k′=k+1

(1 − µηk′/2)E[∥wk+1 −wS∥22] ≤
t∏

k′=k

(1 − µηk′/2)E[∥wk −wS∥22]−

ηk

t∏
k′=k+1

(1 − µηk′/2)E[FS(wk) − FS(wS)] +
2σ2

Sη
2
k

∏t
k′=k+1(1 − µηk′/2)

b
.

We take a summation of the above inequality and derive525

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)E[FS(wk) − FS(wS)] ≤ E[∥w1 −wS∥22]

t∏
k′=1

(1 − µηk′/2)+

2σ2
S

b

t∑
k=1

η2k

t∏
k′=k+1

(1 − µηk′/2). (6.29)

There holds526

µ

2

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2) =

t∑
k=1

(
1 − (1 − µηk/2)

) t∏
k′=k+1

(1 − µηk′/2)

=

t∑
k=1

( t∏
k′=k+1

(1 − µηk′/2) −
t∏

k′=k

(1 − µηk′/2)
)

= 1 −
t∏

k′=1

(1 − µηk′/2) ≤ 1. (6.30)
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By the strong convexity of FS and ∇FS(wS) = 0, we know527

FS(w1) − FS(wS) = FS(w1) − FS(wS) − ⟨w1 −wS ,∇FS(wS)⟩ ≥ µ

2
∥w1 −wS∥22

and therefore528

E[∥w1 −wS∥22] ≤ 2

µ
E[FS(w1) − FS(wS)] ≲ 1/µ.

We can plug the above inequality and Eq. (6.30) back into Eq. (6.29) to derive (note ηk ≤ 1/L and529

ηkµ ≤ µ/L ≤ 1)530

t∑
k=1

ηk

t∏
k′=k+1

(1−µηk′/2)E[FS(wk)−FS(wS)] ≤ E[∥w1−wS∥22]+
2σ2

S

bL

t∑
k=1

ηk

t∏
k′=k+1

(1−µηk′/2) ≲ 1/µ.

We combine the above inequality and Eq. (6.30) together and derive531

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)E[FS(wk)] = E[FS(wS)]

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)

+

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)E[FS(wk) − FS(wS)] ≲ 1/µ. (6.31)

This together with Eq. (6.30) implies that532

t∑
k=1

ηk
√

E[FS(wk)]

t∏
k′=k+1

(1 − µηk′/2) ≤ 1

2

t∑
k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)
(
1 + E[FS(wk)]

)
≲ 1/µ.

We plug the above inequality back into Eq. (4.4) to derive Eq. (4.5).533

Finally, we prove Eq. (4.6). Recall the notations in Eq. (6.7). Then, Eq. (6.28) implies ∆t+1,m ≤534

(1 − µηt/2)∆t,m + ηtαt,mCt,m/b. We apply this inequality recursively, and get535

∆t+1,m ≤ 1

b

t∑
k=1

ηkαk,mCk,m

t∏
k′=k+1

(1 − µηk′/2)

=
1

b

t∑
k=1

ηk
(
αk,m − b/n

)
Ck,m

t∏
k′=k+1

(1 − µηk′/2) +
1

n

t∑
k=1

ηkCk,m

t∏
k′=k+1

(1 − µηk′/2).

We take a square and an expectation over both sides, and get536

E[∆2
t+1,m]

≤ 2

b2
E
[( t∑

k=1

ηk
(
αk,m − b/n

)
Ck,m

t∏
k′=k+1

(1 − µηk′/2)
)2]

+
2

n2
E
[( t∑

k=1

ηkCk,m

t∏
k′=k+1

(1 − µηk′/2)
)2]

=
2

b2

t∑
k=1

η2kE
[(
αk,m − b/n

)2
C2
k,m

t∏
k′=k+1

(1 − µηk′/2)2
]

+
2

n2
E
[( t∑

k=1

ηkCk,m

t∏
k′=k+1

(1 − µηk′/2)
)2]

