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Abstract. Differentially private decision tree algorithms have been pop-
ular since the introduction of differential privacy. While many private
tree-based algorithms have been proposed for supervised learning tasks,
such as classification, very few extend naturally to the semi-supervised
setting. In this paper, we present a framework that takes advantage of
unlabelled data to reduce the noise requirement in differentially private
decision forests and improves their predictive performance. The main
ingredients in our approach consist of a median splitting criterion that
creates balanced leaves, a geometric privacy budget allocation technique,
and a random sampling technique to compute the private splitting-point
accurately. While similar ideas existed in isolation, their combination is
new, and has several advantages: (1) The semi-supervised mode of op-
eration comes for free. (2) Our framework is applicable in two different
privacy settings: when label-privacy is required, and when privacy of the
features is also required. (3) Empirical evidence on 18 UCI data sets and
3 synthetic data sets demonstrate that our algorithm achieves high utility
performance compared to the current state of the art in both supervised
and semi-supervised classification problems.
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1 Introduction

Differential privacy (DP) [9] is a notion of privacy that provides a rigorous
information-theoretic privacy guarantee. DP algorithms allow their outputs to
be shared across multiple parties and used for analysis by introducing random-
ization in critical steps of the learning algorithm. However, DP algorithms often
require a larger training set to achieve good performance due to the added noise.
Moreover, large labelled training sets are expensive and sometimes impractical to
obtain, especially for a sensitive data set (e.g. HIV positive data). On the other
hand, unlabelled data can be less privacy-sensitive and in many cases much more
cost-effective to obtain at large scale in comparison to accurately labelled data.
Due to these reasons, it is extremely valuable if we can make use of unlabelled
data to improve the performance of a learning algorithm in the private setting.
In this paper, we present a framework that builds machine ensembles in both
supervised and semi-supervised settings. The framework takes advantage of un-
labelled data to reduce the noise requirements and hence it only requires a small
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number of labelled samples to achieve high performance. Our framework invokes
constructing a tree structure that uses a density-informed splitting criterion to
create balanced leaves and naturally extends to semi-supervised learning with
different privacy settings. Current private tree-based algorithms in the literature
either use a greedy-decision approach, or a random-tree approach. Methods with
greedy approaches take the route of classical decision tree construction [5], and
compute the optimal splits at each node privately. Popular splitting techniques
such as the Gini index [27, 11] or the information gain criterion [13] are applied
in conjunction with a privatized algorithm. The drawback for this approach is
that it cannot be naturally extended to semi-supervised learning as they greed-
ily estimate the optimal split using the labels. On the other hand, random tree
approaches construct the tree by randomized splits at each node [17, 12, 14]. Ran-
domization is beneficial from the privacy perspective as it is data-independent
and leaks zero information about individuals in the data set. However, a fully
randomized split creates high variance and requires a large ensemble of trees to
perform well. We cannot afford a large ensemble due to the privacy constraint.
Furthermore, random-tree approaches do not take advantage of the unlabelled
data as the splits are chosen fully randomly. Since these approaches do not nat-
urally extend to the semi-supervised setting, we need to assign labels to the
unlabelled set using a trained model if we want to make any use of the unla-
belled data [16, 20]. While this method can help to improve accuracy in some
cases, it requires the predicted labels to be accurate for the output data to be
useful, which cannot be guaranteed in general. Furthermore, since the output
data contains the original features of the unlabelled set, it can only be applied
where we do not need the privacy of the features at all.

Instead of the previous approaches, our approach proposes a semi-greedy me-
dian splitting criterion that uses the features to make formative splits. Median
splitting has been used to build trees mostly in spatial decomposition where
we partition data sets to allow quick access to different parts of the data [2,
7]. However it also can be used for classification and regression problems with
good utility as shown in [4, 18] – even though classical decision tree methods
are better in general without privacy. A main intuition of median split is that
it creates density-balanced nodes, the concept matches with the density-based
dissimilarities in the work of Aryal et al [1]. That is, two points are more similar
if they lie in a sparse region than two other points in a dense region with equal
geometric distance. Each leaf comes with a similar amount of sample points.
Hence we avoid empty leaves and the noise level of each leaf is balanced. To
achieve high utility, we also employ several techniques to optimize each step of
the privatized model as follows. 1) We use a geometric-scaling privacy budget
allocation strategy to ensure accurate splits at each level. 2) We use a random
sampling technique to compute the private median effectively. 3) We use disjoint
subsets to create ensembles for both labelled and unlabelled sets to reduce noise
effects. While these techniques have pre-existed in isolation as parts of other al-
gorithms, the combination appears novel and it leads to a novel framework that
achieves high performance in both the supervised and semi-supervised setting.
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The remainder of the paper is organized as follows. We discuss the related works
in Section 2, and introduce some background in Section 3. In Section 4 we
present key steps of our strategy and the construction of a supervised algorithm.
Section 5 demonstrates our framework of creating ensembles in semi-supervised
learning. Finally, we present our experimental analysis of our method for both
supervised and unsupervised learning in Section 6.

