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Abstract

The increasing scale of data propels the popularity of leveraging parallelism to speed up the optimiza-
tion. Minibatch stochastic gradient descent (minibatch SGD) and local SGD are two popular methods
for parallel optimization. The existing theoretical studies show a linear speedup of these methods
with respect to the number of machines, which, however, is measured by optimization errors in a
multi-pass setting. As a comparison, the stability and generalization of these methods are much less
studied. In this paper, we study the stability and generalization analysis of minibatch and local SGD to
understand their learnability by introducing an expectation-variance decomposition. We incorporate
training errors into the stability analysis, which shows how small training errors help generalization
for overparameterized models. We show minibatch and local SGD achieve a linear speedup to attain
the optimal risk bounds.
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1. Introduction

Modern machine learning often comes along with models and datasets of massive scale (e.g., millions
or billions of parameters over enormous training datasets) [562, 28], 38, 22], which renders the training
with sequential algorithms impractical for large-scale data analysis. To speed up the computation, it
is appealing to develop learning schemes that can leverage parallelism to reduce the amount of time in
the training stage [44]. First-order stochastic optimization is especially attractive for parallelism since
the gradient computation is easy to parallelize across multiple computation devices [38] 27, [45]. For
distributed optimization, communication has been reported to be a major bottleneck for large-scale
applications [41]. Therefore, increasing the computation to communication ratio is a major concern in
developing parallelizable optimization algorithms.

A simple stochastic first-order method is the minibatch stochastic gradient descent (minibatch

SGD) [38], 12, 1T, 28, 47], where the update at each round is performed based on an average of
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gradients over several training examples rather than a single example. Using a minibatch helps in
reducing the variance, and therefore accelerates the optimization. The computation over a minibatch
of size b can be distributed over M machines, where each machine computes a minibatch of size
K = b/M before communication. This increases the computation to communication ratio. Due to its
simplicity, minibatch SGD has found successful applications in a variety of settings [45], [38].

An orthogonal approach to increase the computation to communication ratio is the local SGD [32]
411, 50]. For local SGD with M machines, we divide the implementation into R rounds. At each round,
each machine conducts SGD independently in K iterations, after which an average over M machines is
taken to get a consensus point. Unlike minibatch SGD, local SGD is constantly improving its behavior
even when the machines are not communicating with each other. Due to this appealing property, local
SGD has been widely deployed in many applications [32].

The promising applications of minibatch SGD and local SGD motivate a lot of theoretical work to
understand the performance of these methods. A linear speedup with respect to (w.r.t.) the batch size
was established for minibatch SGD in both online [12] and stochastic setting [38] [[1], which is further
extended to its accelerated variants [I2] [45]. The analysis for local SGD is more challenging. A linear
speedup w.r.t. the number of machines was developed for local SGD with strongly convex [41] and
convex problems [44] 2T]. These results on linear speedup build the theoretical foundation for using
the parallelism to reduce the computation for large-scale problems.

The above results on linear speedup are obtained for optimization errors in a multi-pass setting, i.e.,
the performance of models on training examples. However, in machine learning we care more about the
generalization behavior of these models on testing examples, which have been scarcely touched for both
minibatch and local SGD with multi-passes over the data. To our knowledge, other than regression
with the specific least squares loss [35], [0, [29] [I7], there is no generalization analysis of minibatch and
local SGD that shows a linear speedup measured by testing errors. In this paper, we conduct the
generalization analysis of minibatch and local SGD based on the concept of algorithmic stability [4].
Our aim is to show the linear speedup observed in optimization errors also holds for testing errors.
Our main contributions are summarized as follows.

1. We develop stability bounds of minibatch SGD for convex, strongly convex, and nonconvex problems.
Our stability bounds incorporate the property of small training errors, which are often the case for
overparamterized models. For strongly convex problems, we develop stability bounds independent of
the iteration number, which is also novel for the vanilla SGD in the sense of removing the Lipschitz
continuity assumption. Based on these stability bounds, we further develop optimistic bounds on
excess population risks which imply fast rates under a low noise condition.

2. We develop stability bounds of local SGD for both convex and strongly convex problems, based on
which we develop excess risk bounds. This gives the first stability and generalization bounds for local
SGD.

3. Our risk bounds for both minibatch SGD and local SGD are optimal. For convex problems our
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bounds are of the order O(1/4/n), while for u-strongly convex problems our bounds are of the order
O(1/(np)), where n is the sample size. These match the existing minimax lower bounds for the
statistical guarantees [I]. Furthermore, we show that minibatch SGD achieves a linear speedup w.r.t.
the batch size, and local SGD achieves a linear speedup w.r.t. the number of machines. To our
knowledge, these are the first linear speedup for minibatch and local SGD in generalization for general
problems in the multi-pass setting.

To achieve these results, we develop techniques by introducing the expectation-variance decom-
position and self-bounding property [24], 25] into the stability analysis based on a reformulation of
minibatch SGD with binomial variables [14]. Indeed, the existing stability analysis of the vanilla
SGD [18, 24l 25] does not apply to minibatch SGD. Furthermore, even with our formulation, the
techniques in [25] would imply suboptimal stability bounds.

The paper is organized as follows. We survey the related work in Section 2] and formulate the
problem in Section [8] We study the stability and generalization for minibatch SGD in Section 4] and
extend these discussions to local SGD in Section b} We present the proof of minibatch SGD in Section
[6] and the proof of local SGD in Section [7} We conclude the paper in Section [§

2. Related Work

In this section, we survey the related work on algorithmic stability, minibatch and local SGD.

Algorithmic stability. As a fundamental concept in statistical learning theory (SLT), algorithmic
stability measures the sensitivity of an algorithm w.r.t. the perturbation of a training dataset. Var-
ious concepts of stability have been introduced into the literature, including uniform stability [4],
hypothesis stability [4], on-average stability [37, 24] and on-average model stability [25]. One of
the most widely used stability concept is the uniform stability, which can imply almost optimal
high-probability bounds [14], [l 13]. Stability has found wide applications in stochastic optimiza-
tion [I8), 25 24] [7, [34] 43] 10, [9]. An important property of the stability analysis is that it considers
only the particular model produced by the algorithm, and therefore can use the property of the learn-
ing algorithm to imply capacity-independent generalization bounds. Lower bounds on the stability of

gradient methods also draw increasing attention [3] 23].

Minibatch algorithm. Minibatch algorithms are efficient in speeding up optimization for smooth
problems. Shamir and Srebro [38] showed that minibatch distributed optimization can attain a linear
speedup w.r.t. the batch size, which was also observed for general algorithms in an online learning
setting [12]. These results were improved in [I1], where the convergence rates involve the training error
of the best model and would decay fast in an interpolation setting. The above speedup was derived
if the batch size is not large. Indeed, a large batch size may negatively affect the performance of the
algorithm [20] [3T]. Minibatch stochastic approximation methods were studied for stochastic composite

optimization problems [I5] and nonconvex problems [I6]. Recently, minibatch algorithms have been
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shown to be immune to the heterogeneity of the problem [45]. For problems with nonsmooth loss

functions, minibatch algorithms do not get any speedup [3§].

Local SGD. Local SGD, also known as “parallel SGD” or “federated averaging”, is widely used
to solve large-scale convex and nonconvex optimization problems [32]. A linear speedup in the number
(M) of machines was obtained for local SGD on strongly convex problems [41]. The key observation is
that local SGD can roughly yield a reduction in the variance by a factor of M. Despite its promising
performance in practice, the theoretical guarantees on convergence rates are still a bit weak and are
often dominated by minibatch SGD. Indeed, initial analysis of local SGD failed to derive a convergence
rate matching minibatch SGD’s performance, due to an additional term proportional to the dispersion
of the individual machine’s iterates for local SGD [44]. For example, the work [44] also presented a lower
bound on the performance of local SGD that is worse than the minibatch SGD guarantee in a certain
regime, showing that local SGD does not dominate minibatch SGD. Until recently, the guarantees
better than minibatch SGD were obtained under some cases (e.g., case with rare communication) [44]
211, [39]. These discussions impose different assumptions: Woodworth et al. [44] imposed a bounded
variance assumption, while Khaled et al. [2I] considered an almost sure smoothness assumption without
the bounded variance assumption. These results were extended to a heterogeneous distributed learning
setting |21l 45], for which heterogeneity was shown to be particularly problematic for local SGD. A
linear speedup w.r.t. M was also observed for nonconvex loss functions under a more restrictive
constraint on the synchronization delay than that in the convex case [49]. Lower bounds of local SGD
were established [44]. Generalization bounds of federated learning were recently studied based on

Rademacher complexity [33] and stability [42], [§].

The above results on the linear speedup for minibatch and local SGD were obtained for optimization
errors, which is the focus of the paper. The benefit of minibatch in generalization was studied for SGD
with the square loss function [35] [29] 6]. These discussions use the analytic representation of iterators

in terms of integral operators, which do not apply to general problems considered here.

3. Problem Setup

Let p be a probability measure defined on a sample space Z, from which we independently draw a
dataset S = {z1,...,2,} C Z of n examples. Based on S, we wish to learn a model w in a model space
W = R? for prediction, where d € N is the dimension. The performance of w on a single example
z € Z can be measured by a nonnegative loss function f(w;z). The empirical behavior of w can be
quantified by the empirical risk Fg(w) := % Z?:l f(w; z;). Usually, we apply a randomized algorithm
A to minimize Fs over W to get a model A(S). Then an algorithm can be considered as a map from the
set of samples to W, i.e., A : U, Z™ — W. A good behavior on training examples does not necessarily
mean a good behavior on testing examples, which is the quantity of real interest in machine learning
and can be quantified by the population risk F'(w) := Ez[f(w; Z)]. Here Ez[] denotes the expectation
w.r.t. Z. In this paper, we study the excess population risk of a model w defined by F(w) — F(w*),
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which measures the suboptimality as compared to the best model w* = arg miny ey F(w). Our basic

strategy is to use the following error decomposition
Es,a[F(A(S)) = F(w")] = Es,a[F(A(S)) = Fs(A(S))] + Es,a[Fs(A(S)) — Fs(w")], (3.1)

where we have used the identity Eg 4[Fs(w*)] = F(w*) and Eg 4[] denotes the expectation w.r.t. S
and A. We refer to the first term E[F(A(S)) — Fs(A(S))] as the generalization error (generalization
gap), which measures the discrepancy between training and testing at the output model A(S). We call
the second term E[Fs(A(S)) — Fs(w*)] the optimization error, which measures the suboptimality in
terms of the empirical risk. One can control the optimization error by tools in optimization theory.
As a comparison, there is little work on the generalization error of minibatch SGD and local SGD in
the multi-pass setting, the key challenge of which is the dependency of A(S) on S.