≤ 2

nb

t∑
k=1

η2kE
[
C2
k,m

] t∏
k′=k+1

(1 − µηk′/2)2 +
2

n2
E
[( t∑

k=1

ηkCk,m

t∏
k′=k+1

(1 − µηk′/2)
)2]

,

where we have used Eq. (6.13) and EJk
[
(
αk,m − b/n

)2
] = Var(αk,m) ≤ b/n. Furthermore, by the537
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Schwarz’s inequality and Eq. (6.30), we know538

( t∑
k=1

ηkCk,m

t∏
k′=k+1

(1 − µηk′/2)
)2

≤
( t∑

k=1

ηkC
2
k,m

t∏
k′=k+1

(1 − µηk′/2)
)( t∑

k=1

ηk

t∏
k′=k+1

(1 − µηk′/2)
)

≤ 2

µ

t∑
k=1

ηkC
2
k,m

t∏
k′=k+1

(1 − µηk′/2).

We can combine the above two inequalities together and derive539

E[∆2
t+1,m] ≤

t∑
k=1

(2η2k
nb

+
4ηk
n2µ

)
E
[
C2
k,m

] t∏
k′=k+1

(1 − µηk′/2).

Analogous to Eq. (6.10), we know E[C2
k,m] ≤ 8LE[f(wk; zm)] and therefore540

E[∆2
t+1,m] ≤

t∑
k=1

(16Lη2k
nb

+
32Lηk
n2µ

)
E[f(wk; zm)]

t∏
k′=k+1

(1 − µηk′/2).

We can take an average over m ∈ [n] to get the stated bound. The proof is completed.541

542

Proof of Theorem 6. Since FS(wS) ≤ FS(w∗), an upper bound on FS(A(S))−FS(wS) is also an upper543

bound on FS(A(S)) − FS(w∗). Then, according to [45], there exists an average ŵR of {wt} such that544

EA[FS(ŵR)] − FS(w∗) ≲
L

µ
exp

(
− µR/L

)
+

σ2
∗

µbR
. (6.32)

Theorem 5 shows that an algorithm outputting any iterate produced by Eq. (4.1) would be ℓ1 on-545

average model O(1/(nµ))-stable. It then follows that the output model ŵR would also be ℓ1 on-average546

model O(1/(nµ))-stable. Lemma 1 (Part (a)) then implies547

E[F (ŵR) − FS(ŵR)] ≲ G/(nµ).

We plug the above two inequalities back to Eq. (3.1) and derive548

E[F (ŵR)] − F (w∗) ≲
L

µ
exp

(
− µR/L

)
+

σ2
∗

µbR
+

G

nµ
.

If we choose R > L
µ log nL

G and b >
nσ2

∗
GR , we get549

L

µ
exp

(
− µR/L

)
≲ G/nµ and

σ2
∗

µbR
≲ G/nµ.

The proof is completed.550

6.4. Proof of Theorem 7 and Theorem 8551

In this section, we present the proof of minibatch SGD for nonconvex problems. We first prove552

Theorem 7.553
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Proof of Theorem 7. According to Eq. (6.6) and the smoothness of f , we know ∆t+1,m ≤ (1 +554

ηtL)∆t,m +
ηtαt,mCt,m

b . We apply the above inequality recursively, and derive555

E[∆t+1,m] ≤
t∑

k=1

ηkE[αk,mCk,m]

b

t∏
k′=k+1

(1 + ηk′L) =

t∑
k=1

ηkE[Ck,m]

n

t∏
k′=k+1

(1 + ηk′L).

Analogous to Eq. (6.12), we then get556

1

n

n∑
m=1

E[∥wt+1 −w
(m)
t+1∥2] ≤ 2

√
2L

n

n∑
m=1

t∑
k=1

ηkE
[√

f(wk; zm)
]

n

t∏
k′=k+1

(1 + ηk′L)

≤ 2
√

2L

n

t∑
k=1

ηkE
[√

FS(wk)
] t∏
k′=k+1

(1 + ηk′L).