2 Related Work

There is a vast amount of research in machine learning on differential privacy
since its introduction ([10, 15]). Tree-based methods are certainly one of the most
popular research topics, with early works on private random trees [17] and greedy
trees [13]. In [11] the authors proposed the use of local sensitivity [24] to reduce
the randomness in greedy trees. The idea has been extended in [12] to improve
private random trees using smooth sensitivity, which utilize an upper bound on
the local sensitivity. More recently, [27] proposed a greedy approach that takes
advantage of a notion of smooth sensitivity with the exponential mechanism for
both Gini index and label output. Another DP forest algorithm by [26] consid-
ers (ϵ, δ)-differential privacy which is a weaker notion of the pure ϵ-differential
privacy that we are concerned with here. As discussed in [12], it is possible to
obtain high utility while guaranteeing pure differential privacy. Other differen-
tially private algorithms such as [23] consider private data release – a different
problem setting from what we study here.
The construction of a tree structure using a median split has long lasted in spa-
tial trees [2] and private spatial decomposition [7]. For classification problems it
was initially used by [4], it then gradually gained attention and was analyzed
theoretically by [3]. Similar idea is also used in spatial decomposition such as
kd-trees [7]. More recently, [18] extended the idea to a median splitting random
forest in the non-private setting. The authors demonstrated a random forest us-
ing a median-based splitting along with its theoretical analysis. Furthermore, a
recent work by [6] proposed a private random forest using median splits however
their method uses a greedy approach to compute each split-attribute and does
not extend to semi-supervised learning. For private semi-supervised classifiers,
the random forest by [17] can be extended to take advantage of unlabelled data
[16]. Furthermore, work by [20] took advantage of unlabelled samples by provid-
ing predicted labels using a kNN classifier and then training a linear predictor
using the predicted set. However both methods apply only when the privacy of
the features is not a concern. Other semi-supervised methods [25] make extra
assumptions on the data set and differ from our setting here.

3 Preliminaries: Differential Privacy

In this section, we use X to denote a universal set that contains all possible data
points. We denote by S a set of observations from X . The privacy budget will
be denoted by ϵ > 0. Furthermore, we define the distance between two sample
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sets S,S′ to be the Hamming distance denoted as ∥S − S∥H , which equals the
number of points to be added and removed from S until S = S′.

Definition 1 (Differential privacy [9]). A randomized algorithm A is said
to satisfy ϵ-differential privacy if for any S, S′ ∈ Xn with ∥S − S′∥H ≤ 1, we
have

sup
B∈B

P[A(S) ∈ B]

P[A(S′) ∈ B]
≤ exp(ϵ), (1)

where B is the collection of all measurable sets in Range(A).

An immediate consequence of the definition is that DP algorithms are immune to
post-processing. That is, if A is ϵ-DP, then the composition f ◦A is also ϵ-DP for
an arbitrary mapping f [10]. We note that some other literature on differential
privacy considers the case where S and S′ (of the same size) differ by at most
one sample point. In contrast, we consider adding/removing a point, which is
the setting considered in most of the related works. The two settings only differ
by a constant factor on the sensitivity analysis.

Definition 2 (Global ℓ1-sensitivity [9]). The global ℓ1-sensitivity GS(f) of
a function f : Xn → Rm is defined as

GS(f) = max
S,S′⊂X :∥S−S∥H=1

∥f(S)− f(S′)∥1. (2)

The global sensitivity captures the maximum difference in the output when
swapping a data set with a neighbouring one that differs by at most one point.
There are other notions of sensitivity, such as the local sensitivity that considers
the particular data set S. Local sensitivity can be significantly smaller than
global sensitivity in many cases [11], however local sensitivity in itself does not
guarantee differential privacy. Next, we present two well-known mechanisms for
private algorithm design – the Laplace and the Exponential mechanisms.