In this paper, we will use a specific algorithmic stability —on-average model stability— to address
the generalization error. We use || - |2 to denote the Euclidean norm. We denote S ~ S” if S and S’

differ by at most a single example.

Definition 1 (Uniform Stability). Let € > 0. We say a randomized algorithm A is e-uniformly stable
if supg g . Eallf(A(S):2) = f(A(S);2)[] < e

Definition 2 (On-average Model Stability [25]). Let S = {z1,...,2,} and S’ = {z],..., 2]} be drawn
independently from p. For any i € [n] := {1,...,n}, define S = {z1,..., 21,2, 2it1,...,2n} as the
set formed from S by replacing the i-th element with z,. Let € > 0. We say a randomized algorithm
A is {1 on-average model e-stable if Eg g a[2 377 | |A(S) — A(S™)||2] < ¢, and £, on-average model
e-stable if Eg s/ a[2 >0 | [JA(S) — A(SD)||3] < €.

According to the above definition, on-average model stability considers the perturbation of each sin-
gle example, and measures how these perturbations would affect the output models on average. Lemma
gives a quantitative connection between the generalization error and on-average model stability. We

first introduce some necessary definitions. We use Vg to denote the gradient of g.
Definition 3. Let g : W — R, G,L > 0 and p > 0.

1. We say g is G-Lipschitz continuous if |g(w) — g(w')| < G||lw — w'||2 for all w,w’ € W.
2. We say g is L-smooth if ||Vg(w) — Vg(w')||2 < L||w — w'||2 for all w,w’ € W.

3. We say g is p-strongly convex if g(w) > g(w') +(w —w’, Vg(w')) + §||w — w'[|3 for all w,w' € W.

We say g is convex if it is u-strongly convex with p = 0.

A non-negative and L-smooth function g enjoys the self-bounding property, meaning ||Vg(w)|3 <
2Lg(w) [40]. Examples of smooth and convex loss functions include the logistic loss, least square loss
and Huber loss. Examples of Lipschitz and convex loss functions include the hinge loss, logistic loss

and Huber loss.
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Lemma 1 (|25]). Let S, S’ and S be constructed as in Deﬁnition@ and v > 0.

(a) Suppose for any z, the function w — f(w;z) is convex. If A is €1 on-average model e-stable and

sup, [V f(A(S); 2)ll2 < G for any S, then [Es [Fs(A(S)) — F(A(S))]| < Ge.

(b) Suppose for any z, the function w — f(w; z) is nonnegative and L-smooth. If A is s on-average

model e-stable, then the following inequality holds

Es.4[F(A(S)) - Fs(A(9))] < %ES,A [Fs(A(S))] + Lz—fj > EssalllASY) — AS)I3]
i=1

Part (a) gives the connection between generalization and ¢; on-average model stability under a
convexity condition, while Part (b) relates generalization to 5 on-average model stability under a
smoothness condition (without a Lipschitzness condition). Note Part (a) differs slightly from that in
[25] by replacing the Lipschitz condition with a convexity condition and sup, |Vf(A(S);2)|l2 < G.
However, the analysis is almost identical and we omit the proof. An advantage of /5 on-average model

stability is that the upper bound involves the training errors, and improves if Fs(A(S)) is small.

4. Generalization of Minibatch SGD

In this section, we consider the minibatch SGD for convex, strongly convex and nonconvex problems.
Minibatch SGD is implemented in several rounds/iterations. Let w; € W be an initial point. At the
t-th round, minibatch SGD randomly draws (with replacement) b numbers i, 1, ...,%;; independently
from the uniform distribution over [n], where b € [n] is the batch size. Then it updates {w;} by

(te R ={1,2,...,R})

b
Wit = Wi — % Z V f(we; Zz‘,,,j)a (4.1)
j=1

where {1, } is a positive step size sequence. If b = 1, then Eq. (4.1)) recovers the vanilla SGD. If b = n,
the above scheme is still different from gradient descent since we consider selection with replacement.

For simplicity, we always assume b > 2. We summarize the results of minibatch SGD in Table

4.1. Convex Case

We first present stability bounds to be proved in Section Eq. considers the /1 on-average
model stability, while Eq. considers the f> on-average model stability. An advantage of the
analysis with /> on-average model stability over ¢; on-average model stability is that it can imply
generalization bounds without a Lipschitzness condition. We denote A < B if there exists a universal
constant C' such that A < CB. We denote A 2 B if there exists a universal constant C' such that
A>CB. We denote A< Bif A< Band A2 B.

Theorem 2 (Stability Bounds for Minibatch SGD: Convex Case). Assume for all z € Z, the map

w — f(w;2) is nonnegative, convex and L-smooth. Let S, S’ and S™) be given in Definition @ Let
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Table 1: Excess population risks of Minibatch SGD for convex, strongly convex and gradient-dominated problems. We
consider smooth problems and only show the dependency on n,b, u and F(w*). The column “Risk” denotes the excess
population risk, the column “R” denotes the number of iterations, the column “Constraint” indicates the constraint on
the batch size b and the column “Optimal R” is derived by putting the largest b in R. We achieve a linear speedup w.r.t.
the batch size for convex, strongly convex and nonconvex problems (PL condition is defined in Eq. ) For convex

problems, we derive optimistic bounds which improve to O(n™1!) in a low noise case, i.e., F(w*) < n—L

Assumption Risk R Constraint | Optimal R
Fw') > 1n | /Fw)/n n/b bt | s
convex w
F(w*)<1/n i n — n
p-strongly convex 1/(npw) max{n/b, p~ ! logn} — uwllogn
p~PL condition 1/(nu) n/(bu?) b<.n/u putlogn

{w:} and {ng)} be produced by (@) with n; < 2/L based on S and S™), respectively. Then

1< L 2ni/2LE[Fs(wp,
LS Efwes - wiml) < 3 2V 2LEFs (W) (42)
nm:l k=1 n
and
1 « 16L 8
=3 Eflwen - wil|] < Zn E[Fs(wg)] + Z [(annw Wi 2in) |2 ) BCE)
m=1 m=1

Remark 1 (Explanation and comparison). A property of these stability bounds is that they involve the
empirical risks of wy, which would be small since we are minimizing the empirical risk by stochastic
optimization algorithms. Similar stability bounds involving Fs(wy) were developed for the vanilla
SGD [25]. Their argument needs to distinguish two cases according to whether the algorithm chooses
a particular example at each iteration. This argument does not work for the minibatch SGD since
we draw b examples per iteration, and we can draw the particular example several times. We bypass
this difficulty by introducing the expectation-variance decomposition and self-bounding property into
the stability analysis based on a reformulation of minibatch SGD [24, 25| [I4]. We refer the readers to
Remark [§] for the detailed discussions on the novelty of our analysis.

The stability of minibatch SGD with 1, = 7 has also been studied recently [47,[2]. The discussions in
Theorem 9 in [47] give a stability bound of the order O(nt/n+vnt), where v = Pr{infy, w Bs(w, w’) <
(b—1)/(2/(Ln) —n/(n —1))} and Bg(w,w’) is a measure on the gradient diversity defined below

Bs(w,w') = n22:1 IV f(w;zi) = V(w5 z0)l5
12201 (Vf(ws21) = V(W5 2:)) 13

If v is not very small, their stability bounds would be vacuous due to the term ynt. The stability bound

order O(nt/n) was developed in [2]. These discussions require f to be convex, smooth and Lipschitz

continuous. Furthermore, these discussions do not incorporate training errors into the stability bounds,
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and cannot imply optimistic bounds. We remove the Lipschitz condition in our analysis and obtain

optimistic bounds.

We plug the stability bounds in Theorem [2] into Lemma [I] to control generalization errors, which
together with the optimization error bounds in Lemma implies the following excess risk bounds. It
should be noted that we do not require the function f to be Lipschitz continuous. The proof is given

in Section [6.21

Theorem 3 (Risk Bounds for Minibatch SGD: Convex Case). Assume for all z € Z, the function
w — f(w;z2) is nonnegative, convex and L-smooth. Let {w:} be produced by (4.1) with ny = n <
1/(2L). Then the following inequality holds for Wg := + Zf:l w; and any vy >0

nLF(w*)  [|w*|3 [w*lI5\ (1 (R R
< L(Few)+ ™Y (L L .
ST Ty T (Few)+ IR ) S+ (L (nb+ )

E[F(Wr)] -~ F(w") =

Note the above excess risk bounds involve F(w*) and would improve if F(w*) is small, which is
true in many learning problems. The terms involving F(w*) also correspond to gradient noise since
the variance of gradients can be bounded by function values according to the self-bounding property
of smooth functions. The risk bounds of this type are called optimistic bounds in the literature [40].