The proof is completed.557

We now prove Theorem 8 on risk bounds of minibatch SGD under the PL condition. We first558

introduce the following lemma relating generalization to optimization for problems under the PL559

condition [26].560

Lemma 16 (Generalization Bounds under PL Condition). Assume for all z ∈ Z, the map w 7→ f(w; z)561

is nonnegative and L-smooth. Let A be an algorithm. If Assumption 1 holds and L ≤ nµ/4, then562

E
[
F (A(S)) − FS(A(S))] ≤ 16LE[FS(A(S))]

nµ
+

LE
[
FS(A(S)) − FS(wS)

]
2µ

. (6.33)

The following lemma gives the optimization error bounds for minibatch SGD under the PL condi-563

tion.564

Lemma 17 (Optimization Errors for Minibatch SGD: PL condition). Assume for all z ∈ Z, the565

map w 7→ f(w; z) is nonnegative and L-smooth. Let Assumption 1 hold and Eik

[
∥∇f(wt; zik) −566

∇FS(wt)∥22
]
≤ σ2, where ik follows from the uniform distribution over [n]. Let {wt} be produced by567

the algorithm A defined in (4.1) with ηt = 2/(µ(t + a)) and a ≥ 4L/µ. Then568

EA[FS(wR+1)] − FS(wS) ≲
L2

µ2R2
+

Lσ2

bµ2R
. (6.34)

Proof. Note the assumption a ≥ 4L/µ implies ηt ≤ 1/(2L). For simplicity, we denote gt = 1
b

∑b
j=1 ∇f(wt; zit,j ).569

Then Eq. (4.1) becomes wt+1 = wt − ηtgt. By the L-smoothness of FS , we have570

FS(wt+1) ≤ FS(wt) + ⟨wt+1 −wt,∇FS(wt)⟩ +
L

2
∥wt+1 −wt∥22

= FS(wt) − ηt⟨gt,∇FS(wt)⟩ +
Lη2t

2
∥gt∥22

≤ FS(wt) − ηt⟨gt,∇FS(wt)⟩ + Lη2t
(
∥gt −∇FS(wt)∥22 + ∥∇FS(wt)∥22

)
.

We take a conditional expectation over both sides and derive571

EJt [FS(wt+1)] ≤ FS(wt) − ηt∥∇FS(wt)∥22 + Lη2t
(
EJt [∥gt −∇FS(wt)∥22] + ∥∇FS(wt)∥22

)
= FS(wt) − ηt∥∇FS(wt)∥22/2 + Lη2tEJt

[∥gt −∇FS(wt)∥22],
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where we have used the assumption ηt ≤ 1/(2L). Note the variance reduces by a factor of b with a572

minibatch, i.e.,573

EJt
[∥gt −∇FS(wt)∥22] =

1

b
Eik [∥∇f(wt; zik) −∇FS(wt)∥22] ≤ σ2

b
.

We combine the above two inequalities together and take an expectation w.r.t. the remaining random574

variables to get575

EA[FS(wt+1)] ≤ EA[FS(wt)] − ηtEA[∥∇FS(wt)∥22]/2 +
Lη2t σ

2

b
.

We subtract both sides by FS(wS) and use the PL condition to derive576

EA[FS(wt+1)] − FS(wS) ≤ EA[FS(wt)] − FS(wS) − µηt
(
EA[FS(wt)] − FS(wS)

)
+

Lη2t σ
2

b

= (1 − µηt)
(
EA[FS(wt)] − FS(wS)

)
+

Lη2t σ
2

b
.

Since ηt = 2
µ(a+t) , we know577

EA[FS(wt+1)] − FS(wS) ≤
(

1 − 2

a + t

)(
EA[FS(wt)] − FS(wS)

)
+

4Lσ2

bµ2(a + t)2
.