Definition 3 (Laplace mechanism of [10]). Given any function f : Xn →
Rm, the Laplace mechanism is defined as

M(S, f, ϵ) = f(S) + (Y1, . . . , Ym), (3)

where Yi are i.i.d. random variables drawn from Lap(GS(f)/ϵ).

Definition 4 (Exponential mechanism of [21]). Let R be an arbitrary set
of output candidates. Given a utility function u : Xn × R → R that computes
the quality of a candidate r ∈ R, the exponential mechanism M(S, u,R) selects
and outputs one of these with probability proportional to the following

P[M(S, u,R) = r] ∝ exp

(
ϵu(S, r)

2GS(u)

)
. (4)

It is well-known that the Laplace and the Exponential mechanisms both sat-
isfy ϵ-DP. The reader can refer to [10] for detailed proofs of privacy guarantees.
The following composition theorems allow us to combine multiple private mech-
anisms.
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Theorem 1 (Sequential composition [21]). Let {fi}Ni=1 be a sequence of
queries on a data set S each satisfying {ϵi}Ni=1 differential privacy. Then the

output sequence {fi(S)}Ni=1 of all queries satisfies
∑N

i=1 ϵi differential privacy.

Theorem 2 (Parallel composition [22]). Let {Si}Ni=1 be disjoint subsets of
S, and f a query applied on each of the subsets Si while satisfying ϵ-DP. Then
the output sequence {f(Si)}Ni=1 satisfies ϵ-DP.

Sequential composition states that the more queries we send to the original
data set, the less privacy guarantee we have. Parallel composition says that
we do not lose the independent privacy guarantees if we query disjoint subsets
independently.

4 A Density-based Decision Tree

In this section, we describe the procedures and the key steps of our tree con-
struction. Overall, the algorithm is broken down into the following steps, where
the details are outlined in Alg. 1.

1. Decide the parameters (number of trees and maximum depth).
2. At each tree node, uniformly randomly select an attribute to split on.
3. Calculate a private median for the selected attribute using the exponential

mechanism.
4. When reaching a leaf node, use the Laplace mechanism to store the privatized

counts for each class.
5. For a test point, collect together all the label-counts from all trees and output

the label that has the majority count.

Note that, at each split we randomly select an attribute from the whole set of
attributes, which avoids the label-dependent greedy computation of an optimal
attribute as done in [6, 27], and will allow us to construct the tree using only
an unlabelled sample. Furthermore, random selection of the splitting feature
can improve the diversity of trees while protecting privacy. After selection of a
splitting attribute, we compute privately the median of the values for the selected
attribute. This splitting method allows the feature space to be partitioned into
even density regions. A key property of median splits is that it only depends on
the features of the data, not the labels. Hence it does not overfit the data set
easily, which is a concern with classic decision trees. Due to this property, we do
not require any pruning process that label-dependent tree construction requires
to avoid over-fitting. Other similar techniques involve the centred random forest
described in [18] and mean-based rather than median-based splitting. However
in the private setting, private mean estimation is usually more expensive than
median estimation, as a single out-liar can largely affect the mean value – hence
more noise is required to guarantee privacy. We terminate the splitting process
of a branch either when we have reached our maximum depth or we only have a
few points left (by default we set 10 as the minimum). The setting of a default
minimum value prevents further splitting a node that has very few points.
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Algorithm 1 BuildTree

1: Inputs: Sample set S, maximum depth k, privacy budget ϵ.
2: procedure BuildTree(S, k, ϵ)
3: if k ≤ 0 or |S| ≤ 10 then
4: Return a Leaf node
5: end if
6: LB, RB = PrivateSplit(S, ϵ)
7: BuildTree(LB,k-1, ϵ), BuildTree(RB,k-1, ϵ) # build subtrees
8: Return a decision node that holds the split criteria and left/right branch.
9: end procedure
10: procedure PrivateMedian(V, ϵ)
11: a = minV, b = maxV
12: R = { set of random i.i.d. draws from Uniform(a, b)};
13: for each r in R do
14: computes the quality score u(V, r)
15: end for
16: Return r̃ ∈ R with exponential mechanism with budget ϵ.
17: end procedure
18: procedure PrivateSplit(S, ϵ)
19: Choose a splitting dimension i uniformly from data dimension [d]
20: V = sorted{set of values in dimension i}
21: Choose private median p by PrivateMedian(V, ϵ)
22: for each sample X in S do
23: if Xi ≤ p then
24: add to left branch
25: else
26: add to right branch
27: end if
28: end for
29: Return LeftBranch, RightBranch
30: end procedure

