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Abstract
Many recent studies have highlighted the suscep-
tibility of virtually all machine-learning models
to adversarial attacks. Adversarial attacks are
imperceptible changes to an input example of a
given prediction model. Such changes are care-
fully designed to alter the otherwise correct pre-
diction of the model. In this paper, we study the
generalization properties of adversarial learning.
In particular, we derive high-probability gener-
alization bounds on the adversarial risk in terms
of the empirical adversarial risk, the complexity
of the function class, and the adversarial noise
set. Our bounds are generally applicable to many
models, losses, and adversaries. We showcase
its applicability by deriving adversarial general-
ization bounds for the multi-class classification
setting and various prediction models (including
linear models and Deep Neural Networks). We
also derive optimistic adversarial generalization
bounds for the case of smooth losses. These are
the first fast-rate bounds valid for adversarial deep
learning to the best of our knowledge.

1. Introduction
Machine learning has been shown to be susceptible to a
large number of security threats (Barreno et al., 2010; Paper-
not et al., 2016). One such threat is adversarial examples
(Szegedy et al., 2013; Biggio et al., 2013). Adversarial ex-
amples are perturbed inputs carefully designed to alter a
model’s prediction while being imperceptible to humans.
This paper studies the generalization properties of models
trained to withstand such adversarial attacks. While much
work has been conducted on the algorithmic design of at-
tacks (Carlini et al., 2017; Brendel et al., 2017; Awasthi
et al., 2021; Engstrom et al., 2019), and defenses (Madry
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et al., 2017; Finlay & Oberman, 2019; Kannan et al., 2018),
there is a lack of theoretical understanding of the general-
ization properties of adversarial learning.

The current state of the art in the generalization analysis
of adversarial learning has the following limitations to our
knowledge. First, all previous papers on adversarial gen-
eralization apply solely to additive adversaries (in which
the attacker adds a small perturbation to the input sample).
However, there is a recent trend in using non-additive ad-
versaries (Hendrycks & Dietterich, 2018; Engstrom et al.,
2019; Wong & Kolter, 2020; Awasthi et al., 2021). Previ-
ous generalization analyses are inapplicable in this setting.
Second, all previous papers consider restricted setups based
on simple models and architectures (linear model or one-
hidden-layer neural networks; Yin et al., 2019; Awasthi et al.,
2020) or unrealistic assumptions (Dan et al., 2020; Schmidt
et al., 2018; Farnia et al., 2018; Gao & Wang, 2021), or
they use surrogate losses (Khim & Loh, 2018; Yin et al.,
2019). However, a surrogate upper bound does not necessar-
ily lead to a meaningful generalization bound on the original
(adversarial) loss (Awasthi et al., 2020). Next, there exists
no unified analysis applying to a large variety of models,
Moreover, there are no fast-rate bounds (Srebro et al., 2010)
for adversarial learning using neural networks. Finally, all
previous results scale at leastO(

√
K) in the number of label

classesK and are thus inapplicable to extreme classification,
or structured prediction (Prabhu & Varma, 2014).

We derive generalization bounds that do not suffer from
the limitations mentioned above. Our contributions can be
summarized as follows:

• We derive the first generalization bounds for adversar-
ial learning valid for general (possibly non-additive)
noise functions (thus covering a wide array of attacks).

• Our bounds are modular and general. They can be
applied to many models, from linear models over ker-
nel machines to neural networks. Extending it to new
models is easy: it requires simply computing the `∞-
covering number of the model.

• We show the first generalization bounds for adversarial
learning of Deep Neural Networks applying to the
adversarial loss directly, not a surrogate.
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• Our bounds scale O(log(K)) in the number of label
classes, making them suitable for multi-label learning
and structured prediction in adversarial environments.

• Finally, we show the first fast-rate bounds for adversar-
ial deep learning.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we introduce the
notation and the problem setup. Section 4 is dedicated to
the main results of this paper. We apply our approach to
several models and adversarial attacks in Section 5. Finally,
we provide fast-rate bounds in Section 6 and discuss our
findings in Section 7.

2. Related Work
In this section, we first give an overview of popular adver-
sarial attacks and defenses and then review the related work
on the generalization analysis of adversarial learning.

Adversarial attacks Adversarial attacks are usually cat-
egorized as white-box (Carlini & Wagner, 2017) or black-
box (Brendel et al., 2017), depending on the information
available to the attacker. Most commonly, the attacker is
constrained to alter the input by additive noise from an `p-
ball. Recently, further (non-additive) attack models have
been considered. In which the adversary manipulates the in-
put by a non-linear transformation, either in the input space
(e.g., rotation of an input image; Engstrom et al., 2019) or
in a semantic representation space (e.g., in the frequency
domain of an image; Awasthi et al., 2021).

Defenses In response to such attacks, several defense
mechanisms have been developed, for instance, based on
regularizing the model’s Lipschitz constant (Bietti et al.,
2018; Cissé et al., 2017), input gradient (Hein & An-
driushchenko, 2017; Ross & Doshi-Velez, 2018), or input
Hessian (Mustafa et al., 2020) at training. The most widely
used defense mechanism against adversarial attacks is adver-
sarial training (Madry et al., 2017) and its variants (Kannan
et al., 2018; Zhang et al., 2019). Its key idea is to replace
clean training samples with their adversarial counterparts
while maintaining their correct labels. Systematic studies
have shown that the resulting models are robust and can
withstand a large number of attacks (Athalye et al., 2018).