We multiply both sides by (t + a)(t + a− 1) and get578

(t + a)(t + a− 1)
(
EA[FS(wt+1)] − FS(wS)

)
≤ (t + a− 1)(t + a− 2)

(
EA[FS(wt)] − FS(wS)

)
+

4Lσ2

bµ2
.

We take a summation of the above inequality from t = 1 to R and get579

(R + a)(R + a− 1)
(
EA[FS(wR+1)] − FS(wS)

)
≤ a(a− 1)

(
EA[FS(w1)] − FS(wS)

)
+

4LRσ2

bµ2
.

The stated bound then follows directly since a ≥ 4L/µ. The proof is completed.580

Now we are ready to prove Theorem 8 for nonconvex problems.581

Proof of Theorem 8. According to Lemma 16 and Lemma 17, we know582

E[F (wR) − FS(wS)] ≲
L

nµ
+

LE[FS(wR) − FS(wS)]

µ
≲

L

nµ
+

L3

µ3R2
+

L2σ2

bµ3R
.

Since FS(wS) ≤ FS(w∗), we then derive583

E[F (wR)] − F (w∗) = E[F (wR) − FS(w∗)] ≤ E[F (wR) − FS(wS)] ≲
L

nµ
+

L3

µ3R2
+

L2σ2

bµ3R
.

Since R ≥ max
{
L
√
n/µ, nLσ2/(bµ2)

}
, we know584

µ2R2 ≥ n and bµ2R ≥ n.

It then follows that E[F (wR)] − F (w∗) ≲ L/(nµ). The proof is completed.585
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7. Proofs on Local SGD586

7.1. Proof of Theorem 9587

In this section, we prove stability bounds on local SGD.588

Proof of Theorem 9. Let {w(k)
m,r,t+1} be the sequence produced by Eq. (5.1) on S(k). We introduce the589

notations590

∆m,r,t,k =
∥∥wm,r,t −w

(k)
m,r,t

∥∥
2
, Cm,r,t,k = ∥∇f(wm,r,t; zk) −∇f(w

(k)
m,r,t; z

′
k)∥2.

If im,r,t ̸= k, we can use Lemma 14 to derive591

∆m,r,t+1,k =
∥∥wm,r,t − ηr,t∇f(wm,r,t; zim,r,t

)−w
(k)
m,r,t + ηr,t∇f(w

(k)
m,r,t; zim,r,t

)
∥∥
2
≤ ∥wm,r,t −w

(k)
m,r,t∥2.

If im,r,t = k, we have592

∆m,r,t+1,k =
∥∥wm,r,t − ηr,t∇f(wm,r,t; zk) −w

(k)
m,r,t + ηr,t∇f(w

(k)
m,r,t; z

′
k)
∥∥
2
≤ ∆m,r,t,k + ηr,tCm,r,t,k.

We combine the above two cases together and derive593

∆m,r,t+1,k ≤ ∆m,r,t,k + ηr,tCm,r,t,kI[im,r,t=k], (7.1)

where I[im,r,t=k] denotes the indicator function of the event {im,r,t = k}, i.e., I[im,r,t=k] = 1 if im,r,t = k,594

and 0 otherwise. We apply the above inequality recursively and get595

∆m,r,K+1,k ≤ ∆m,r,1,k +

K∑
t=1

ηr,tCm,r,t,kI[im,r,t=k].

We take an average over m ∈ [M ] and use wr+1 = 1
M

∑M
m=1 wm,r,K+1 to derive596

∥∥wr+1 −w
(k)
r+1

∥∥
2
≤ 1

M

M∑
m=1

∥wm,r,K+1 −w
(k)
m,r,K+1∥2 ≤

∥∥wr −w(k)
r

∥∥
2

+

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,kI[im,r,t=k],

(7.2)

where we have used wm,r,1 = wr. We can apply the above inequality recursively, and derive597

∥∥wR+1 −w
(k)
R+1

∥∥
2
≤

R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,kI[im,r,t=k]. (7.3)