One of the key steps in our private tree construction is being able to compute
the median accurately while preserving privacy. This is crucial for the final per-
formance of the tree. A demonstration of the effect of the median estimation on
accuracy is shown in Fig. 4. There are different methods of private median com-
putation as discussed in [7], the most common approach is using the exponential
mechanism. However, a direct application of the exponential mechanism consid-
ers all the feature values occurring in the data as candidates, some of which will
be far away from the median. Each of these have low utility, but they accumulate
a large fraction of the selection probability. We instead sample the candidates R
uniformly from the interval defined by the minimum and maximum of the fea-
ture values occurring in the data – this significantly reduces the computations,
and in our experience it also results in a more accurate estimate.
We employ the exponential mechanism with a rank-based utility function as fol-
lows. Let ϵs denote the desired privacy parameter for tree construction. Denote
a subset of the data as Si ⊂ S and let V denote the set of all values of the j-th



Noise Reduction in Private Forests 7

Fig. 1. Effect of median estimation on accuracy when we vary the privacy budget.
Synthetic data sets of dimension 5 (left) and 10 (right) are used to compare the accuracy
of Alg. 1 with its variation that uses the true median, and random splitting. Observe,
the accuracy increases as we make better estimates of the true median due to larger
privacy budget.

attribute for points in Si. Then the utility of a candidate r ∈ R for attribute j
is defined as u(V, r) = −|rankj(r)− |V |/2|, where rankj(r) denotes the number
of points in V that are no larger than r.
This utility function assigns a negative quality score to all values except for the
median of the sample, which will have quality score zero. Values r ∈ R will have
decreasing utilities the further away they are from the median. For categorical
variables we use the same utility function, except that we let R to range over
all categories for attribute j, and we define rankj(r) to be the number of points
in V that are equal to r. Note that the sensitivity of u is 1/2. Indeed, adding
a data point into V increases |V |/2 by 1/2 and rankj(r) either increases by 1
or remains the same; removing a data point has a similar effect. Now by the
exponential mechanism, for any given ϵ we can guarantee ϵ-DP by outputting
r ∈ R with probability

P[M(V, u,R) = r] ∝ exp (ϵu(V, r)) , (5)

where the actual probability will be obtained through dividing the sum of pro-
portional probabilities over all r ∈ R.
Note that we have not queried the sample labels in our construction of the
tree. By partitioning the training set into N disjoint subsets, and distributing
the labels to the leaves of the trees privately (line 10 in Alg. 2), we obtain a
private supervised ensemble model for classification and regression tasks. The
full algorithm is given in Alg. 2.

4.1 Privacy analysis

There are two steps in Alg. 1 and Alg. 2 where we have used a privacy mecha-
nism: (i) PrivateSplit, and (ii) DistributeLabels. In this section, we analyze the
privacy guarantee of each mechanism. For the PrivateSplit procedure we note
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Algorithm 2 Supervised Private Ensemble

1: Inputs: labelled set S, size of ensemble N , maximum depth k, privacy budget ϵ
2: procedure SupervisedEnsemble(S,N, k, ϵ)
3: Split the total budget ϵ into ϵs, ϵl. # even split by default
4: Randomly partition S into N disjoint subsets {Si}Ni=1.
5: for i in 1, . . . , N do
6: Tree i = BuildTree(Si, k, ϵs)
7: DistributeLabels(Tree i, Si, ϵl) and add Tree i to ensemble
8: end for
9: end procedure
10: procedure DistributeLabels(Tree, S, ϵ)
11: for each sample X in S do
12: find the corresponding leaf of X and record the label of X
13: end for
14: for each leaf in the Tree do
15: for each label class do
16: add noise ∼ Lap(1/ϵ) to the label count.
17: end for
18: end for
19: end procedure

that the only computation required to query the data set is private median esti-
mation. The splitting process afterwards only partitions the data set by the split
condition, which guarantees the same privacy by the post-processing property
of DP [10]. To guarantee ϵs-DP over the whole sequence of splits along the tree
construction, we need to split ϵs into a sequence of privacy budgets