Generalization Analysis of Adversarial Learning We
now discuss the existing generalization bounds for adver-
sarial learning. Dan et al. (2020) and Schmidt et al. (2018)
showed bounds valid only in the idealized binary classifica-
tion scenario where the data is sampled from two Gaussians.
The prediction function is linear in both papers, and the
bounds scale linearly in the number of dimensions. Dan

et al. (2020) also showed a matching lower bound. Attias
et al. (2019) showed a bound based on the VC-dimension of
the function class, which can be very large for many models.
Their study considers attacks with a finite adversarial noise
set. However, virtually all practical attacks use an uncount-
able infinite noise set. Gao & Wang (2021) and Farnia et al.
(2018) showed bounds assuming that the attack is apriori
known to the learner, which is a strong assumption since the
attacker could utilize any attack available in practice. Xing
et al. (2021) leveraged the algorithmic stability to study the
generalization of adversarial learning.

Several authors have used the Rademacher complexity to
study the generalization of `p-additive-perturbation attacks
(Khim & Loh, 2018; Yin et al., 2019; Awasthi et al., 2020;
Xiao et al., 2021). In contrast, our analysis applies to a much
wider range of attacks. Khim & Loh (2018) introduced the
tree-transform, in which the supremum over the adversarial
noise set is propagated through the network layers to es-
tablish an upper-bound on the adversarial loss. This upper
bound, however, can be vacuous for Deep Neural Networks
since its looseness grows exponentially with the depth of
the network. Since our approach applies directly to the loss,
it does not suffer from this problem. In addition, their bound
grows as O(K) in the number of classes K, while ours is
O(log(K)).

Yin et al. (2019) showed generalization bounds for linear
models and one-hidden-layer neural networks based on the
surrogate loss introduced in Raghunathan et al. (2018) under
`∞-additive perturbation. Their bound does not apply to
(deep) neural networks with two or more hidden layers. Our
approach applies to neural networks with arbitrary many
layers (Deep Neural Networks) and is directly based on the
adversarial loss, not on a surrogate. Awasthi et al. (2020)
also derived bounds directly based on the adversarial loss,
but only for linear models and one-hidden-layer networks.
Their bound scales as O(

√
m) in the number of neurons m,

while ours is O(log(m)).

3. Problem Setup
We now define the formal setup of adversarial learning. We
start by defining general statistical learning, after which
we introduce the adversary. Let Z = X × Y be an input-
output space, where X ⊂ Rd is an input/feature space
and Y = [K] := {1, . . . ,K} is an output/label space. We
further assume that there is an unknown probability measure
D defined over Z . The goal of supervised learning is to
find a function g : X → Y , such that, for a given loss
function `c : Y×Y , the expected loss E(x,y)∼D[`c(g(x), y)]
is minimized. We are interested in parameterized-scoring-
based classifiers based on multivariate model functions f :
X → RK . The classification function g is obtained by
g(x) = arg maxk∈Y f(x)k. Since the distribution D is
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usually unknown, we utilize a sample from it to learn g. Let
{zi = (xi, yi)}ni=1 be an i.i.d. sample drawn from D. The
classification function is selected from the hypothesis class
FW := {x 7→ f(x,w) : x ∈ X , w ∈ W} parameterized
by w ∈ W, where W is some parameter space. We are
interested in empirical risk minimization, with the parameter
ŵ defined by

ŵ = arg min
w∈W

1

n

n∑
i=1

`(f(xi, w), yi),

where ` : RK × Y → R+ is a given loss function.

An adversary utilizes a noise application function A : X ×
B → X , where B is a noise space, to modify an input
of a classifier with the goal to alter its prediction. To our
knowledge, all previous work on adversarial learning theory
considered only the special case where A is the additive
noise A(x, δ) = x+ δ and B is the `p-ball {δ : ‖δ‖p ≤ ε}.
In contrast, we consider a more general A1 and therefore,
our results can be applied to a broader array of attacks (e.g.,
Engstrom et al., 2019; Awasthi et al., 2021). Given an input
example x and a learned parameter setting w, the adversary
selects the noise parameter δ∗ by

δ∗ = arg max
δ∈B

`(f(A(x, δ);w), y).

A common strategy to train a robust model is adversarial
training (Madry et al., 2017). The training is achieved by
solving the min-max problem

ŵadv = arg min
w∈W

R̂adv(w),

where R̂adv(w) := 1
n

∑n
i=1 maxδ∈B `(f(A(xi, δ);w), yi)

measures the empirical risk of the model on the training
examples subject to adversarial noise. We are interested in
the adversarial generalization behavior of ŵadv as measured
by the population risk in the adversarial setting:

Radv(ŵadv) := ED
[

max
δ∈B

`(f(A(x, δ) ŵadv))
]
.

We refer to the difference between the population risk
Radv(w) and the empirical risk R̂adv(w) as the general-
ization error of w.

4. Main Results
In this section, we introduce our main result. Our primary
tool is based on covering numbers defined below. Roughly
speaking, covering numbers measure the complexity of a

1Since any sample x′ can be obtained from another sample x
by adding δ = x′ − x, the key limitation of additive attacks lies
in the restriction ‖δ‖p ≤ ε. For example, while a rotation of an
image by a small angle is considered imperceptible, it may result
in ‖x′ − x‖∞ ≤ 1, where pixels are in [0, 1].

function class F in terms of the number of balls required
to approximate the class to a prescribed accuracy under the
metric D.

Definition 4.1 (Covering number). Let (A, D) be a pseu-
dometric space. We say that C ⊂ A is an (ε,D)-cover to
A ⊂ A if

sup
a∈A

inf
c∈C

D(a, c) ≤ ε.

The covering number of A at ε precision, denoted as
N (ε, A), is the size of the minimal-cardinality set that cov-
ers A.