We first consider the ℓ1 on-average model stability. We know that im,r,t takes the value k with598

probability 1/n, and other values with probability 1− 1/n. We take expectation w.r.t. im,r,t and note599

Cm,r,t,k is independent of im,r,t, which implies600

E
[
∥wR+1 −w

(k)
R+1∥2

]
≤

R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
nM

E[Cm,r,t,k] ≤ 2
√

2L

nM

R∑
r=1

M∑
m=1

K∑
t=1

ηr,tE
[√

f(wm,r,t; zk)
]
, (7.4)
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where we have used the self-bounding property and the symmetry between zk and z′k (analogous to601

Eq. (6.10)). It then follows from the concavity of x 7→
√
x that602

1

n

n∑
k=1

E
[
∥wR+1 −w

(k)
R+1∥2

]
≤ 2

√
2L

n2M

n∑
k=1

R∑
r=1

M∑
m=1

K∑
t=1

ηr,tE
[√

f(wm,r,t; zk)
]

≤ 2
√

2L

nM

R∑
r=1

M∑
m=1

K∑
t=1

ηr,tE
[( 1

n

n∑
k=1

f(wm,r,t; zk)
) 1

2
]

=
2
√

2L

nM

R∑
r=1

M∑
m=1

K∑
t=1

ηr,tE
[(

FS(wm,r,t)
) 1

2
]
.

This proves Eq. (5.2). We now consider the ℓ2 on-average model stability. We take an expectation-603

variance decomposition in Eq. (7.3) and derive604

∥∥wR+1 −w
(k)
R+1

∥∥
2
≤

R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,k

(
I[im,r,t=k] − 1/n

)
+ n−1

R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,k. (7.5)

Analogous to Eq. (6.13), we have (note im,r,t is independent of im′,r′,t′ if (m, r, t) ̸= (m′, r′, t′), Cm,r,t,k605

is independent of im,r,t, and Cm′,r′,t′,k is independent of im′,r′,t′)606

E
[
Cm,r,t,k

(
I[im,r,t=k] − 1/n

)
Cm′,r′,t′,k

(
I[im′,r′,t′=k] − 1/n

)]
= 0 if either t ̸= t′,m ̸= m′, or r ̸= r′.

Then, we take a square on both sides of Eq. (7.5) followed by expectation, and analyze analogously607

to the proof of Eq. (4.3):608

E
[∥∥wR+1 −w

(k)
R+1

∥∥2
2

]
≤ 2E

[( R∑
r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,k

(
I[im,r,t=k] − 1/n

))2]
+

2

n2
E
[( R∑

r=1

M∑
m=1

K∑
t=1

ηr,t
M

Cm,r,t,k

)2]
=

2

M2
E
[ R∑
r=1

M∑
m=1

K∑
t=1

η2r,tC
2
m,r,t,kVar(I[im,r,t=k]

)]
+

2

n2M2
E
[( R∑

r=1

M∑
m=1

K∑
t=1

ηr,tCm,r,t,k

)2]
≤ 2

nM2
E
[ R∑
r=1

M∑
m=1

K∑
t=1

η2r,tC
2
m,r,t,k)

]
+

2

n2M2
E
[( R∑

r=1

M∑
m=1

K∑
t=1

ηr,tCm,r,t,k

)2]
,

where we have used Var(I[im,r,t=k]) ≤ 1/n. By the self-bounding property of f we know609

E
[
C2
m,r,t,k

]
≤ 4LE

[
f(wm,r,t; zk) + f(w

(k)
m,r,t; z

′
k)
]

= 8LE[f(wm,r,t; zk)]. (7.6)

It then follows that610

E
[∥∥wR+1 −w

(k)
R+1

∥∥2
2

]
≤ 16L

nM2
E
[ R∑
r=1

M∑
m=1

K∑
t=1

η2r,tf(wm,r,t; zk)
]

+
2

n2M2
E
[( R∑

r=1

M∑
m=1

K∑
t=1

ηr,tCm,r,t,k

)2]
.