As a corollary, we develop explicit excess risk bounds by choosing suitable step sizes and number of
rounds, using the idea of early-stopping [46]. Note the step size depends on F(w*) which is unknown
to us. However, this is not a big issue since we can choose step sizes independent of F(w*) to derive
bounds of the same order of n but worse order of F'(w*). It shows that minibatch SGD can achieve the
excess risk bounds of the order \/F(w*)/n if F(w*) > 1/n, and can imply much better error bounds
of the order 1/n if F(w*) < 1/n. The proof is given in Section

Corollary 4. Let assumptions in Theoremﬁ hold and 1 = min {%, i }

U Y AT
1. If F(w*) > ALb?||w*||3/n, we can take R < % to derive E[F(Wg)] — F(w*) < w

n

2. If F(w*) < 4Lb?||lw*||3/n, we take R < n to get E[F(Wg)] < F(w*) +

Remark 2 (Linear speedup). We now give some explanations on linear speedup. For the case
F(w*) 2 1/n, a larger batch size allows for a larger step size, which further decreases the number
R of rounds. It shows that minibatch SGD achieves a linear speedup if the batch size is not large, i.e.,
it only requires O(n/b) rounds to achieve the excess risk bound O(n~2) if b < VnE(w*)/(VL|w*|2).
Such a linear speedup was observed for optimization errors for multi-pass SGD [II]. Indeed, it
was shown that minibatch SGD requires O(n/b) rounds to achieve the optimization error bounds
E[Fs(Wg)] — Fs(w*) < \/Fs(w*)/n if b < /nF(w*)/(VL|[w*|2). We extend the existing optimiza-
tion error analysis to generalization, and develop the first linear speedup of the minibatch multi-pass
SGD as measured by risks for general convex problems. In particular, our regime b < /nF(w*)
for linear speedup in generalization matches the regime b < \/W for the linear speedup in

optimization [11].
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For the case F(w*) < 1/n, Corollary [4] shows that a larger batch size does not bring any gain in
speeding up the risk bounds. The underlying reason is that the variance is already very small in this
case, and a further reduction of variance by minibatch does not bring essential benefits in the learning

process.

4.2. Strongly Convex Case

We now consider strongly convex problems. Theorem [f] gives stability bounds, while Theorem [f]

gives excess population risk bounds. The proofs are given in Section

Theorem 5 (Stability Bounds for Minibatch SGD: Strongly Convex Case). Assume for all z € Z, the
map w — f(w;2) is nonnegative, p-strongly conver and L-smooth. Let S, S’ and S'™ be constructed

as in Definition @ Let {w} and {W,Em)} be produced by [@.1)) based on S and S, respectively. Then

t t

1 n
EZE[HWHl Wt+1|| VE[Fs(wy)] H (1 — pmwer /2), (4.4)
m=1 =1 k'=k+1
1 n
=3 Elllweer = i 2] £ 1/(np), (4.5)
m=1
n t t
1 16Ln? 32L77;C
=Y Eflwen —wilB] < 3 (S + S EFs(wi)] [T A —pme/2). (46)
m=1 k=1 nop k/'=k+1

Remark 3 (Explanation). Eq. - ) and Eq. . ) consider the ¢; on-average stability. The former
involves the empirical risks in the upper bound and therefore can benefit from small empirical risks,
while the latter shows minibatch SGD is always stable in the strongly convex case, no matter how
many iterations it takes. Eq. is also new in the vanilla SGD case with b = 1. Indeed, the work
[18] also derived the iteration-independent stability bound O(1/nu). However, their discussion requires
the function f to be strongly-convex, smooth and Lipschitz. We show that the Lipschitz condition
can be removed without affecting the stability bounds. Eq. addresses the /5 on-average stability,

which shows that increasing the batch size is beneficial to stability.

Theorem 6 (Risk Bounds for Minibatch SGD: Strongly Convex Case). Let assumptions in Theorem
@hold and assume sup, |Vf(A(S);2)|l2 < G. Let 02 = E,[|[Vf(w*;2:,)|3]. If R > %log% and
b > no?/(GR), then we can find appropriate step size sequences and an average Wr of {w;}E., such

that E[F(wg)] — F(w*) S G/(nu).

Note that the assumption sup, |V f(A(S); 2)|l2 < G is much milder than the Lipschitz condition
since it only requires a bound of the gradient on the output model, which can be achieved by a
projection to the final output. To obtain the excess population risk bounds of the order O(G/(nwu)),

we require R = max{ 7g: , Llog "L} Then, if b < nuo?/(GL log(nL/G)), we know %log ok < ng

and choose R =<
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4.8. Nonconvex Case

In this subsection, we consider minibatch SGD for nonconvex problems. The following theorem
presents the stability bounds for smooth problems without the convexity and Lipschitzness assumption.

The proof is given in Section [6.4]

Theorem 7. Assume for all z € Z, the map w — f(w;2) is nonnegative and L-smooth. Let S, S’
and S be given in Definition @ Let {w} and {W,Em)} be produced by (4.1)) with n, < 2/L based on
S and S, respectively. Then

t

1 & m 2V2L
=D Ellwe —will) < == B [VEs(wi)] [ (1 mel).
m=1 k=1

k'=k+1

Now, we consider a special nonconvex problem under a Polyak-Lojasiewicz (PL) condition. The

PL condition was shown to hold for deep (linear) and shallow neural networks [7].

Assumption 1 (Polyak-Lojasiewicz Condition). Let wg = arg minwew Fs(w). We assume Fg satis-

fies the PL condition with parameter p > 0, i.e., for all w € W
1
Es[Fs(w) — Fs(ws)] < ZES[HVFS(W)H%]- (4.7)

Theorem [§] gives risk bounds for minibatch SGD under the PL condition, whose proof is given in

Section

Theorem 8 (Risk Bounds for Minibatch SGD: PL Condition). Assume for all z € Z, the map
w — f(w;2) is nonnegative and L-smooth. Let {wy} be produced by Eq. with ny = 2/(u(t+a)) and
a>4L/u. Let Assumptz'on hold and E, [HVf(wt; Zip) — VFS(Wt)H%] < o2, where iy, follows from the
uniform distribution over [n]. If R > max {Ly/n/p, Lo®n/(bu?)}, then E[F(wg)] — F(w*) < L/(npu).

According to Theorem [8] we require R > max {L\/n/u, Lo®n/(bu?)} to obtain the excess risk
bounds O(1/(np)). If b < o?y/n/p, we have Lo?n/(bu?) > Ly/n/p and therefore we can choose
R =< Lo®n/(bp?) to obtain a linear speedup w.r.t. the batch size. In particular, we can choose

b= o2y/n/uand R = Ly/n/p to get the bound E[F(wg)] — F(w*) < L/ (npu).

5. Generalization of Local SGD

In this section, we consider local SGD with M machines and R rounds. At the r-th round, each
machine starts with the same iterate w,. and independently applies SGD with K steps. After that, we
take an average of the iterates in each machine to get a consensus point w,41. Let w,, » 111 be the
(t + 1)-th iterate in the machine m at round r. Then, the formulation of local SGD is given below

Wm,rl = Wr, ME [M]a

Wi,rt+l = Wm et — nT,tvf(Wm,T,t; Zim,r,t)7 te [K]7

M
1
Wyl = M Z W K+1;, T € [R]’ (51)

m=1
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where 7,.+ is the step size for the ¢-th update at round r, and i, is drawn independently from the
uniform distribution over [n]. The pseudo-code is given in Algorithm If R = 1, then local SGD
becomes the one-shot SGD, i.e., one only takes an average once in the end of the optimization [52]
30, 19]. If K = 1, then local SGD becomes the minibatch SGD. Note that the computation cost
per machine is KR. We summarize the results on local SGD in Table 2] where we consider smooth

problems and ignore constant factors.

Algorithm 1 Local SGD
1: Inputs: step sizes {ny, ¢} and S

2: Initialize: w; € W
3: forr=1,2,...,Rdo
4: form=1,2,..., M in parallel do

5: Win,rl = Wy

6: fort=1,2,..., K do

7 Wmn,rt+l = W rt — Ur,tvf(wm,r,t; Zimm,,,)
8: end for

9: end for

1 M
10: Wrtl = 37 Zm:l Wi, r, K+1
11: end for

12: Outputs: an average of wy, .+

Table 2: Excess population risks of Local SGD for convex and strongly convex problems. The column “Risk” denotes the
excess population risk, the column “K R” denotes the number of iterations per local machine, the column “R” denotes
the communication cost, the column “Constraint” indicates the constraint on the number of machines M and the column
“Optimal KR” is derived by putting the largest M in K R. We achieve a linear speedup w.r.t. the number of machines

for both convex and strongly convex problems, under different regimes of M.

Assumption Risk KR R Constraint | Optimal KR

D=

convex O(1/+/n) n/M | n/(KM) | M<n N

p-strongly convex | O((nu)~tlog(KR)) | n/M | n/(KM) | M < \/nj Vn/u

In the following theorem, we develop the stability bounds for local SGD to be proved in Section
We consider both ¢; and ¢> on-average model stabilities.

Theorem 9 (Stability Bound for Local SGD). Assume for all z € Z, the map w — f(w;z) is
nonnegative, convex and L-smooth. Let S, S’ and S*) be constructed as in Definition @ Let {w,} and

{wgk)} be produced by (5.1)) with 1, < 2/L based on S and S¥), respectively. Then

R M K

LS Bl — ikl o] < 225 S $° S B[P (52)
k=1

r=1m=1t=1

11
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(Wi 26) = VI s 20l) ] (5.9

Remark 4 (Simplification). Note that the above stability bounds involve empirical risks, and can

< 1 (this is a reasonable

~

benefit from small empirical risks. Assume 7, = 1 and ]E[ Fs(Wiy r.t)
assumption since we are minimizing Fg). Then Eq. implies 1 >0 E[||wgy1 — W%:)_IHQ] <
KRn/n. Eq. implies L >0 | E[||wgry1 — W%?Llnz] < KRn?/(nM) + R?K?n?/n?, which shows
that increasing the number of machines improves the stability and generalization. It was shown that

increasing M can improve the optimization [44]. For example, the optimization error bound of the order

O(m + \/]\/[17KR> was developed in [44]. Therefore, we expect that increasing M would accelerate

the learning process.