For a data set S := {zi}ni=1 with zi ∈ Z and a function
classF with its elements taking values in a (possibly infinite-
dimensional) real vector space V , the (ε,D)-empirical cov-
ering number of F on S, denoted as ND(ε,F , S), is the
(ε,D)-covering number of the set

F|S = {(f(z1), . . . , f(zn)) : f ∈ F}.

The `p pseudo-metric on Vn is

Dp(x, y) = (
1

n

n∑
i=1

‖xi − yi‖p)
1
p ,

where ‖ · ‖ is a general norm on V . If p = ∞ we ob-
tain D∞(x, y) := maxi∈[n] ‖xi − yi‖. We denote by
Np(ε,F , ‖ · ‖, S) andN∞(ε,F , ‖ · ‖, S) the covering num-
bers w.r.t. the Dp and D∞ metrics, respectively.

Our main approach is to view adversarial generalization as
multi-label classification, which allows us to utilize recent
advances in the generalization analysis of vector-valued
learning to study adversarial generalization (Wu et al., 2021).
The loss function class of interest is

Gadv := {z 7→ max
δ∈B

`(f(A(x, δ)), y) : f ∈ F}. (1)

We define a new function class as follows. For each func-
tion f ∈ F , we construct a functional g : Z → (RK)

B

as g(z) := `(f(A(x, ·)), y). That is, g receives an input-
output vector z and outputs a function B 7→ RK . The
corresponding function class is then

G := {z 7→ `(f(A(x, ·)), y) : f ∈ F}.

In the following lemma, we introduce our first main result.
The lemma states that the covering number of the function
class Gadv is bounded by the covering number of the func-
tion class G. Therefore, the covering number of G can be
used to control the adversarial generalization.

Lemma 4.2. Let Gadv and G be defined as above. It holds

N∞(ε,Gadv, | · |, S) ≤ N∞(ε,G, ‖ · ‖∞, S),

where ‖g‖∞ = supz |g(z)|, g ∈ G.
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The proof of this lemma is deferred to the appendix. The
theorem allows us to control the `∞-covering number of
the adversarial loss class by the `∞-covering number of the
class G.

While Lemma 4.2 provides an essential tool to control the
complexity of the adversarial loss class, deriving an up-
per bound to N∞(ε,G, ‖.‖∞, S) is not simple. The main
challenge is that the functions in G take values in an infinite-
dimensional vector space. Our approach to this problem is
to approximate such a space by a finite discretization. To
that end, we introduce a Lipschitzness assumption on the
functions δ 7→ `(f(A(x, δ)), y) for f ∈ F .

Definition 4.3 (Lipschitz continuity). Let f : V1 → V2 be a
map from vector space V1 to V2. Let V1 and V2 be endowed
with norms ‖ · ‖l1 and ‖ · ‖l2 , respectively. We say that f is
(‖·‖l2 ,‖·‖l1 )-Lipschitz with constant τ if, for any δ, δ̃ ∈ V1,
we have:

‖f(δ)− f(δ′)‖l2 ≤ τ‖δ − δ̃‖l1 .

When V2 = R, then ‖ · ‖l2 is the absolute value and the
notation is simplified to ‖ · ‖l1 -Lipschitz.

We now introduce our main result to relate the `∞-covering
number of class Gadv to the covering number of the dis-
cretized version G̃adv defined below.

Lemma 4.4. Let δ 7→ `(f(A(x, δ)), y) be ‖ · ‖-Lipschitz
with constant L, for all x ∈ X , y ∈ Y , and f ∈ F . Let
CB(ε/2L) be an (ε/2L, ‖ · ‖)-cover of B. We define the loss
class

G̃adv =
{

(z, δ) 7→ `(f(A(x, δ)), y) : f ∈ F
}

(2)

and the extended training set

S̃ = {(xi, δ̃, yi) : i ∈ [n], δ̃ ∈ CB(ε/2L)}. (3)

Then we have

N∞(ε,Gadv, | · |, S) ≤ N∞(ε,G, ‖ · ‖∞, S)

≤ N∞(ε/2, G̃adv, | · |, S̃).

Note that functions in Gadv involve the maximum over B due
to adversarial learning, which is removed for functions in
G̃adv. This is achieved by incorporating δ into the argument.
Also, note that each element of Gadv and G̃adv is a scalar
function. Therefore we use | · | in the definition of covering
numbers. For comparison, each element in G is a functional
mapping z to a function on B. Therefore we use ‖·‖∞ in the
involved covering number. For brevity of notation, we often
omit either | · | or ‖ ·‖∞ when mentioning covering numbers.
The proof of this lemma is deferred to the appendix.
Remark 4.5. We note that Lemma 4.4 controls the com-
plexity of the adversarial loss class by the complexity of

its non-adversarial counterpart. Therefore, it can be readily
applied to a wide array of models where a covering number
bound exists. This is in contrast to virtually all approaches
in the literature (Yin et al., 2019; Khim & Loh, 2018; Xiao
et al., 2021; Awasthi et al., 2020; Farnia et al., 2018), in
which a function-class-specific approach is used.
Remark 4.6. The Lipschitzness condition on the function
δ 7→ `(f(A(x, δ)), y) is necessary in Lemma 4.4. It is a
mild condition that most attacks fulfill (e.g., Engstrom et al.,
2019; Awasthi et al., 2021; Madry et al., 2017).
Remark 4.7. The size of the extended training set S̃ grows
linearly in the size of the set CB(ε/2L). In principle, the
size CB(ε/2L) can grow exponentially in the dimension-
ality of B. However, the dependence of the generalization
performance is of the order O(log

1
2 (|S̃|)) for many func-

tion classes (e.g., Bartlett et al., 2017; Zhang, 2002; Mustafa
et al., 2021). These lead to generalization bounds with a
square-root dependency on the dimensionality of B.