ϵ0 + ϵ1 + · · ·+ ϵk−1 =

k−1∑
i=0

ϵi = ϵs, (6)

where ϵi is the privacy budget for splits at depth i, and k is the maximum depth.
A node with depth k corresponds to a leaf, and hence no split is required. For
splits at the same depth (say depth i), we can assign ϵi budget to each split
because the data set held at the nodes of the same depth are disjoint. Therefore
we have ϵi-DP guaranteed simultaneously by the parallel composition theorem.
Furthermore, by the sequential composition theorem we sum all splits at different
depths and obtain (ϵ0 + · · ·+ ϵk−1) = ϵs-DP.
Now, for DistributeLabels we will use the Laplace mechanism to output a private
count of the classes while guaranteeing ϵl-DP, where ϵl is the desired privacy
parameter for leaf construction. We note that the sensitivity of the class count
is 1 as adding or removing a point changes the count by at most 1. Hence, by
the Laplace mechanism, it suffices to add random noise drawn from Lap(1/ϵl)
to achieve ϵl-DP. Moreover, since the data set in each leaf is disjoint from each
other, by guaranteeing ϵl-DP for each leave we can obtain ϵl-DP for all leaves
simultaneously by parallel composition. Thus, we have shown that, for any given
ϵs and ϵl, the ensemble construction in Alg. 2 achieves (ϵs + ϵl)-DP.
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4.2 Privacy budget allocation

In this section we discuss our strategy of privacy budget allocation for the con-
struction of ensembles in Alg. 2. For a total privacy budget ϵ, since we have
partitioned the sample set S into N disjoint subsets {Si}Ni=1, we can allocate
the whole privacy budget ϵ to every tree by the parallel composition theorem.
We further split ϵ to ϵ = ϵs + ϵl for privacy budget used in node splits and label
predictions, respectively. We will use an equal share between the two as default,
since both procedures are important to the final performance, i.e. ϵs = ϵl = ϵ/2
(except in semi-supervised setting which we will discuss in Section 5).
We now discuss the budget allocation of ϵs along the nodes as follows. As a
general intuition, the optimal budget allocation should depend on the difficulty
of performing the private median computation. Based on this idea, we propose
that the privacy budget allocation follows a geometrically-scaling sequence along
the depths of the nodes.
Let r, r′ ∈ R be any two potential outputs drawn uniformly from [a, b], a, b ∈ R.
The private estimation of the median is easier if we can distinguish the utility of
r, r′ and output the better option with higher probability. This means that we
want the utility difference |u(r)−u(r′)| to be large, as calculated as the number
of values between r and r′. We observe that the expected difference between two
randomly chosen points from a uniform distribution is equal to |a−b|/3 (we can-
not make any assumption on the values of the input samples). This observation
implies that for every point added or removed, the probability that |u(r)−u(r′)|
will change due to the added/removed point equals to 1/3. Since any parent
node is expected to receive 2 times the number of samples compared to its child
nodes, the median estimation problem will be 2×(1/3) times easier comparing to
its child node. Hence, for any node at depth i that received ϵi budget, we assign
ϵi+1 = (3/2) ∗ ϵi privacy budget to its child nodes at depth i+ 1. Furthermore,
we must full-fill the condition that the sum of privacy budgets over all depths
equals ϵs. Hence we scale each ϵi by a constant C so that we have

∑k−1
i=0 ϵi = ϵs,

WLOG we assume ϵ0 = Cϵs.

ϵs =

k−1∑
i=0

ϵi = ϵ0 + (3/2)ϵ0 + · · ·+ (3/2)k−1ϵ0

= Cϵs(1 + (3/2) + · · ·+ (3/2)k−1) = Cϵs

(
(3/2)k − 1

(3/2)− 1

)
, (7)

which implies ϵi = Cϵs
(
3
2

)i
and C = 1

2(3/2)k−2
.

To illustrate the effectiveness of our privacy budget allocation strategy, we run
simulations of Alg. 1 to analyse the quality of the estimated median by com-
paring our allocation strategy with the uniform allocation baseline. We run our
experiments on a synthetic data set generated from a normal distribution and
we kept all other parameters fixed except the allocation strategy.
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Fig. 2. Comparison between geometric and uniform allocation at different privacy lev-
els with the maximum depth 5 (left) and 10 (right). Error bars indicate (±1) standard
deviation from the mean, and each experiment is repeated 50 times. We observe that
our strategy achieves smaller average distance to the true median over all sets of ex-
periments. This shows that the proposed allocation strategy has a significant effect on
the median estimation while guaranteeing the same level of privacy.