Remark 5 (Effect of M). We give some explanation on the effect of M on stability analysis. Note the
above {1 on-average stability bounds are independent of M, while the 5 on-average stability bounds
improve as M increases. These phenomena can be explained by how the average operator affects the

expectation and variance. Indeed, both the ¢; and ¢, stability analysis are based on the following

inequality in Eq. ((7.3)

R M K Nt
HWR+1—WE§3_1H2SZZZM mrtk [tm,re=k]> (54)

r=1m=1 t=1

where €y ik = |V (Winrts 26) — V(W m Tt, 2e)l2s and Iy gy = 1if iy e = k, and O otherwise.
Note the above upper bound is an average of &, = Zle ZtK:1 Nt €t ki, =k OVEr m € [M],
which comes from the average scheme in local SGD. We take an expectation over both sides of Eq.
to get £1 on-average stability bounds. An average operator does not affect the expectation, which
explains why the ¢; on-average stability bounds are independent of M. We take an expectation-variance
decomposition to conduct the fo stability analysis, and the resulting bound involves a term related
to variance and a term related to expectation. The variance of an average of M random variables
decreases by a factor of M, which explains why the first term on the right-hand side of Eq. (5.3
involves a factor of 1/M. The second term in Eq. is independent of M since the average does
not affect expectation. This phenomenon also happens for minibatch SGD, where the average over a
batch of size b decreases the variance by a factor of b, and does not affect the expectation.

In the following table, we summarize the comparison on the stability bounds of minibatch and local
SGD for convex and smooth problems. Here T is the number of iterations per machine, which is R
for minibatch SGD and RK for local SGD. For simplicity, we ignore the discussion with optimistic

bounds, and simply assume the empirical risks are bounded in expectation.

Problems {1 on-average model stability | /5 on-average model stability
. VTy | Tn
minibatch SGD Job m
local SGD

=l =3

VTn | Ty
VnM n

12
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Note that all the above bounds involve %, which corresponds to an expectation term in controlling

the distance between two sequences of SGD iterates. We have either the term % or \/‘/;J for 4,

stability analysis, which corresponds to a variance and decreases as the batch size (number of machines)

increases.

We now use the above stability bounds to develop excess population risk bounds for local SGD.
We first consider a convex case. The proof is given in Section Note our stability analysis for
local SGD is data-dependent in the sense of involving training errors. Our excess risk bounds are
not data-dependent since the existing optimization error bounds are not data-dependent [44]. Tt is

interesting to develop data-dependent bounds for local SGD.

Theorem 10 (Risk Bound for Local SGD: Convex Case). Assume for all z € Z, the map w — f(w; z)
is nonnegative, conver and L-smooth. Let {wW, ..} be produced by the algorithm A defined in
with nyy =n < 2/L. Assume for all r € [R],t € [K], E;, [IVf (Wit Zinr) — VES(Wirt) 3] <
o2. Suppose we choose n =< |w*||2y/n/(KRVL). If KRM =< n, n < (K — 1)’%||w*||2%/(nL)% and
17 <1/(2L), then E[F(Wg1)] — F(w*) < %, where Wr1 = ﬁ foil Zle Zfil Wit

Remark 6 (Linear speedup). Theorem [10| shows that local SGD can achieve the minimax optimal
excess population risk bounds 1/y/n in the sense of matching the existing lower bounds [I]. We
now discuss the speedup in the computation and we have n < ||w*|2M/v/nL. Note < 2/L re-
quires M < v/nL/||w*||2. Furthermore, the condition n < (K — 1)_%||w*||2%/(nL)% requires M <
(nL)i/ V(K = 1)[[w*[]2. Under these conditions, local SGD achieves a linear speedup in the sense
that the computation per machine is of the order of KR < n/M.

Finally, we give risk bounds of local SGD for strongly convex problems to be proved in Section

Theorem 11 (Risk Bounds for Local SGD: Strongly Convex Case). Assume for all z € Z, the
map w — f(w;z) is nonnegative, p-strongly convexr and L-smooth. Let {wy, .} be produced by
the algorithm A defined in with ¢ = m < 2/L and a > 2L/u. Assume for all
re R)t€ (K], Buy VS Wonnts 6, )~V Fs (Wt [3] < 0% Assume sup, [V F(A(S): )]z < G.

2
If KR 2, Mgf and pnKR? > %, then

E[F(Wr.2)] - F(w*) S GVLIlog(KR)/(np),

where
R K M R K
Sk = ZZ(a+ (r—1)K+t) andWpgao = MSR Z ZZ a+ (r—1)K+t)Wp i
r=11t=1 m=1r=1 t=1
If M < fLiHi/» we can choose R = G\FKM to show that pK R? < % 2 ”‘F Therefore,

all the conditions of Theorem [11| hold, and we get the rate Gv/Llog(K R)/(npu).

Remark 7 (Comparison). Generalization bounds for agnostic federated learning were developed from

a uniform convergence approach [33], which involve Rademacher complexities of function spaces and

13
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are algorithm-independent. As a comparison, we study generalization from an algorithmic stability
approach and get complexity-independent bounds.

A federated stability was introduced to study the generalization of federated learning algorithms [§]
in a strongly convex setting. As a comparison, our analysis also applies to general convex problems.
Furthermore, their stability analysis was conducted for abstract approximate minimizers, while our
stability analysis is developed for local SGD. Finally, their bound involves an upper bound of the loss
function over a compact domain, and therefore cannot imply optimistic bounds.

There is a recent work on the generalization of federated learning algorithms on a heterogeneous
setup where the i-th local machine has its own dataset S; [42]. For local SGD with a constant
step size 7, their generalization bounds are of the order of O(n ' RKon(1 + Kn)) under a Lipschitz
continuity assumption and a bounded variance assumption E[||V f(w;2;) — VFs, (w)||3] < 02, where
z; is drawn uniformly from S;. While the bounds in [42] also involve ||[VF(w;)||, it is dominated by o
and therefore cannot imply fast rates in an interpolation setting. As a comparison, our bounds in Eq.
are optimistic and decay fast if Fs(wp, ;) decays to 0. Furthermore, the analysis in [42] requires
a Lipschitz condition on the loss function, which is removed in our analysis. Finally, we also develop
{5 on-average stability bounds, which are more challenging and illustrate the second-order information

on the stability.

6. Proofs on Minibatch SGD

6.1. Proof of Theorem[3

To prove Theorem [2| we first introduce several lemmas. The following lemma shows the self-
bounding property for nonnegative and smooth functions, meaning the magnitude of gradients can be

bounded by function values [40], [48].

Lemma 12 ([40]). Assume for all z, the function w — f(w;z) is nonnegative and L-smooth. Then

IVf(w;2)|3 < 2Lf(w:2).

In our analysis, we will use the concept of binomial distribution. Let Var(X) denote the variance

of a random variable X.

Definition 4 (Binomial distribution). The binomial distribution with parameters n and p is the
discrete probability distribution of the number of successes in a sequence of n independent trials,
with the probability of success on a single trial denoted by p. We use B(n,p) to denote the binomial

distribution with parameters n and p.

Lemma 13. If X ~ B(n,p), then
EX]=np and Var(X)=np(l—p).

A key property on establishing the stability of SGD is the non-expansiveness of the gradient-update

operator established in the following lemma.

14
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Lemma 14 ([I8]). Assume for all z € Z, the function w — f(w;z) is convex and L-smooth. Then

forn < 2/L we know
[w —nVf(w;z) —w' + 9V f(w;2)[2 < [[w — w2 (6.1)
Furthermore, if w — f(w;2) is pu-strongly convex and n < 1/L then

W =0V f(w;z) =w' + 9V (W5 2)ll2 < (1=nu/2)[[w — w2, (6.2)

[w =V f(w;2) =W + V(w5 2)[5 < (1 —np)lw —w'[l5. (6.3)

We are now ready to prove Theorem [2| The analysis for ¢;-stability bounds is standard [25]. As a
comparison, the analysis with the £s-stability bounds requires new techniques such as the expectation-
variance decomposition based on a representation of SGD with Binomial random variables. For sim-

plicity, we define J; = {i11,... 4}, ¢t € N.
Proof of Theorem[3 Define
em = |{j iy =m}|, VteN,mEe[n], (6.4)

where we use |S’| to denote the cardinality of a set S’. That is, o, is the number of indices equal to

m in the ¢-th iteration. Then the SGD update in Eq. (4.1) can be reformulated as

Wipl = Wi — % Z ay &V f (Wi 2k),
= (6.5)

wiil = w™ =3V wszm) - EEEV (w2,
k:k#m

from which we know
«
[Wip1 — Wt+1 ||2 wy — 2 a1,V f(We; 21) — va(wt; Zm)
b
k'k#?n

B S ana T + B ), (60
kk;ﬁm

For simplicity, introduce the notations for any ¢ € [T] and m € [n]
Apm = W= Wil Com = [VF(Wis2m) = VW™ 20 (6.7)

Since f is L-smooth and Zkzk#m apr < b, we know the function w — %Zkzk#m o f(W; 21) s

L-smooth. By Lemma |14 and the assumption 7, < 1/L, we know

arm@
Apim < [[wi = 3 Z o .oV f (Wi 2i) — Z a1V f(w zk)H2 + W
k:k#m k:k£m
¢
< Ag gy + LALmZtm
b
We can apply the above inequality recursively and derive (note wy = wgm))
1
At+1,7n = g kz_: nkak,mck,nr (68)
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According to the definition of oy i, we know that o4 , is a random variable following from the binomial

distribution B(b,1/n) with parameters b and 1/n, from which we know
Eloy k) =b/n, Var(awr) =b(1—1/n)-(1/n) <b/n. (6.9)
Furthermore, Lemma [12] implies

Con < IV (Wi 22 + IV W5 200 2 < V2LF (Wi 2m) + /2L f (W™ 22,). (6.10)