We now state our main generalization bound, which con-
trols the generalization errors by an integral of covering
numbers on G̃adv. This result is modular: one needs to plug
a covering-number bound into it to obtain a generalization
bound for adversarial learning.
Theorem 4.8. Let δ ∈ (0, 1). Suppose that the loss ` is
bounded by 1. Let G̃ and S̃ be defined as (2) and (3). With
probability at least 1 − δ over the training data S, for all
w ∈W, we have

Radv(w) ≤ R̂adv(w) + 3

√
log(2/δ)

2n

+ inf
α>0

(
8α+

24√
n

∫ 1

α

√
logN∞(ε/2, G̃adv, S̃)dε

)
.

5. Applications
In this section, we present several applications of Theorem
4.8. Our first example is multi-class linear classifiers with
additive adversary.

5.1. Regularized Multi-class Linear Classifiers

We consider theK-class linear classifiers with the following
hypothesis class:

F :=
{
x 7→Wx : W ∈ RK×d, ‖W‖2,2 ≤ Λ

}
. (4)

We further assume that maxx∈X ‖x‖ ≤ Ψ. For a given
hypothesis f ∈ F , we carry out prediction for an input x ∈
X by x 7→ arg maxi∈[K] fi(x). The quality of prediction is
measured by the multi-class margin loss defined as

`ρ(t, y) =


1, if M(t, y) ≤ 0,

1−M(t, y)/ρ, if 0 < M(t, y) < ρ,

0, if t ≥ ρ,
(5)
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where M(t, y) = ty −maxy′ 6=y ty′ . The margin loss (5) is
an upper bound on the zero-one loss and is ‖ · ‖∞-Lipschitz
with constant 2

ρ in the first argument for all y ∈ Y (Bartlett
et al., 2017).

`∞-additive perturbation We first consider the `∞ at-
tack (Goodfellow et al., 2014; Kannan et al., 2018), in which
the attacker utilizes an additive noise application function
A(x, δ) = x + δ, where x ∈ X , and the noise set is the
`∞-ball

B = {δ : ‖δ‖∞ ≤ β} ⊂ Rd.

To apply Lemma 4.4, we first show the Lipschitzness of the
function δ 7→ `ρ(W (x+ δ), y).

Lemma 5.1. Consider the function gW (z, δ) = `(W (x +
δ), y) and assume ‖W‖1,∞ ≤ Λ1. Then, for any z, the
function δ 7→ gW (z, δ) is ‖ · ‖∞-Lipschitz with constant
2Λ1

ρ .

Based on the Lipschitzness of the adversarial loss function
in the above lemma, we can bound the covering number of
the adversarial class in the lemma below.

Lemma 5.2. Let F be the multi-class linear hypothesis
class defined in (4) and `ρ the multi-class margin loss (5).
Further, let Gadv and G̃adv be defined as in (1) and (2). Then,
for ε > 0 and S̃ defined in (3), we have

logN∞(ε/2, G̃adv, S̃) ≤ CΛ2(Ψ +
√
dβ)2Llog

ε2ρ2
,

where C is an absolute constant, Ψ′ = Ψ +
√
dβ and

Llog := log

(
2

⌈
16Λ(Ψ′)

ερ
+ 2

⌉
nK

(
12βΛ1

ρε

)d
+ 1

)
.

If we plug the above lemma back into Theorem 4.8, we get
the following corollary.

Corollary 5.3. With the notation above, with probability at
least 1−δ over the draw of the training data, for all w ∈W,
we have

Radv(w) ≤ R̂adv(w) +
8

n
+ 3

√
log(2/δ)

2n

+
CΛ(Ψ +

√
dβ)L̃log√

nρ
, (6)

where C is an absolute constant, Ψ′ = Ψ +
√
dβ, and

L̃log =log
1
2

(
4

⌈
8Λ(Ψ′)n

ρ
+1

⌉
nK

(
12βΛ1n

ρ

)d
+1

)
log(n).

Remark 5.4. We note that the dependence
√
d on d in the

term Ψ +
√
dβ is due to the mismatch between the norm

on the input x and the norm in the ball B. Indeed, we have
used the inequality ‖δ‖2 ≤

√
d‖δ‖∞. This dependence on

d vanishes if the bound on the norms of x and δ matches
(e.g., if we consider the attack where B := {δ : ‖δ‖2 ≤ β}).
Remark 5.5. The term L̃log incurs also a square root depen-
dence on the dimension d. Such a dependence is attributed
to the complexity of the adversarial noise set B. For exam-
ple, if B is contained in a low dimensional manifold d′ < d,
the dependence is reduced to O(

√
d′). This motivates pro-

jecting the input onto a low-dimensional manifold to reduce
the effective dimensionality of the adversarial noise.
Remark 5.6. We now compare the bound (6) to the bounds
in Yin et al. (2019); Xiao et al. (2021), Khim & Loh (2018),
and Awasthi et al. (2020). The dependence of the bound
(6) on the number of classes is of the order O(log(K)),
while the bounds in Yin et al. (2019); Xiao et al. (2021) and
Khim & Loh (2018) are of the order O(K

√
K) and O(K),

respectively. Therefore, the bound (6) is favourable in the
classification setting with a large K.