5 Differentially Private Semi-Supervised Ensembles

In this section we present our framework of private semi-supervised learning
that creates private ensembles in the following private settings: (I) privacy of
both the features and labels are required; (II) only privacy of labels is required.
For the first case, existing work can only train on a labelled set, and cannot
take advantage of a separate unlabelled set. In contrast, the method of our
framework can build the tree using the unlabelled set only; as a result we can
assign all privacy budget to the label predictions and reduce the noise. Moreover,
we significantly reduce the number of labelled samples needed while achieving
a good accuracy level. We present the procedures of the private ensembles in
Alg. 3 and 4, Alg. 3 applied to both private settings (I) and (II) where Alg. 4
is applicable only in setting (II). For setting (II) in Alg. 3 we use ∞-privacy to
build trees, meaning that we can compute the true median for each split, and
no partitioning of the unlabelled set is required.

In setting (II) we can perform computations with the features as many times as
needed and release the output without privacy concern. A transductive approach
can be applied in this case to take further advantage of the unlabelled data
[20]. The transductive approach trains a small ensemble using a labelled set
and then predicts labels for each sample in the unlabelled set using the trained
ensemble. The newly-labelled set can then be used to train a larger ensemble.
Our framework also takes advantage of this approach in the label-only privacy
setting. A draw-back of this technique is that the newly-labelled set can have
noisy labels due to inaccurate predictions which can decrease the accuracy of
the final model.
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Algorithm 3 Semi-Supervised Private Ensemble

1: Inputs: labelled set S, unlabelled set D, maximum depth k, size of ensemble N ,
privacy budget ϵ

2: procedure SS-Ensemble(S,D, k,N, ϵ)
3: if need privacy for features and labels then
4: Partition S,D into N disjoint portions: {Si}Ni=1, {Di}Ni=1

5: for i in range 1, . . . , N do
6: Tree i = BuildTree(Di, k, ϵ)
7: DistributeLabels(Tree i, Si, ϵ) and add Tree i to ensemble
8: end for
9: else #privacy for labels only
10: S′ = S with labels removed
11: Partition S into N disjoint portions: {Si}Ni=1

12: for i in range 1, . . . , N do
13: Tree i = BuildTree(S′ ∪D, k, ∞)
14: DistributeLabels(Tree i, Si, ϵ) and add Tree i to ensemble
15: end for
16: end if
17: Return ensemble
18: end procedure

Algorithm 4 Private Transductive Ensemble

1: Inputs: labelled set S, unlabelled set D, maximum depth k, size of first ensemble
N1, size of second ensemble N2, privacy budget ϵ

2: procedure TransductiveEnsemble(S,D, k,N1, N2, ϵ)
3: Partition S into N1 disjoint portions: {Si}Ni=1

4: for i in range 1, . . . , N1 do
5: Tree i = BuildTree(S′ ∪D, k, ϵ)
6: DistributeLabels(Tree i, Si, ϵ) and add Tree i to ensemble1
7: end for
8: Assign labels to samples in D using ensemble1 and denote by Dl

9: for i in range 1, . . . , N2 do
10: Tree i = BuildTree(S′ ∪D, k, ϵ)
11: DistributeLabels(Tree i,Dl, ϵ) and add Tree i to ensemble2
12: end for
13: Return ensemble1 ∪ ensemble2
14: end procedure

6 Experimental Analysis

To illustrate the performance of the proposed algorithm, we perform a series of
experiments using synthetic data sets as well as real data sets from the UCI [8].
The synthetic data sets are generated by forming normally distributed clusters
with random centers using the python package sklearn.make classification. We
generate three synthetic data sets each with 3000 samples with 5, 10 and 15
attributes, each data set contains 2 classes. The UCI data sets cover a wide range
of real data with size ranging from 150 to 32561 and dimensions ranging from
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4 to 33. We use 90% of the data for training and the remaining 10% for testing
in all of our experiments. Each data set is randomly shuffled before training.
Each experiment is repeated on the same data set 50 times, and the average and
standard deviation of the prediction accuracy is reported.

6.1 Varying the parameters

Fig. 3. Effect of number of trees (x-axis) and maximum depth (legend) on accuracy,
where d denotes the dimension of the data. Error bars indicate ±1 standard deviation
from the mean, and ϵ is fixed to 2.