We can combine the above inequality, Eq. and Eq. together to derive

t
E[A¢41,m] < gz [k mChm] = 3 Z%E EJ, [ak,m]Chm] = an]E Chom) (6.11)
k=1

where we have used the fact that € ,, is independent of J,. According to the symmetry between
zm and z/., we know E[f(w (m), )] = E[f(wy; 2,)] and therefore Eq. (6.10) implies E[€ ] <
2\/2LE[\/ (Wg; zm)|. It then follows that

[At+1 m S 2\/7 Z \/ wk; Zm)] .

k=1

It then follows from the concavity of x — /x that

1 n . 9 n t
= 3 Elwer — wiTllle) < = 37 37 TE[V2LF (Wi )]

m=1 m=1 k=1
t n t
2n, | 2L 20/ 2LE|Fs (W
<> A > B[ (Wi 2m)] = D n[ ( H. (6.12)
k=1 m=1 k=1

This establishes the stated bound (4.2)).
We now prove Eq. (4.3). We introduce an expectation-variance decomposition in as follows

t

At+1m,bz77k Qm = 0/10) Ch + = kzlnkekm

We take square on both sides followed with an expectation (w.r.t. S and Ji,...,J;) and use (a+b)? <
2(a? + b?) to show

t

El0tun] < BE[( L mlonn )]+ ZE(Smenn)

k=1 k=1
— %E[ i NNk’ (Otk,m — b/n) (amm — b/n) Qk)ka/’m} + %E[( i nijkﬂn)Q}.
k,k'=1 k=1

For any k # k', it follows from E,, [ m] = b/n (we can assume k < k' without loss of generality)

E |:(ak,m — b/n) (ak/7m — b/n) Q:k,me:k/;,n} = EEJk/ |:(ak:,m — b/n) (ak’,m — b/n) (’:km(’:k/,m}

:Ewmm—WMEWMMm—W@QMQWJ:Q(6B)
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where we have used the fact that oy, Cxm and €, are independent of Ji-. It then follows from

Eq. that
B0%00] < ZE[ S a0t — b€l ] + E[( S mem)]
k=1

k=1

2 : 2 2 2 t ’
— bQE[kZ_lnkVar(ak,m)@k,m} + an[(;nk@k’m) }
< ;E{inlgei,m} + ;E[(Xt:%%mﬂ

k=1

<= [anc e E[(anHVfwk,zm)H)}

where we have used the following inequality in the last step

B[S menn)] < 28] S nlvmazle)’ }+2E[(anuw w2k |

t 2
—4E[( Y mlVF(wis zm)ll2) |- (6.14)
k=1
Analogous to Eq. , we have
E[€2 ] < 2E[||V f(wi; zn)[13] + 2E[|V £ (wi™; 20, |I3]
< ALE[f(Wi; 2m) + f(W\™520)] = SLE[f(Wi; 2m)]. (6.15)

It then follows that

t
E[A2 ] < 16L2nkE (wis 2] + B (S melV s wes zn)la) ]

k=1

We take an average over all m € [n] and get

n n t
LN A, < o Z S REf(ws )] + S B[( vzl 2
L} k 1m=1 = =1 k=1
n t
10D e[y + 5 S E (Smivsoneszntz) |
k=1 m=1 k=1
The proof is completed. O

Remark 8 (Novelty in the analysis). Similar stability bounds involving Fs(wy,) were developed for the
vanilla SGD [25]. Their argument needs to distinguish two cases according to whether the algorithm
chooses a particular example at each iteration. This argument does not work for the minibatch SGD
since we draw b examples per iteration and we can draw the particular example several times. We
bypass this difficulty by introducing the ezxpectation-variance decomposition and self-bounding prop-
erty [24, 25] into the stability analysis based on a reformulation of minibatch SGD with binomial
variables. Indeed, the paper [25] considers SGD with w11 = Wy — 7V f(Wy; 2;,). Their discussion

controls ||[Wi11 — \ilgfl) |2 by considering two cases: i; = m or i; # m. If iy = m, they use
Vi +v2ll3 < A+ p)lIvill + (1 +1/p) [ vll3 (6.16)
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and get ||wt+17wt_~_1 2< (1+p)||Wf*W(m) 13+(141/p)n?€? . Since iy = m happens with probability
1/n, they derive

- - (m - - (m 1 1
Bl — 78] < (14 p/mBlIN — W™ 3]+ O( () + B ]). (67)

For minibatch SGD, we may select i,, several times and cannot divide the discussions into two cases
as in [25]. Instead, we reformulate SGD as Eq. (6.5) with «;x being a binomial random variable.

Furthermore, even with the formulation, the existing techniques [25] would imply suboptimal bounds.

Indeed, applying (6.16) to Eq. would imply

E[AY ) < (L4 p)E[AF, ]+ 070 %(1+ 1/p)E[o],,€7 ]

< (14 p)E[A7,,] +20b"'n~ (1 +1/p)E[EF, ], (6.18)

where we have used Ej,[a7,,] < 2b/n. The key difference is we have a factor of 1 + p/n for SGD
and 1 4 p for minibatch SGD. To see how Eq. (6.18]) implies sub-optimal bounds, we continue the
deduction as follows. We apply Eq. (6.18) recursively and get

t
E[A? ), <267 ' (14 1/p) > (1 +p) ™ FEE] ] < 267 ' (14 1/p)(1+p) anE (.
k=1 k=1

¢ ¢
<207 'nT(1 4t eZnIE ] <16Lb'n~ 1+t)eZ77,3E[f(wk;zm)},
k=1 k=1
where we choose p = 1/t and use (1+ 1/t)! < e in the last second inequality, and use Eq. (6.15) in the

last inequality. An average over all m € [n] implies

n 9 t
i;E 2 1< 16L(1n—il; t)en kZ:llE[Fs(wk)], (6.19)
which is much worse than Eq. ({.3)). Indeed, if E[Fs(w)] < 1, then Eq. implies 3" | E[A7,, ]
t2n?/(nb). As a comparison, Eq. implies £ >0 E[A?, ] < tn?/(nb)+t*n? /n?. Note tn?/(nb)
outperforms t2n%/(nb) by a factor of ¢, and t2n%/n? outperforms 212 /(nb) by a factor of n/b.
We significantly improve the analysis in [25] by introducing new techniques in the analysis with
¢y on-average model stability. Our idea is to use an expectation-variance decomposition Azyq,, <
3 22:1 M (o —b/1) €+ = 22:1 M6€h,m- The key observation is that E[(cv,m —b/n)€pm (v m

b/n)€h m| = 0if k # k’. This removes the cross-over terms when taking a square followed by an

expectation, and implies

E[Aal’m] < ;E[kzi:n Qkom —b/n) } + E[(anQk m>2].

It is also possible to derive high-order stability bounds under a Lipschitzness assumption. We omit

the discussions for simplicity.

Remark 9 (Lower bounds). Recently, lower bounds on the uniform stability have also received in-

creasing attention. Let euuir be the uniform stability of SGD with ¢ iterations and a constant step
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size 7. For nonsmooth and Lipschitz loss functions, it was shown e, > min{1,t/n}nvt + nt/n for
convex problems [3], eunir = 1/py/n for p-strongly convex problems (u > 1/4/n) and eunir > n°n for
nonconvex problems (n < 1/4/n) [23]. For smooth loss functions, it was shown e,nir 2 nt/n for convex
and Lipschitz problems, and eynir 2 1/(un) for p-strongly convex problems [5I]. It is clear that our
on-average stability bounds in Eq. match the existing lower bounds on uniform stability in the

convex and smooth case.

Finally, we give some direct corollaries of Theorem By the Cauchy-Schwarz’s inequality (22:1 ar)? <

t22:1 a2, Eq. ([£.3) further implies

1 & 16L
- ST E[wen —wiiil3] < ZniE Fs(wi)l+ 5 anE IV f (Wk; 2m)[|3]
m=1 k=1 m=1 k=1

t
< (16L 16Lt) Z Fs wi)l, (6.20)

where we use ||V f(Wk; 2m)||3 < 2Lf(Wk; 2m) due to the self-bounding property. If b = 1, our analysis
implies stability bounds of order L(+ + -5) 22:1 n?E[Fs(wy)], which match the stability bounds for
SGD [25]. Furthermore, under a stronger self-bounding property ||V f(wg;zm)llz < f(Wg; 2m) (e.g.,
logistic loss) [36], Eq. implies

1 n L t 8 n t 2
- ZE[Hth —wt S — FS (Wg) +$ E[(anf(wk;zm)) ] (6.21)
m= k=1 m=1 k=1
6.2. Proof of Theorem[3

In this section, we present the proof of Theorem [3| on excess population risk bounds of minibatch

SGD. We first introduce the following optimization error bounds.

Lemma 15 (Optimization Errors of Minibatch SGD: Convex Case). Assume for all z € Z, the map
w — f(w;z) is nonnegative, convex and L-smooth. Let {w} be produced by Eq. (4.1) with n < 1/L.

Then the following inequality holds for all w

Zm \

XR: [Fs(wy)] — Fs( <l§: W+F5(W1) (6.22)
- stwol = Fs(w) < 35 : 2nR R ‘

Proof. Denote By = {z;, ,,...,2i,,} and f(w;B;) = %Z?:l J(w; 2, ;). Then the update of minibatch
SGD can be written as

Wt+1 = W — UVf(Wt, Bt)
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Since Ep, [f(wy; B)] = Fs(w:) we know

EallVf(we: B3] = Eall|Vf(we: Br) = VEs(w)l[3] + Eal[[VEs(we)]13]

= SEAIIVF(wes 2,.) = VEs(w0) [3] + BV Fs () ]

Wi Zi, 1) |13 we)l13
2LEA[f(Wis2i,0)]  Eall[VEs(we)|3]
b b

PLRAUSC) | v s (w3 (6:23)

+EA[|VEs(w,)|3]

where we have used the self-bounding property of smooth functions. Furthermore, by the convexity of

f we know
[Werr — w3 = [|we — w3 + 02|V f(We: Bo) |13 + 2n{w — wy, V f(wy; By))
< lwe = wl3 + n? |V f(we; Be)ll3 + 20(f(w; By) — f(we; By)).