The dependence of the bound (6) on the input dimension is
of the order O(d). On the other hand, the dependence on d
in Yin et al. (2019), Awasthi et al. (2020), and Khim & Loh
(2018) is of the order O(

√
d), and thus our bound incurs

an extra
√
d term. Similar to our bound the cost of

√
d in

their bounds is due to the mismatch of the norm constraint
on x and δ. Unlike the bound (6), their bounds do not in-
cur the

√
d resulting from the complexity of the adversarial

noise set. This is because for linear models with `p-additive
perturbation the function class transformation in their anal-
ysis is tight, and thus effectively the set B is a singleton
with dimension 0. Hence, the bounds (Yin et al., 2019;
Awasthi et al., 2020; Khim & Loh, 2018) are favourable
for multi-class linear models with `p-additive perturbation
when K <

√
d.

Adversarial spatial transformation We now consider
the adversarial spatial transformation in Engstrom et al.
(2019). It is based on the spatial transformer network (Jader-
berg et al., 2015), which introduced a parameterized spatial
transformation that is Lipschitz in the transformation param-
eters. For simplicity of presentation, we consider square
images (x ∈ R

√
d×
√
d with

√
d being an integer) and linear

spatial transformations (including rotating and shearing).
Therefore, the noise parameter is a matrix δ ∈ R2×2. The
adversarial transformation function A is defined in the fol-
lowing steps: first, the indices of the image are transformed
by (

us

vs

)
=

(
δ11 δ12

δ21 δ22

)(
ut

vt

)
, (7)

where ut, vt ∈ [
√
d] are the target indices of the pixel at the

source indices us, vs. Let Us ∈ [
√
d]d be the aggregation of

all the us indices in one vector. Define V s, U t, V t similarly.
Denote by (Us, V s) = S(U t, V t, δ) the transformation (7).
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The output image x̃ is then obtained by setting the value at
the index (U ti , V

t
i ) for i ∈ [d] according to

√
d∑

k=1

√
d∑

l=1

xkl max(0, 1−|V si −k|) max(0, 1−|Usi −l|). (8)

Let x̃ = T (x, (Us, V s)) denote the transformation (8). The
noise application function for the attack A is then defined
as

A(x, δ) = T (x,S(U t, V t, δ)). (9)

The following lemma establishes the Lipschitzness of the
functions A and δ 7→ `ρ(WA(x, δ), y).

Lemma 5.7. Let A(x, δ) be the noise application function
defined above. For all ‖x‖1 ≤ Ψ1, the function δ 7→ A(x, δ)
is (‖ · ‖∞,‖ · ‖∞)-Lipschitz with constant 4Ψ1

√
d. Further,

the function δ 7→ `ρ(WA(x, δ), y) is ‖ · ‖∞-Lipschitz with
constant 8Ψ1Λ1

√
d

ρ .

We can now derive an upper bound on the `∞-covering
number of the adversarial loss. The result is summarized in
the following lemma.

Lemma 5.8. Let F be the multi-class linear hypothesis
class (4) and `ρ the multi-class margin loss (5). Let Gadv

and G̃adv be defined as (1) and (2), respectively. Then, for
ε > 0, ‖δ‖∞ ≤ β and S̃ defined in (3), we have

logN∞(ε/2, G̃adv, S̃) ≤ CΛ2Ψ2Llog

ε2ρ2
,

where C is an absolute constant,

Llog := log

(
2

⌈
16ΛΨ

ερ
+ 2

⌉
nK

(
a

ρε

)4

+ 1

)
,

a = C1βΛ1Ψ1

√
d, and C1 is a constant.

Applying Lemma 5.8 and Theorem 4.8, we get the following
immediate corollary.

Corollary 5.9. With the notation above, with probability at
least 1− δ over the draw of the training data, we have, for
all W ∈W,

Radv(W ) ≤ R̂adv(W ) + 3

√
log(2/δ)

2n
+

8

n
+
CΛΨL̃log√

nρ
,

where C is an absolute constant and

L̃log := log
1
2

(
4

⌈
8ΛΨn

ρ
+ 1

⌉
nK

(
an

ρ

)4

+ 1

)
log(n).

Remark 5.10. Note that unlike the bound (6), there is no
direct dependence on the input dimension d outside of the
log terms. This is because spatial transformations do not

alter the image norm. Furthermore, the complexity of the
noise set B is drastically reduced (B is four-dimensional) in
comparison to the additive noise attack. Thus the important
factor is the complexity of the adversarial noise set and not
the input dimension.
Remark 5.11. To the best of our knowledge, this is the first
adversarial generalization bound valid for an attack other
than the `p-additive attack. It is unclear how to adapt the
existing approaches in the literature to general attacks.

5.2. Neural Network

We now turn our attention to feed-forward neural networks
under different attacks. Recall that a feed-forward network
is defined as the composition of a set of L-layers. Each layer
l ∈ [L] consists of a linear transformation parameterized
by the matrix W l ∈ Rml×ml−1 , where ml is the width of
layer l, followed by an element-wise non-linear Lipschitz
activation function σ(·). We have m0 = d (the input dimen-
sion) and mL = K (the number of classes). Therefore the
network function NW(x) is evaluated as

NW(x) = WLσ(WL−1σ(· · ·σ(W 1x)) · · · )), (10)

whereW = (W 1, . . . ,WL). We consider norm-bounded
networks with the following hypothesis class

F := {x 7→ NW(x) :W ∈W}. (11)

The quality of classification is measured by the margin loss
function (5). In the following, we summarize the assump-
tions used throughout this section.

Assumption 5.12. Let W ∈ W be the weight of the net-
work (11). Suppose that W is such that, for all W ∈ W,
‖W l‖2 ≤ al and ‖W l‖σ ≤ sl for all l ∈ [L − 1].
Further, suppose that, for all W ∈ W, ‖WL‖2 ≤ aL,
‖WL‖2,∞ ≤ sL and ‖W 1‖1,∞ ≤ s′1.