(7.7)

The stated bound then follows by taking an average over k ∈ [n] and noting FS(w) = 1
n

∑n
k=1 f(w; zk).611

The proof is completed.612

7.2. Proof of Theorem 10613

In this section, we prove Theorem 10 on excess population risk bounds of local SGD for convex614

problems. To this aim, we require the following lemma on the optimization error bounds [44]. Note615

FS(w∗) ≥ FS(wS).616
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Lemma 18 (Optimization Errors of Local SGD: Convex Case). Assume for all z ∈ Z, the map w 7→617

f(w; z) is nonnegative, convex and L-smooth. Let {wm,r,t} be produced by the algorithm A defined in618

(5.1) with η ≤ 1/(4L). Assume for all r ∈ [R], t ∈ [K], Eim,r,t
[∥∇f(wr,t; zim,r,t

) −∇FS(wr,t)∥22] ≤ σ2.619

Then the following inequality holds620

EA[FS(w̄R,1)] − FS(w∗) ≲
∥w∗∥22
ηKR

+
ησ2

M
+ L(K − 1)η2σ2. (7.8)

We are now ready to prove Theorem 10. For simplicity, we assume E
[√

FS(wm′,r′,t′)
]
≲ 1, which621

is reasonable since we are minimizing FS by local SGD. Note this assumption is used to bound the622

stability and can be removed if we assume f is Lipschitz continuous (FS(wm′,r′,t′) appears in the623

stability analysis since we control the gradient norm by function values).624

Proof of Theorem 10. Analogous to Eq. (7.7), one can show that625

E
[∥∥∥ 1

M

M∑
m=1

wm,r,t −
M∑

m=1

w
(k)
m,r,t

∥∥∥2
2

]
≤ 16L

nM2
E
[ r∑
r′=1

M∑
m=1

K∑
t′=1

η2r′,t′f(wm,r′,t′ ; zk)
]

+
2

n2M2
E
[( r∑

r′=1

M∑
m=1

K∑
t′=1

ηr′,t′Cm,r′,t′,k

)2]
.

We take an average over k ∈ [n], and derive626

1

n

n∑
k=1

E
[∥∥∥ 1

M

M∑
m=1

wm,r,t −
M∑

m=1

w
(k)
m,r,t

∥∥∥2
2

]
≤ 16L

n2M2

n∑
k=1

r∑
r′=1

M∑
m=1

K∑
t′=1

η2r′,t′E
[
f(wm,r′,t′ ; zk)

]
+

2

n3M2

n∑
k=1

rMK

r∑
r′=1

M∑
m=1

K∑
t′=1

η2r′,t′E[C2
m,r′,t′,k].

By the self-bounding property and the symmetry between zk and z′k, we further know627

E[C2
m,r′,t′,k] ≤ 2E

[
∥∇f(wm,r′,t′ ; zk)∥22] + E

[
∥∇f(w

(k)
m,r′,t′ ; z

′
k)∥22

]
≤ 8LE[f(wm,r′,t′ ; zk)].

It then follows that628

1

n

n∑
k=1

E
[∥∥∥ 1

M

M∑
m=1

wm,r,t −
M∑

m=1

w
(k)
m,r,t

∥∥∥2
2

]
≤ 16L

nM2
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m=1

K∑
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η2r′,t′E
[
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]
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16LrK

n2M
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M∑
m=1

K∑
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η2r′,t′E
[
FS(wm,r′,t′)

]
.

It then follows the convexity of ∥ · ∥2 that629

1

n

n∑
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E
[
∥w̄R,1 − w̄

(k)
R,1∥

2
2

]
≤ 1

KRn
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Lη2

KRnM
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M
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) R∑
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.
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According to Lemma 1 (Part (b)) and using the assumption E
[
FS(wm,r,t)

]
≲ 1, we know630

E[F (w̄R,1) − FS(w̄R,1)] ≲
L

γ
E[FS(w̄R,1)] +

L(L + γ)η2

n

(KR

M
+

K2R2

n

)
.