It then follows that

2L772EA [Fs(Wt)]
b

Eallwesr —wl3] < Eallwe —wl3]+ + 0’ Eall|VEs(we)[3] +2nEa[Fs (W) — Fs(wy)]-

Taking a summation of the above inequality gives (w; = 0)

R

20 EalFs(wi) - Fs(w)] < ||wl3 + Ln ZEA Fs(wy) +TIQZ]EA IVEs(we)ll3].  (6.24)

By the L-smoothness of Fg and Eq. (6.23)) we have

LEA[[[We+1 — we|3]
2
= EAlPs(wi)] = B[V Fs(wi). ¥ (wys By) + =AUV (v BOJE]
L"Ba[Fs(wo)] | Ln*Eall|VEs(w)3]
b 2 '

Ea[Fs(Wet1)] < EalFs(we)] + Ea[(VFs(wWy), W1 — wy)] +

< Ea[Fs(we)] = nEa[l|VEFs(w)[3] +

It then follows from n < 1/L that

L2 3L EalFs(w)]
; :

1\3\:

R
Z IV Fs(we)l3] < EalFs(w1)] +

We combine the above inequality and Eq. (6.24) to derive (note n < 1/L)

R R
2Ln? 2022 S EalFg(w
2> EalFs(we) — Fs(w)] < w3+ 220 ZEA F(wa)] + 20Fs(wy) + 221 2tz Bl ()
t=1
2 R
< lwll3 + Z AlFs(wy)] + 2nFs(w1).

The proof is completed. O
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499

Proof of Theorem[3 We choose w = w* and take expectations w.r.t. S over both sides of Eq. (6.22)

to get

R
1 277L ||w*||§ F(wy)
— E|F — E F . 2
thzl [Fs (we)] =R Z swil+ 57 TR (6.25)

We consider two cases. If & Eil E[Fs(w:)] < F(w*), then this means that the optimization error in
Eq. (3.1)) is non-positive (this is the easier case since one does not need to consider the optimization

error)

R
ElFs(wn)] < 1 D BlFs(w)] < F(w") = E[Fs(w®)]

We now consider the case & Zle E[Fs(w;)] > F(w*). Then it follows from Eq. (6.25) that

R R
o 2nL 277L IIW 13 | F(wi)
g [Fs(w:) —F(w)sb—;E[Fsma— ZF i "R
R R
1 oy, 2nL o, IWH3 | F(wi)
< _ -~
<3 > E[Fs(wy) — F(w*)] + R > F(w)+ ok TR

where we have used n < b/(4L) due to b > 2. It then follows that

R
o o ALE(w*) w*3 | 2F(w1)
22: [Fs(w,)] — F(w*) < ; toR TR (6.26)

:U \

By Lemma [I| (Part (b)) and Eq. (6.20)), we know

BIF () - Fs(w)] < ZB[Fs(w)] + (L+) (5 + 55 ) - B[ Fawi)

t=1
Eq. (6.26) implies that

R
=S E[Fs(w)] £ F(w) + w3/ (rR).

We combine the above two inequalities together and derive (note Fs(Wg) < & Zf: 1 Fs(wy))

B[P (wn) — Ps(wp)] 5 L(EL ||;v*||%/<7;R>

]' R * *
)+ LA+ (= + = ) (REw) + W [3/).
n n
We plug the above generalization error bounds, the optimization error bounds in Eq. (6.26]) back into
Eq. (3.1), and derive

nLF(w*)  |lw*]3 +LF(W*)+LHW*||§/(?7R)
~ b nR o

+ L(L +~)n? (% + %) (RE(W*) + [|w*|13/n).

The proof is completed. O

Proof of Corollary[j} We first consider the case that F(w*) > 4Lb*||w*||3/n. In this case, we have

“ll2b *l2b
w2 = W ob_ We have

1 =
JInE ) < 5; and therefore 7 JInET)

R = IIW*Ilzb n_ /nl|w*z
VInF(w*) b /LF(w")
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511
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513

514

515

516

and therefore

A * * 2N/ Lb * |2
VL VL

Theorem |3| together with R =< n/b then implies

W* W* 2 2
i) o) § P I (L e ),

Since = ¥ 2b "= and 4 = \/InF(w*)/||w*|2, we know

nLF(w*)

nLE(w®) _ Lb|wr|| F(w®) _ |[w”|lo(LE(w™))?

b \/InF(w*) b NG ’
LE(w) _ LEWI)[w"]2 _ (LF(w*))=|[w*||2
Y LnF(w*) N

and
L(L+1)*R?F(w*) _ L(L+ (LnF(w*))? /|[w*|l2)[lw”[[30* R*F (w*)
2 - n2LnF(w*)
_ (LA (LnFw)? /W 2) [W* 3 (LE(w))? |[w* |2
n ~ NG '

n

We plug the above inequalities back into Eq. (6.27) and get E[F(wg)] — F(w*) < w

n

We now consider the case F(w*) < 4Lb?||w*||3/n. In this case, we have n = 1/(2L), R < n and

choose v < L. Theorem [3] implies

F * L * (|2 L * (|2 L * (|2
E[F(V_VR)] _ F(W*) 5 (W ) + ||W ||2 + L(F(W*) + ||W ||2)(L—1 +LL_2) 5 F(W*) + ||W ||2
b n n n
The proof is completed. O

6.3. Proof of Theorem[J and Theorem [0

In this section, we prove stability and risk bounds for minibatch SGD applied to strongly convex

problems.

Proof of Theorem[5 For simplicity, we assume f(w;z) = g(w;z) + r(w) with r : W — R* being u-
strongly convex and g : W x Z — RT being convex (this is a typical form for strongly convex problems

in machine learning). According to Eq. (6.5) and the sub-additivity of || - |2, we know

m Qt.m m

[Wes1 — wirille < "t LT g(wi; zm) — Vg(wi™; 20 o+

[[we — % Z at,ka(“’t%%) — 0 Vr(wy) — w,") + Z ek Vg(wy s 2) + e Vr(wy H2
k:k#m kk;ém

Since f is L-smooth and » ;. ¢, < b, we know the function w — %Zk:k;ﬁm o i f (W3 z) + r(w)

is L-smooth and p-strongly convex. By Lemma [14] and the assumption 7 < 1/L, we know

77t04t m

[Wesr — Witz < (1 — pme/2)[we — wi™ |2 + 2L [V g(wWes zin) — Vg(wi™ s 20l (6.28)
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sz Taking an expectation over both sides yields (note wy, ng) are independent of J;)

m m QLE[f(W ;Zm)]
Elf|wesr — Wi 2] < (1= pne/2)E[|we — wi™ 2] + nEmll,

n
sis - where we have used Eq. (6.10)) and Eq. . It then follows that
m w .
Elllwi1 —wiiill) < Fowiiza)l [T (= e /2).
K =k+1
si0 We take an average over m to derive
1 n . 2v/2L t n t
= > Ellwe —wi ] < ”n2 > mVEFweza)l [[ (1 e /2)
m=1 k=1m=1 K =k+1
2 / t
K =k+1
2\/2L ‘
=— 2 mVE[Fs(wy)] IT - pmwe/2),
k=1 K =k+1

s0 where we have used the concavity of x — /z. This proves Eq. (4.4).
521 We now turn to Eq. (4.5). Let wg = arg minyew Fs(w). The following inequality was established
52 In [45]

2202
El||lwitr — wsll3] < (1 — une)E[|wi, — ws 3] — mE[Fs(wi) — Fs(ws)] + kTS,

23 where 0% = E;,[|Vf(ws;zi,) — VFs(wg)||3]. We multiply both sides by H};/:kﬂ(l — ungr /2) and

s derive
t t
H (1 =y /2)E[[|wit1 — wsll3] < H (1 =y /2)E[[|wy, — ws3]—
k'=k+1 k'=k
t 2 9 t
205m; [ Tjr—pyr (1 — pmir /2)
me [T (0= e /2B[Fs (wi) — Fs(ws)] + === -
k' =k+1

s We take a summation of the above inequality and derive

t t t
o [T (40— pmw /2)E[Fs(wi) — Fs(ws)] <E[lwy —was3] [ (1 — pmw /2)+
k=1 k'=k+1 k=1
202 i i
=2 Zni H (1 — pwr /2). (6.29)
=k+1
56 There holds
/,L t t t t
52 H (L= pm/2) = (1= (L= pm/2)) T[] (1= pmw/2)
k=1 k'=k+ k=1 k' =k+1
t t t
= ( IT a-ww/2-JJ *mzk//2))
k=1 k'=k+1 k'=k
t
=1- [ —=pmw/2) <1 (6.30)
k'=1
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sz By the strong convexity of Fs and VFg(wg) = 0, we know
Fg(w1) = Fs(ws) = Fs(w1) — Fs(ws) — (w1 — wg, VFg(wg)) > *le wsl3

s and therefore

Elfjwy — ws]2] < %E[Fsml) ~ Fs(ws)] < 1/p.

s0  We can plug the above inequality and Eq. (6.30) back into Eq. (6.29) to derive (note 7, < 1/L and
o e < p/L<1)

t t t

S [T (s /2)E(Fs(wi)—Fs(ws)] < Ef[jwy—ws|Z+ QC’San I G-/ < 1/

k=1  k'=k+1 =k+1
sn We combine the above inequality and Eq. (6.30]) together and derive

t t t

an H (1 — pnw /2)E[Fs(wi)] = E[Fs(ws)] Y me [] (1= pwr /2)
=k+1 k=1 k'=k+1

+Y e [ (= pw /2E[Fs(wi) — Fs(ws)] S 1/p. (6.31)
k=1 k=ktl

s22 This together with Eq. (6.30]) implies that

t

> meVEFs(wi)] [[ (1= pme/2) < an H 1 — pme /2) (1 + E[Fs(wy)]) S 1/
k=1

k'=k+1 k 1 k=k+1
s We plug the above inequality back into Eq. to derive Eq. .
534 Finally, we prove Eq. . Recall the notations in Eq. . Then, Eq. implies Ayp1,m <
s (1 — une/2)A¢m + Mom€em/b. We apply this inequality recursively, and get