`∞-additive perturbation We now consider the `∞-
additive perturbation applied to multi-layer neural networks.
As with the linear case, we first establish the ‖ · ‖∞-
Lipschitzness of the function δ 7→ `ρ(NW(x+ δ), y). The
following lemma summarizes the result.

Lemma 5.13. Let NW be the neural network function de-
fined in (10). Further let `ρ be the loss function (5). With
Assumption 5.12, the function g(δ) = `ρ(NW(x+ δ), y) is
‖ · ‖∞-Lipschitz in δ with constant 2

ρ (
∏L
l=2 sl)s

′
1

√
m1 for

all (x, y) ∈ X × Y andW ∈W.

The following lemma introduces an upper bound of the `∞-
covering number of the neural network adversarial class.

Lemma 5.14. Let F be the multi-class neural network
hypothesis class (11) and `ρ be the margin loss (5). Let
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B := {δ : ‖δ‖∞ ≤ β}. Further let Gadv and G̃adv be de-
fined as (1) and (2), respectively. Assume Assumption 5.12
holds and ‖x‖2 ≤ Ψ. Then, for S̃ defined in (3) and ε > 0,
we have

log(N∞(ε/2, G̃adv, S̃)) ≤ CL2Ψ′2

ρ2ε2

L∏
l=1

s2
l

(
L∑
l=1

a2
l

s2
l

)
Llog,

where

Llog := log

(
(C1Ψ′Γ/(ερ) + C2m̄)n

(
6βλ

ερ

)d
+ 1

)
,

Ψ′ = (Ψ +
√
dβ), Γ = maxl∈[L](

∏L
i=1 si)alml/sl, λ =

2
ρ (
∏L
l=2 sl)s

′
1

√
m1, m̄ = maxl∈[L]ml, and C,C1, C2 are

universal constants.

The following corollary follows directly from the above
Lemma and Theorem 4.8.

Corollary 5.15. With the notation above, with probability
at least 1 − δ over the draw of the training data, for all
W ∈W, we have

Radv(W) ≤ R̂adv(W) +
8

n
+ 3

√
log(2/δ)

2n

+
CLΨ′

ρ
√
n

L∏
l=1

sl

√√√√( L∑
l=1

a2
l

s2
l

)
L̃log,

where C is an absolute constant, Ψ′ = Ψ +
√
dβ and

L̃log =log
1
2

((
C1Ψ′Γn

ρ
+C2m̄

)
n

(
6βλn

ρ

)d
+1

)
log(n).

Remark 5.16. Note that similar to the linear case, the bound
has two

√
d dependence. The first is in Ψ′, which arises

from the mismatch of norms and can be mitigated by control-
ling the appropriate norm as discussed above. The second√
d term in L̃log is due to the complexity of the adversarial

noise set B. As discussed in the linear case, a projection
on a low-dimensional manifold can help reduce such depen-
dency.
Remark 5.17. The generalization bound in Yin et al. (2019)
applies only to a one-hidden-layer neural network and is
based on the surrogate upper bound introduced in Raghu-
nathan et al. (2018). This is in contrast to our bound, which
directly applies to multi-layer networks and the adversarial
loss. While the bound in Khim & Loh (2018) applies to
multi-layer networks, it is based on a harsh surrogate up-
per bound, which pushes the maximization through each
layer, thus multiplying the bound slack. This can lead to
a vacuous bound for Deep Neural Networks. Furthermore,
their bound is of the order O(K

√
d) compared to our bound

O(log(K)
√
d) (using compatible norms on x and δ). While

the result in Awasthi et al. (2020) applies directly to the
adversarial loss, it applies only to one-hidden-layer neural
networks and binary classification. Their bound is of the
order O(

√
dm̄) while ours is O(

√
d log(m̄)), where m̄ is

the width of the hidden layer.

Adversarial spatial transformation We consider the ad-
versarial attack based on the spatial transformation in
(9). We begin by establishing the Lipschtizness of δ 7→
`ρ(NW(A(x, δ)), y).

Lemma 5.18. Let g(δ) = `ρ(NW(A(x, δ)), y) and As-
sumption 5.12 hold. Then for allW ∈W, (x, y) ∈ X×Y , g
is ‖ · ‖∞-Lipschitz with constant 8

ρ (
∏L
l=2 sl)s

′
1

√
m1Ψ1

√
d.

Lemma 5.19. Let F be the multi-class neural network hy-
pothesis class (11) and `ρ be the margin loss (5). For the
adversarial spatial attack defined above, let Gadv and G̃adv

be defined as in (1) and (2), respectively. Suppose that
Assumption 5.12 holds, and ‖x‖1 ≤ Ψ1, ‖x‖2 ≤ Ψ, and
‖δ‖∞ ≤ β, for all δ ∈ B. Then for S̃ defined in (3) and
ε > 0, we have

log(N∞(G̃adv, S̃, ε/2)) ≤ CL2Ψ2

ρ2ε2

L∏
l=1

s2
l

(
L∑
l=1

a2
l

s2
l

)
Llog,

where

Llog := log

(
(C1ΨΓ/(ερ) + C2m̄)n

(
C3βλ

ερ

)4

+ 1

)
,

C, C1, C2, C3 are universal constants, m̄ =
maxl∈[L]ml, Γ = maxl∈[L](

∏L
i=1 si)alml/sl, and

λ = (
∏L
l=2 sl)s

′
1

√
m1(Ψ1

√
d).

We can plug the above complexity bound back into Theorem
4.8 and derive the following generalization error bounds.