We combine the above inequality and Lemma 18 together, and derive631

E[F (w̄R,1)]−F (w∗) ≲
L

γ
E[FS(w̄R,1)]+

L(L + γ)η2

n

(KR

M
+
K2R2

n

)
+
∥w∗∥22
ηKR

+
ησ2

M
+L(K−1)η2σ2.

We can minimize γ and use KRM ≍ n to get632

E[F (w̄R,1)] − F (w∗) ≲
LKRη

n
+

L2η2K2R2

n2
+

∥w∗∥22
ηKR

+
ησ2

M
+ L(K − 1)η2σ2.

Since η ≍ ∥w∗∥2
√
n/(KR

√
L), we know633

LKRη

n
≍ ∥w∗∥22

ηKR
≍

√
L∥w∗∥2√

n
,

L2η2K2R2

n2
≍ L2∥w∗∥22nK2R2

n2K2R2L
=

L∥w∗∥22
n

,

ησ2

M
≍ ∥w∗∥2

√
nσ2

MKR
√
L

≍ ∥w∗∥2σ2

√
nL

.

Since η ≲ (K − 1)−
1
2 ∥w∗∥

1
2
2 /(nL)

1
4 , we further know634

L(K − 1)η2σ2 ≍
√
L∥w∗∥2√

n
.

The stated bound then follows by combining the above discussions together.635

7.3. Proof of Theorem 11636

To prove Theorem 11, we require the following lemma on optimization errors [41, 21].637

Lemma 19 (Optimization Errors of Local SGD: Strongly Convex Case). Assume for all z ∈ Z,638

the map w 7→ f(w; z) is nonnegative, µ-strongly convex and L-smooth. Let {wm,r,t} be produced by639

the algorithm A defined in (5.1) with ηr,t = 4
µ(a+(r−1)K+t) ≤ 2/L with a > 2L/µ. Assume for all640

r ∈ [R], t ∈ [K], Eim,r,t [∥∇f(wr,t; zim,r,t) −∇FS(wr,t)∥22] ≤ σ2. Then the following inequality holds641

EA[FS(w̄R,2)] − FS(w∗) ≲
σ2

µMKR
+

L log(RK)

µ2KR2
.

Proof of Theorem 11. By the analysis in the proof of Theorem 9 (e.g. Eq. (7.4)), we know642
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, ∀r ∈ [R], t ∈ [K].
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Since the above inequality holds for all r ∈ [R], t ∈ [K] and w̄R,2 is a weighted average of wm,r,t, we643

then get644

1

n

n∑
k=1

E
[
∥w̄R,2 − w̄

(k)
R,2∥2

]
≲

√
L log(KR)

nµ

and therefore E[F (w̄R,2)−FS(w̄R,2)] ≲
√
LG log(KR)

nµ . We combine this generalization error bound and645

the optimization error bound in Lemma 19 to derive646

E[F (w̄R,2)] − F (w∗) ≲
G
√
L log(KR)

nµ
+

σ2

µMKR
+

L log(RK)

µ2KR2
≲

G
√
L log(KR)

nµ
,

where we have used KR ≳ nσ2

MG
√
L

and µKR2 ≳ n
√
L/G in the last inequality.647

8. Conclusion648

We investigate the stability and generalization of minibatch SGD and local SGD, which are widely649

used for large-scale learning problems. While there are many discussions on the speedup of these650

methods for optimization, we study the linear speedup in generalization. We develop on-average651

stability bounds for convex, strongly convex and nonconvex problems, and show how small training652

errors can improve stability. For strongly convex problems, our stability bounds are independent of653

the iteration number, which is new for the vanilla SGD in the sense of removing the Lipschitzness654

assumption. Our stability analysis implies optimal excess population risk bounds with both a linear655

speedup w.r.t. the batch size for minibatch SGD and a linear speedup w.r.t. the number of machines656

for local SGD.657

There are several limitations of our work. A limitation of our work is that we do not get optimistic658

bounds for local SGD which are important to show the benefit of low noises. Another limitation is659

that we only consider homogeneous setups in local SGD. It would be very interesting to extend the660

analysis to heterogeneous setups, i.e., where different local machines have different sets of examples.661