At-&-l m > b anak mC,m H 1 - 1“716//2)
=k+1
t

= %an(ak,m *b/n)@l@m H (1*,LL77]¢//2 anQ:km H 1f,u77k,/2
k=1

k'=k+1 =k+1

s We take a square and an expectation over both sides, and get

E[AL 1 ]
< ;E[(ink (0 = b/) € T] (= mo/2)] + ;E[(im@k,m IT G- per2)]
- K —k+1 k=1 K =k+1
= anﬂi{ o — b/n) €2, H (1 — pmer /2) } + E[(Zm%m H 1—w7k//2)) }
k=1 =k+1 =k+1
< % > onE[C,]) TT = pm /2 + %E[(an%,m H (1- ww«/Q))z},
k=1 K =k+1 k=1 K =kt1

su where we have used Eq. (6.13) and E;, [(om — b/n)Q] = Var(ag,m) < b/n. Furthermore, by the
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552

553

Schwarz’s inequality and Eq. (6.30]), we know

(an@ikm H 1_l“7k’/2> (Zmﬁkm H l_l”lk’/2)( ﬁ (1= e /2))

=k+1 =k+1 k=1 k'=k+1
anek m H (1 — pmr /2).
=k+1
We can combine the above two inequalities together and derive

t

o 4
B0l <3 (T + ) BICER] TT (1= pme/2).

k=1 k' =k+1
Analogous to Eq. (6.10]), we know ]E[Qi7m] < 8LE[f(Wg; zm,)] and therefore

t

t
16Ln?  32Lny
Bl < 3 (T Sy JES izl TT (= o /2)
k=1 k'=k+1

We can take an average over m € [n] to get the stated bound. The proof is completed.

O

Proof of Theorem[fl Since Fs(wg) < Fs(w*), an upper bound on Fs(A(S))— Fs(wg) is also an upper
bound on Fg(A(S)) — Fs(w*). Then, according to [45], there exists an average wg of {w;} such that
2

ubR’

EalFs(Wa)] ~ Fs(w') S - exp (— uB/L) + (6.32)

Theorem [5| shows that an algorithm outputting any iterate produced by Eq. (4.1) would be ¢; on-
average model O(1/(npu))-stable. It then follows that the output model wr would also be ¢; on-average

model O(1/(nu))-stable. Lemma [1| (Part (a)) then implies
E[F(Wg) — Fs(Wr)] S G/(np).

We plug the above two inequalities back to Eq. (3.1) and derive

L o2 G
E[F(w —F(w*) < = R/L .
[F(WR)] (w") < 1 exp( pk/ ) bR | nu
If we choose R > %bg % and b > gﬁ, we get
£exp(pr/L) < G/np and o < G/np
Iz ~ pbR ™
The proof is completed. O

6.4. Proof of Theorem[7 and Theorem[§

In this section, we present the proof of minibatch SGD for nonconvex problems. We first prove

Theorem
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Proof of Theorem[]. According to Eq. and the smoothness of f, we know A1, < (1 +
ML) At + % We apply the above inequality recursively, and derive

t

. B[t 1 €] : N E[Chm] !
E[A1m) < Y =t [T (L epeD) = 30 #=2m T (L meL).
k=1

b
k=1 k' =k+1 K =k+1

Analogous to Eq. (6.12)), we then get

L& 2V2L <~ = B[V (Wi zm)] 1
~ D Ellwe —wi ) < =303 [ . LT aenen)
m=1 m=1 k=1 k'=k+1
2v2L < !
< mE[VFs(wi)] [ (1 +mL).
n
k=1 k'=k+1
The proof is completed. O

We now prove Theorem |8 on risk bounds of minibatch SGD under the PL condition. We first
introduce the following lemma relating generalization to optimization for problems under the PL

condition [26].

Lemma 16 (Generalization Bounds under PL Condition). Assume for all z € Z, the map w — f(w; z2)
is nonnegative and L-smooth. Let A be an algorithm. If Assumptz'on holds and L < nu/4, then

< L6LE[F5(A(S)] LE[F5(A(S)) - FS(WS)].

E[F(A(S)) — Fs(A(S))] - 24

(6.33)

The following lemma gives the optimization error bounds for minibatch SGD under the PL condi-

tion.

Lemma 17 (Optimization Errors for Minibatch SGD: PL condition). Assume for all z € Z, the
map w — f(w;z) is nonnegative and L-smooth. Let Assumption |1 hold and E;, [||V f(wy; z;,,) —
VFs(wy)|3] < o2, where iy, follows from the uniform distribution over [n]. Let {w;} be produced by
the algorithm A defined in with n; = 2/(u(t +a)) and a > 4L/u. Then

L2 Lo?

—_ ——. 34
i (6.34)

Ea[Fs(Wrt1)] — Fs(ws) S

Proof. Note the assumption a > 4L/p implies i, < 1/(2L). For simplicity, we denote g; = + Z?=1 Vw2, ;)

Then Eq. (4.1) becomes w11 = wy — n:g;. By the L-smoothness of Fg, we have

L
Fs(wii1) < Fs(wi) + (Wiy1 — wy, VFEs(wy)) + §||Wt+1 — w3

_ Lo 2
= Fs(wi) — (g, VEs(wy)) + THQt”z

< Fs(wy) = (g, VEs(We)) + L (llge — VEs(wi) |3 + [ VEs(wy)|[3)-
We take a conditional expectation over both sides and derive

Ej, [Fs(Wi1)] < Fs(we) = nel[VEs(wo)lI3 + Log (s, [llge = VEs(wa)[3] + [V Fs(w)|3)

= Fs(w¢) — e[ VEs(we)|13/2 + L7 B, [[lge — VEs(wy)|l3],
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580
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585

where we have used the assumption n; < 1/(2L). Note the variance reduces by a factor of b with a
minibatch, i.e.,
S 9, _ 02
Eslllge = VEs(we)llo] = B [V F (Wi 20) = VEs(wi)lla] < -
We combine the above two inequalities together and take an expectation w.r.t. the remaining random

variables to get

EA[Fs(wes1)] < BalFs(w)] — nEall VEs(wo) [3)/2 + “27

We subtract both sides by Fs(wg) and use the PL condition to derive

Ln?o?
E[Fs(Wet1)] — Fs(ws) < Ea[Fs(we)] = Fs(ws) — pne(Ea[Fs(we)] — Fs(ws)) + 772
Ln?c?
= (1= o) (BalFs(w))] = Fs(ws)) + =5
Since n; = ﬁ, we know
2 4Lo?
- <(1-—=- - e
BalFs(wera)] = Fs(ws) < (1= o) (BalFs(w)] = Fs(ws) + 1o
We multiply both sides by (¢ + a)(t + a — 1) and get
4Lo?
(t+a)(t+a—1)(Ea[Fs(Wii1)] — Fs(ws)) < (t+a—1)(t+a—2)(Ea[Fs(w,)] — Fs(ws)) + B
We take a summation of the above inequality from t =1 to R and get
4L Ro?
(R+a)(R+a—1)(EalFs(Wr41)] — Fs(ws)) < ala—1)(Ea[Fs(w1)] — Fs(wg)) + b
The stated bound then follows directly since a > 4L/u. The proof is completed. O
Now we are ready to prove Theorem [§] for nonconvex problems.
Proof of Theorem[8 According to Lemma [I6] and Lemma [I7] we know
L LE[Fs(WR) - Fs(Ws)} L L3 L20'2
E[F(wg) — F <z <z =z 2T
[F(Wr) s(ws)] S nu + [ ~onp | P R2 + bR
Since Fs(wg) < Fg(w*), we then derive
B[ (w)] — F(w*) = E[F(wg) ~ Fs(w)] < B[F(wq) — Fs(ws)] S + - + L7
R - R S = R S S ~ n/}] ,U'?)RQ b/.l/sR N
Since R > max {Ly/n/p,nLo?/(bp?)}, we know
uQRQ >n and b/fR > n.
It then follows that E[F(wg)] — F(w*) < L/(nu). The proof is completed. O
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7. Proofs on Local SGD

7.1. Proof of Theorem[9

In this section, we prove stability bounds on local SGD.

Proof of Theorem[9 Let {wm -++1) be the sequence produced by Eq. (5.1)) on S®*). We introduce the

notations

k
Am,r,t,k - me,r,t - Wgn?r,tHQa Qm,nt,k = ||vf(wm77‘,t; Zk) vf( m T ) Zk)||2

If iy, 7 k, we can use Lemma [14] to derive

k k
Apriri ke = me,r,t - nr,tvf(wm,r,t5 Zim,r,t) - 7(71)7‘ ¢t Nt Vf( Wi, r 3 Rlam, et H2 < ”Wm,r,t - W7(71,)'r‘,t||2'

If iyt = K, we have

Am,'r‘,t—i-l,k - ||Wm,r,t - n7',tvf(wm,7',t; Zk) - £n)7't + Tt Vf( m 7 t Zk HZ < Am r,t.k + Tr, tQ:m itk

We combine the above two cases together and derive

Am,r,tJrl,k < Am,r,t,k + nr,tQ:m,r,t,k]I[immt:k]v (71)

where I; - _jj denotes the indicator function of the event {i,, .+ = k}, i.e., I;;,  ,—g) = Vif iy, e = F,

m,r,t

and 0 otherwise. We apply the above inequality recursively and get

K
Am,r,K-‘rl,k < Am,r,l,k + E nr,tQ:m,r,t,kl[[im,,.,t:k]'
t=1

We take an average over m € [M] and use w41 = 37 Zm 1 Wi, r K+1 to derive

M K
Iwrer = w3l < o7 Z [Womrcer =W eqallz < we = w4+ 373 S €, o
m=1t=1 (7.2)
where we have used w,, »,1 = w,. We can apply the above inequality recursively, and derive
R M K
|Wrt1 — ngl“z < Z Z Z %Qm,r,t,kﬂ[i,m,,t:k]- (7.3)
r=1m=1 t=1