We demonstrate the effect of parameters (N trees and max-depth) on the accu-
racy in Fig. 3 with three UCI data sets using the supervised ensemble (Alg. 2).
We see the accuracy is high with small N and decreases as we add more trees
into the forest, as we expected, since under privacy constraints each tree works
on a disjoint subset of the data, leading to weak learning of the individual trees.
From the plots we see that most of the accuracy curves decline after 10 trees,
hence we have set N = 10 as our default. Furthermore, we see that the choice of
max-depth=d is a reasonable default as it reaches high accuracy across data sets.
We also experimented with deeper (2d) trees (features to split on are sampled
with replacement) and see in Fig. 1 that this may win in some cases. However,
we must be cautious in general, as this increases the complexity of the function
class and we run the risk of over-fitting as the leaf nodes become too small.

6.2 Comparison with other supervised algorithms

We analyse the prediction accuracy in the supervised setting (no unlabelled set)
by comparing our Supervised Private Ensemble (SPE) with three state-of-the-
art differentially private tree-based algorithms: Smooth random trees (SRT) by
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[12], Random Decision Trees (RDT) by [17] and a version of greedy decision
trees (MaxTree) by [19]. In the experiments, we build 10 trees with maximum
depth d as a default value where d is the dimension. For competitors we used
parameters recommended by the authors. For a non-private reference we use a
random forest classifier with 100 trees as a benchmark for the best performance
achievable on the particular data set without privacy constraints. The data sets
used are described in Table 1.

Size Attributes RF SPE SRT RDT MaxTree

Adults 32561 14 85.47% 82.05% ⋆ 76.89% 76.16% 81.80%
Bank 4520 16 89.39% 88.24% 88.73% 88.21% 88.31%

Banknotes 1372 4 99.38% 93.54% ⋆ 77.39% 70.59% 86.93%
Blood Transfusion 747 4 74.99% 78.00% 75.71% 78.05% 75.68%

Car 1728 7 97.88% 72.71% ⋆ 71.16% 69.38% 71.42%
Claves 10787 16 80.82% 73.84% ⋆ 70.80% 73.02% 73.22%

Credit Card 30000 24 82.48% 80.22% ⋆ 77.80% 78.28% 78.61%
Dry Bean 13611 17 92.61% 90.74% ⋆ 84.42% 75.28% 89.99%

GammaTele 19020 10 87.99% 82.34% ⋆ 71.62% 66.84% 78.58%
Iris 150 4 95.33% 81.87% 80.53% 81.20% 31.07%

Letter 20000 17 96.13% 67.86% ⋆ 47.61% 40.25% 62.99%
Mushroom 8124 7 100.00% 99.15% ⋆ 98.36% 93.89% 97.51%
Nursery 12960 8 98.56% 79.19% 80.64% 65.57% 88.29% ⋆

Occupancy 8142 7 99.71% 98.19% ⋆ 90.26% 82.87% 97.07%
Pendigits 7494 16 99.22% 91.72% ⋆ 89.03% 81.61% 47.12%
Robot 5456 4 99.46% 87.43% ⋆ 61.50% 56.86% 47.70%
Student 648 33 78.58% 65.29% 60.77% 64.28% 65.60%
Wine 178 4 100.00% 73.00% 72.56% 74.11% 36.00%
Syn5d 3000 5 92.49% 90.41% ⋆ 86.52% 79.78% 88.34%
Syn10d 3000 10 94.52% 87.64% 80.55% 78.57% 86.71%
Syn15d 3000 15 94.08% 87.11% 80.67% 80.24% 86.83%

Table 1. Comparisons with other private tree ensemble methods in supervised learning.
The privacy budget is fixed to 2. The best result is highlighted in bold. We use the
symbol ⋆ to indicate if the best result is statistically significant compared to others.

To further evaluate if the reported result is statistically significant, we perform
a Mann-Whitney U test (Wilcoxon rank sum test) at a 95% confidence level.
From Table 1 we see that our method achieves higher accuracy for the majority
of data sets with a statistical significance. The largest improvement is more than
25%, obtained on the Robot data set. Out of 22 total data sets tested, the only
data set where our method is significantly worse is the Nursery data set.