Corollary 5.20. With the notation above, with probability
at least 1 − δ over the draw of the training data, for all
W ∈W, we have

Radv(W) ≤ R̂adv(W) +
8

n
+ 3

√
log(2/δ)

2n

+
CLΨ

ρ
√
n

L∏
l=1

sl

√√√√( L∑
l=1

a2
l

s2
l

)
L̃log,

where C is an absolute constant, and

L̃log =log
1
2

((
C1ΨΓn

ρ
+C2m̄

)
n

(
6βλn

ρ

)4

+1

)
log(n).

Remark 5.21. The bound has no direct dependence on d
outside of log terms as with the linear case. This is due
to the low complexity of the adversarial spatial transform
without altering the image norm.
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6. Optimistic Bounds and Fast Rates
In this section, we aim to derive optimistic bounds for
the generalization of adversarial learning in the sense of
incorporating the training errors into the generalization
bounds. Optimistic bounds have been studied before in the
binary-classification settings (Srebro et al., 2010) and multi-
classification settings (Reeve & Kaban, 2020), where they
have resulted in fast-rate bounds for smooth losses under
low-noise conditions. We aim to extend these approaches to
the case of adversarial examples. Our results are based on
the local Rademacher complexity (Bartlett et al., 2005).

Definition 6.1 (Rademacher complexity). The empirical
Rademacher complexity of a function class F of real-valued
functions with respect to a set S = {zi}ni=1 is defined as

RS(F) = Eσ
[

sup
f∈F

1

n

n∑
i=1

σif(zi)
]
, (12)

where {σi} are random variables with equal probability of
being either +1 or −1.

Our result applies loss functions ` with a certain smoothness
condition defined by the following robust-self-bounding
property.

Definition 6.2. Let ` : RK × Y → R be a loss function.
We say that ` is robust-self-bounding-Lipschitz with respect
to a set B if, for all y ∈ Y and all measurable functions
ν : B → RK and µ : B → RK , we have

|max
δ∈B

`(ν(δ), y)−max
δ∈B

`(µ(δ), y)| ≤ λmax
δ∈B
‖ν(δ)−µ(δ)‖∞

×max{max
δ∈B

`(ν(δ), y),max
δ∈B

`(µ(δ), y)}θ.

Remark 6.3. The robust self-bounding property is inspired
by the self-bounding property introduced in Reeve & Kaban
(2020) as follows

|`(ν, y)− `(µ, y)| ≤ λmax{`(ν, y), `(µ, y)}θ‖ν − µ‖∞.

The key difference is the introduction of the adversarial max
operator maxδ∈B to adapt to adversarial learning.
Remark 6.4. The robust-self-bounding property is main-
tained by several realistic losses. For instance, consider the
smooth margin loss Lρ(t, y) =

1 if M(t, y) ≤ 0

2 (M(t, y)/ρ)
3−3 (M(t, y)/ρ)

2
+1 if 0 < M(t, y) < ρ

0 if M(t, y) ≥ ρ,

defined in Reeve & Kaban (2020). This function is an upper
bound on the zero-one loss, therefore, it can be considered
as a surrogate loss to classification scenarios. It is further
a robust-self-bounding-Lipschitz with θ = 1/2 and λ =
4
√

6/ρ as shown in appendix E.

We now define the local hypothesis class and the local loss
class. For a given hypothesis class

Fadv :=
{

(x, δ) 7→ f(A(x, δ), w) : w ∈W
}
,

we define the local hypothesis class Fadv|r ⊂ Fadv as
the set of functions f ∈ Fadv with empirical adversarial
training errors at most r. That is

Fadv|r :=
{

(x, δ, y) 7→ f(A(x, δ), w) :

w ∈W, R̂adv(w) ≤ r
}
.

Similarly, define the local loss class

Gadv|r :=
{

(x, y) 7→ max
δ∈B

`(f(A(x, δ), w), y) :

w ∈W, R̂adv(w) ≤ r
}
.

We first introduce a structural result on covering numbers.

Lemma 6.5. Let Gadv be defined as above. Assume that
the loss ` is robust-self-bounding with parameters λ >
0, θ ∈ (0, 1/2]. Further let δ 7→ `(f(A(x, δ), w), y) be
‖ · ‖-Lipschitz with constant L. Let F̃adv := {(x, δ, y) 7→
f(A(x, δ), w)y : w ∈ W} and Ŝ := {(xi, δ, ỹ) : i ∈
[n], δ ∈ CB( ε

λ(2r)θ2L
), ỹ ∈ Y}, where CB(ε/2L) is an

(ε/2L, ‖ · ‖)-cover of B. Then, we have

N2(ε,Gadv|r, S) ≤ N∞
(

ε

4λ(2r)θ
, F̃adv, Ŝ

)
.

Lemma 6.5 establishes a bound on the `2-covering number
of the local loss class by the `∞-covering number of the
extended hypothesis class F̃adv. This serves as a key step in
the proof of the next lemma, which establishes a bound on
the local Rademacher complexity by a sub-root function of
r, a key step in developing optimistic bounds (Bartlett et al.,
2005; Srebro et al., 2010).

Lemma 6.6. With the notation and assumptions of Lemma
6.5, suppose that, for all w ∈ W, ‖f(x,w)‖∞ ≤ B and `

is bounded by b. Suppose that logN∞
(
ε, F̃adv, Ŝ

)
≤ Rb1

ε2 ,

for ε ∈ [b1, b2] and Rb1 ∈ R that does not depend on n and
ε. Then,

RS(Gadv|r) ≤
λrθ

n

[
24+θ + 40

√
R 1√

n
log

(
b1−θ
√
n

22+θλ

)]
.