We first consider the ¢; on-average model stability. We know that i, ,: takes the value k with
probability 1/n, and other values with probability 1 —1/n. We take expectation w.r.t. iy, ,; and note

Cpn.rt k is independent of i, , , which implies

) R M K . 2@ R M K
T,
E[HWR-&-l - WR+1H2} S Z Z nME[Qm,r,t,k] S nM Z Z an,tE[ f(wm,r,t; Zk):|7 (74)
r=1m=1t=1 r=1m=1t=1
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where we have used the self-bounding property and the symmetry between z; and zj, (analogous to

Eq. (6.10). It then follows from the concavity of z — /x that

%ZE[”WR—&-l —witlll2] 27;2/% SN anE{ S (Wit Zk)}
k=1 k= =

IN

INA
[N}
@
h
]
NE
]
§
&
?
M
&..a
e
3
v
N|=

)]

%
Il
-
3
Il
-
~

nM

2V2L e L & 3
= M Z Z Z"% tE|:<FS(W7rL7 t)) :|
This proves Eq. (5.2). We now consider the ¢5 on-average model stability. We take an expectation-

variance decomposition in Eq. (7.3)) and derive

R M K n R M K
HWR+1 WR+1||2 S Z Z Z Tt m ,rt, k zm rt=k] — ]-/n -t Z Z Z vﬁ\jgm,r,t,k‘ (75)
r=1m=1t=1 r=1m=1t=1

Analogous to Eq. (6.13]), we have (note iy, ., is independent of 4, v ¢ if (m, 7, 8) # (M, 7, 1"), €t e

is independent of iy, ¢, and €, v ¢ is independent of 4y, 7 4/)
E[@mmt,k Tty romh) = 1/10) Crnt v 1 (H[lm, s =k — 1/n)} =0 ifeithert#t , m#m', orr#7r.

Then, we take a square on both sides of Eq. (7.5 followed by expectation, and analyze analogously
to the proof of Eq. (4.3)):

Eflwr —wia 3]

R M 9 R M K )
§2]EK szt mrtk( lim, = k]—l/n)> ]+EE[(ZZZT;\T/‘;¢W”’“) }
T x , ok )
E[ZZZ”, mrtkva’r(ﬂ[lmvt k])] +WE|:(ZZZ"7T,tQ:mTtk) }
r=1m=1t=1 r=1m=1t=1

2 R M K 2
nrt mrtk } + W}E{(Z Z Znnte:m,r,t,k) }7

1 r=1m=1t=1

&Mi
Mw

|:TZR1 t

where we have used Var(l[;,, ,—x) < 1/n. By the self-bounding property of f we know
[Q:m rt k] S 4LFE [f(Wm rts Zk?) + f( m)r t) k)} - SL]E[f(Wm,T,t; Zk)] (76)
It then follows that

Ew *) 16L R M ) ' 9 R M K 2
WR+1 — R+1H = nMQ [Z Z an,tf(wm,r,ta Zk):| + ngMQE[(Z Z an,t€m,r,t,k) }
r=1m=1t=1

r=1m=1t=1
(7.7)

The stated bound then follows by taking an average over k € [n] and noting Fs(w) = £+ 31", f(w; ;).
The proof is completed. O

7.2. Proof of Theorem[10]
In this section, we prove Theorem on excess population risk bounds of local SGD for convex
problems. To this aim, we require the following lemma on the optimization error bounds [44]. Note

Fs(w*) > Fs(wg).
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Lemma 18 (Optimization Errors of Local SGD: Convex Case). Assume for all z € Z, the map w —
f(w; 2) is nonnegative, convex and L-smooth. Let {w, ..} be produced by the algorithm A defined in
with n < 1/(4L). Assume for all v € [R],t € [K], B, [IVf(Wrs; 2i,.,..) — VFs(w1)]3] < 02
Then the following inequality holds

Ea[Fs(Wr,1)] - Fs(w*) S ”V;U'Lf F 17 (K~ 1o (7.8)

We are now ready to prove Theorem For simplicity, we assume E[ Fs(Wyy )| S 1, which
is reasonable since we are minimizing Fg by local SGD. Note this assumption is used to bound the
stability and can be removed if we assume f is Lipschitz continuous (Fg(Wp, ) appears in the

stability analysis since we control the gradient norm by function values).

Proof of Theorem[I0, Analogous to Eq. (7.7), one can show that

r

2 16L MK
2] = nMQE{T;T;;n?’,t’f(“’m,r’,tﬂZk)}
r M K )
]EK Z Z Z 777“’¢’¢7ﬂ,r',t’,k) }

r'=1m=1t'=1

£l 37 32w 2w
i m,r,t m,r,
M m=1 m=1 '

We take an average over k € [n], and derive

n s

2 16L
:| — n2M2 Z Z Z Z My t’E Wm,r/,t’;zk)]

k=1r'=1m=1t'=1

3M2 ZTMKZZZUTWS’E m,r’ t' k ]

r'=1m=1t'=1

1< 1 & 0
LD WIS o8
k=1 m= m=

By the self-bounding property and the symmetry between z; and zj,, we further know
(€2, v o i) < 2E[|VF (Wm0 23 26) |3 + B[V F (Wi 13 2 13] < SLE[f (Wm0 175 28)]-

It then follows that

L[ SUE SR

r

Wm r! t’)]

2} 16L

r/ 1m=1t'=1
17(15]7;4[( Z Z Zn7't/E FS Wim r't’)]'
r'=1m=1t'=1

It then follows the convexity of || - [|? that

n R K )
7Z]E”WR1 WRIH] Rn ZE[HM Zwm’"t_zwv(j’:)rt }
=1r=1t=1

1 E K 2,1 Ky S MK
SRR w31 T ) 2 2 L ElFsrr)]
r=1t=1 r'=1m'=1t'=1
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According to Lemma (Part (b)) and using the assumption E[Fg(Wy,r:)] < 1, we know

L(L + v)n? (@ N KQRQ)'

M n

BIF(Wa1) ~ Fs(Wna)] S ZB[Fs(wra)] + ~

We combine the above inequality and Lemma [18| together, and derive

L(L 2 K K2 2 *[|2 2
(L+7)n (ﬁR“L nR )+HW H2+ﬂ+L(K_1)nzaz

BIF(wa )| ~F(w*) $ ~E[Fs(wra)l+ R

~

n
We can minimize v and use K RM =< n to get

_ LK Rn 1/27721(2132 ||W*||% 7702 2 2
[F(Wr,1)] (W) < + 5 KR + Vi + L( n“o

Since n < ||[w*||2y/1/(K RV'L), we know

LKRy _ ||w*[l3 _ VL[|w*|2

n  nKR ~  n
L’K°R? _ L?|w*|3nK?R* _ L|w*|3
n?2 T m2K2R:L n

na® _ [w* [|l2y/no® _ IIW*Ilzaz.
M MKRVL vnL

Since n < (K —1)"2 ||w*||2%/(nL)i7 we further know

L *
L(K — 1)n?0? = 7f||w ”2
Vn
The stated bound then follows by combining the above discussions together. O

7.3. Proof of Theorem [I]]

To prove Theorem we require the following lemma on optimization errors [41] 21].

Lemma 19 (Optimization Errors of Local SGD: Strongly Convex Case). Assume for all z € Z,
the map w — f(w;z) is nonnegative, p-strongly conver and L-smooth. Let {w, ..} be produced by
the algorithm A defined in (5.1) with 0y = m < 2/L with a > 2L/p. Assume for all
re[R),te (K], B, IVf(Wrti2i,,.,.,) — VFs(W,.1)|13] < 0. Then the following inequality holds

o? n Llog(RK)
uMKR w2 KR?

Ea[Fs(Wgy2)] — Fs(w*) S

Proof of Theorem [T By the analysis in the proof of Theorem [J] (e.g. Eq. (7.4)), we know

1 2\/7
= ;E[nwm,t —wi ill2] < z o B[P (W 0.1

T/ 1t'=1

A

K
g (a+ (r —1)K+t’)

HM§ 3

f Llog(K R)
np

z\ﬂ :\%

A

Vr € [R],t € [K].

i
3
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Since the above inequality holds for all r € [R],t € [K] and Wg o is a weighted average of Wi, .1, we

then get

1 B (k VLlog(KR)
=N B[ Whe — Whhll] S o
"= H

and therefore E[F(Wpg2) — Fs(Wg2)] S %. We combine this generalization error bound and

the optimization error bound in Lemma [I9] to derive

< GV Llog(KR) N o? +Llog(RK) < GV Llog(KR)

E[F(Wr2)] — F(w")

~ ny pMKR pWEKR2 "~ nu ’
where we have used KR 2 Mrg\z/z and uKR? > nvL/G in the last inequality. O

8. Conclusion

We investigate the stability and generalization of minibatch SGD and local SGD, which are widely
used for large-scale learning problems. While there are many discussions on the speedup of these
methods for optimization, we study the linear speedup in generalization. We develop on-average
stability bounds for convex, strongly convex and nonconvex problems, and show how small training
errors can improve stability. For strongly convex problems, our stability bounds are independent of
the iteration number, which is new for the vanilla SGD in the sense of removing the Lipschitzness
assumption. Our stability analysis implies optimal excess population risk bounds with both a linear
speedup w.r.t. the batch size for minibatch SGD and a linear speedup w.r.t. the number of machines
for local SGD.

There are several limitations of our work. A limitation of our work is that we do not get optimistic
bounds for local SGD which are important to show the benefit of low noises. Another limitation is
that we only consider homogeneous setups in local SGD. It would be very interesting to extend the
analysis to heterogeneous setups, i.e., where different local machines have different sets of examples.

We will study these limitations in our future work.
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