We will study these limitations in our future work.662
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[35] N. Mücke, G. Neu, and L. Rosasco. Beating SGD saturation with tail-averaging and minibatching. In740

Advances in Neural Information Processing Systems, pages 12568–12577, 2019.741

[36] M. Schliserman and T. Koren. Stability vs implicit bias of gradient methods on separable data and beyond.742

In Conference on Learning Theory, pages 3380–3394. PMLR, 2022.743

[37] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform conver-744

gence. Journal of Machine Learning Research, 11(Oct):2635–2670, 2010.745

[38] O. Shamir and N. Srebro. Distributed stochastic optimization and learning. In Annual Allerton Conference746

on Communication, Control, and Computing, pages 850–857. IEEE, 2014.747

[39] A. Spiridonoff, A. Olshevsky, and Y. Paschalidis. Communication-efficient SGD: From local SGD to one-748

shot averaging. In Advances in Neural Information Processing Systems, volume 34, pages 24313–24326,749

2021.750

[40] N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and fast rates. In Advances in Neural751

34



Information Processing Systems, pages 2199–2207, 2010.752

[41] S. U. Stich. Local SGD converges fast and communicates little. In International Conference on Learning753

Representations, 2018.754

[42] Z. Sun, X. Niu, and E. Wei. Understanding generalization of federated learning via stability: Heterogeneity755

matters. In International Conference on Artificial Intelligence and Statistics, pages 676–684, 2024.756

[43] P. Wang, Y. Lei, Y. Ying, and H. Zhang. Differentially private SGD with non-smooth losses. Applied and757

Computational Harmonic Analysis, 56:306–336, 2022.758

[44] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. McMahan, O. Shamir, and N. Srebro. Is local759

SGD better than minibatch SGD? In International Conference on Machine Learning, pages 10334–10343.760

PMLR, 2020.761

[45] B. E. Woodworth, K. K. Patel, and N. Srebro. Minibatch vs local SGD for heterogeneous distributed762

learning. In Advances in Neural Information Processing Systems, volume 33, pages 6281–6292, 2020.763

[46] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning. Constructive764

Approximation, 26(2):289–315, 2007.765

[47] D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran, and P. Bartlett. Gradient diversity:766

a key ingredient for scalable distributed learning. In International Conference on Artificial Intelligence767

and Statistics, pages 1998–2007. PMLR, 2018.768

[48] Y. Ying and D.-X. Zhou. Unregularized online learning algorithms with general loss functions. Applied769

and Computational Harmonic Analysis, 42(2):224–244, 2017.770

[49] H. Yu, S. Yang, and S. Zhu. Parallel restarted SGD with faster convergence and less communication:771

Demystifying why model averaging works for deep learning. In AAAI Conference on Artificial Intelligence,772

pages 5693–5700, 2019.773

[50] C. Yun, S. Rajput, and S. Sra. Minibatch vs local SGD with shuffling: Tight convergence bounds and774

beyond. In International Conference on Learning Representations, 2022.775

[51] Y. Zhang, W. Zhang, S. Bald, V. Pingali, C. Chen, and M. Goswami. Stability of SGD: Tightness analysis776

and improved bounds. In Uncertainty in Artificial Intelligence, pages 2364–2373. PMLR, 2022.777

[52] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In Advances778

in Neural Information Processing Systems, pages 2595–2603, 2010.779

35


	Introduction
	Related Work
	Problem Setup
	Generalization of Minibatch SGD
	Convex Case
	Strongly Convex Case
	Nonconvex Case

	Generalization of Local SGD
	Proofs on Minibatch SGD
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5 and Theorem 6
	Proof of Theorem 7 and Theorem 8

	Proofs on Local SGD
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Conclusion