6.3 Comparisons in private semi-supervised learning

To assess our framework in the semi-supervised setting, we perform experiments
with a reduced number of labelled samples and a separate unlabelled set. The
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data sets will be the same as our analysis in section 6.2 except Iris and Wine,
which have less than 200 points, hence too small for semi-supervised learning. For
each of the remaining data sets we only use 20% of the training set as the labelled
training set, the other 80% will be used as an unlabelled set with their labels
removed. We fix the privacy budget to 2 as before. We compare the methods of
our framework in semi-supervised learning with two state-of-the-art competitors
- Semi-supervised RDT (SSRDT) by [16] and Transductive Output Perturbation
(TOP) by [20], where SSRDT is a tree-structured non-parametric method and
TOP is a combination of kNN and linear predictors. Both competitors apply in
the case where feature privacy is not required, hence we compare them with our
second setting of Alg. 3 (DPE-2) and our Private Transductive Ensemble (PTE)
as they are in the same setting. We also include the first setting of Alg. 3 in our
comparison however the result can be worse since it guarantees a stronger privacy
(both features and labels). From table 2 we observe that our methods SSPE-2

SSPE - 1 SSPE - 2 PTE SSRDT TOP

Adults 80.53 % ⋆ 80.88% ⋆ 80.29%⋆ 75.97% 76.18%
Bank 87.97% 88.02% 88.84% 88.58% 88.44%

Banknotes 53.86% 89.67% 90.41%⋆ 88.52% 55.30%
Blood transfusion 76.16% 75.84% 76.11% 75.68% 77.36%

Car 70.23% 72.55% ⋆ 71.11% 70.40% 33.88%
Claves 67.88% 67.70% 57.68% 74.16%⋆ 9.49%

Credit Card 78.79 % ⋆ 78.38% ⋆ 77.89% 77.82% 77.80%
Dry Bean 86.84% ⋆ 87.76% ⋆ 88.61%⋆ 81.41% 72.30%

GammaTele 74.77 % ⋆ 77.02%⋆ 74.11% ⋆ 65.50% 64.83%
Letter 42.27% 53.80% 56.91% ⋆ 16.72% 53.42%

Mushroom 90.09% 95.96% ⋆ 95.46% ⋆ 92.69% 51.65%
Nursery 74.31 % ⋆ 77.17% ⋆ 76.37% ⋆ 66.30% 50.66%

Occupancy 96.14 % ⋆ 94.20% 92.77% 95.16% ⋆ 79.08%
Pendigits 72.04% 85.22% ⋆ 87.00% ⋆ 70.10% 84.26%
Robot 77.30% ⋆ 87.01% ⋆ 82.56% ⋆ 64.33% 61.43%
Student 64.77% 65.14% 65.05% 63.05% 64.98%
Syn5d 86.82% 91.59% ⋆ 91.54% ⋆ 90.09% 90.29%
Syn10d 86.30% 90.51% 91.11% 83.93% 91.31%
Syn15d 76.40% 85.94% 86.45% 79.59% 86.29%

Table 2. Comparison with existing private semi-supervised methods. Bold indicates if
the result is better than its competitors and ⋆ indicates if the difference is statistically
significant. For SSPE-1, we use underline to indicate when it performs not significantly
worse than SSRDT and TOP.

and PTE achieve a better accuracy over SSRDT and TOP for the majority of
data sets tested, and most improvements are statistically significant. Note that
the results are in general worse than the figures in the supervised case, since
we only have access to 20% of the labels. For SSPE-1, despite it guarantees the
same level of privacy for both the features and the labels, the result has shown
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its performance remains on a same level (no significant difference detected) in
comparison with the competitors which only guarantee privacy for the labels.
Moreover, it has significant improvements over SSRDT and TOP on some data
sets despite the additional added noise as shown in Table 2. Hence we conclude
that the methods in our framework achieve a significant improvement over the
state of the art in utility performance and privacy guarantee.

7 Conclusions

We have proposed a framework of differentially private classification for super-
vised and semi-supervised learning with high utility. This is based on a novel
combination of techniques to build a new private machine ensemble for super-
vised learning, which naturally extends to a semi-supervised setting. We pro-
posed a novel privacy budget allocation scheme that increases the usage effi-
ciency of the available privacy budget and improves accuracy. Our experimental
analysis over a wide range of data sets demonstrates that our method provides
significantly better performance than the state of the art. In the semi-supervised
setting, we proposed private ensembles that can be trained efficiently using a
small number of labelled samples while achieving high utility, which allows us
to reduce labelling efforts in data sets with sensitive information. In particular,
we proposed the first semi-supervised private ensemble that is applicable in two
privacy settings (feature and label privacy, and just label privacy). Empirically
we found that our method provides high performance in both settings.
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