Lemma 6.6 establishes a bound on the Rademacher com-
plexity of the loss class Gadv|r in terms of a bound on the
empirical risk r. Note that we obtain a sub-root bound on
the local Rademacher complexity for θ = 1/2.
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Remark 6.7. The condition logN∞
(
ε, F̃adv, Ŝ

)
≤ Rb1

ε2

is satisfied by many of the typical function calsses. For
instance, it is satified by the neural network class (see
Lemma C.1) with

Rb1 = CL2Ψ′2
L∏
l=1

s2
l

(
L∑
l=1

a2
l

s2
l

)
Llog,

where

Llog := log

(
(C1Ψ′Γ/b1) + C2m̄)n

(
6βλ

b1

)d
+ 1

)
.

The next theorem presents the main result of this section,
namely an optimistic generalization bounds for adversarial
learning with a smooth loss `.

Theorem 6.8. With the notation and assumption of Lemmas
6.6 and 6.5, with probability at least 1 − δ over the draw
of the training set S, for all w ∈ W, we have Radv(w) is
bounded by

Radv(w) ≤ R̂adv(w) + 106r +

√
R̂adv(w) (8r + L)

+
48b

n
(log(1/δ) log(log(n))),

where L = 4b
n (log(1/δ) + log(log(n))) and

r =
λ2

n

[
16
√

2 + 40
√
R 1√

n
log

(
b1−θ
√
n

22+θλ

)]2

.

Remark 6.9. Note that the second term grows as Õ(
R1/
√
n

n ).
For the majority of function classes, R1/

√
n is Õ(1), where

Õ hides log terms, for example for linear models (Lei
et al., 2019)), kernel methods (Bartlett & Mendelson, 2003),
DNNs (Bartlett et al., 2017), and structured output predic-
tion (Mustafa et al., 2021). The second term would then
grow as Õ( 1

n ). The fourth term grows at the usual Õ( 1√
n

)

rate. However, if R̂adv(w) = 0, the fourth term vanishes,
thus leading to a Õ( 1

n ) generalization bound.
Remark 6.10. In Dan et al. (2020), the excess risk bound of
the order O( dn ) was shown under an assumption on the ad-
versarial signal-to-noise ratio. However, it applies to linear
classes in the idealized case that the true data distribution is
Gaussian. On the other hand, our bound applies to any func-
tion class where the covering number or the Rademacher
complexity can be bounded. Bhattacharjee et al. (2021)
presented bounds in expectation of the order O(1/n) for
linear and kernel-based models under the distributional as-
sumptions of separable data. In comparison, we develop
high-probability bounds applicable to any function class un-
der milder distributional assumptions (zero empirical risk).

7. Conclusion
We presented a general generalization analysis of adversar-
ial learning. Our analysis applies to a wide range of attacks
and models. To our knowledge, this is the first analysis
for non-additive noise. Our approach is modular and easily
applicable to a large number of models. We showcased
our general results for linear models and neural networks
with additive noise or the spatial transformation attack. Our
analysis emphasized the importance of the complexity of
the adversarial noise set B rather than the input space di-
mension. We further extended our analysis to the case of
smooth losses, where we derived fast-rates under zero ad-
versarial empirical risk. In future work, we will investigate
mitigating the dependence on the dimension of the noise set
B. Our hypothesis is that the complexity can be mitigated
by carefully considering the interplay between the noise set
and the function class (e.g., an additive attack on a model
first reducing the input dimension to d′ < d should yield
bounds with a dependence on d′, rather than d).
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A. Proofs of the Main Result in Section 4
In this section, we present the proofs of our main result (Theorem 4.8). As discussed in the main text, our main tool is the
`∞-covering numbers (see Definition 4.1). We note that the main hardness in deriving bounds over the adversarial loss is the
maximization over the adversarial noise set. Our main strategy is to utilize the properties of the `∞-covering numbers to
control the complexity of the adversarial loss class with a high function dimensional class, thus alleviating the maximization
operator.

Our first step is to bound the covering number of the adversarial class with an extended function class where each element in
the adversarial loss class is replaced with a full-function that takes the adversarial noise as its argument as summarized in
Lemma 4.2. We now present the proof of Lemma 4.2.

Proof of Lemma 4.2. Our idea is to construct a cover for the adversarial class Gadv on the training set S from the elements
of cover for the class G on the same training set. To avoid clutter let g(z, δ, w) := `(fw(A(x, δ), y). Recall from Definition
4.1 that N∞(ε,Gadv, S) is the cardinality of the smallest cover for the set

Gadv|S :=

{(
max
δ∈B

g(z1, δ, w), . . . ,max
δ∈B

g(zn, δ, w))

)
: w ∈W

}
⊂ Rn.

The first step of our proof is the observation that it is possible to construct an `∞-cover for Gadv|S by utilizing an `∞-cover
constructed for the set

G|S = {(g(z1, ·, w), . . . , g(zn, ·, w))) : w ∈W} ⊂ (RB)n.

Note that each element of g is a vector of functions g(z, ·, w) as compared to only the scalar maxδ∈B g(z, δ, w) in Gadv.
Our aim now is that given a cover for G; we construct a cover for Gadv . To that extent, let

CG =
{(
c1i (·), . . . , cni (·)

)
: i ∈ [m]

}
⊂ (RB)n

be a (ε, `∞)-cover of G. We now claim that the set

CGadv =

{(
c̃1i := max

δ∈B
c1i (δ), . . . , c̃

n
i := max

δ∈B
cni (δ)

)
: i ∈ [m]

}
covers the set Gadv . Indeed, given w ∈W, there exist by definition j(w) such that:

max
i∈[n]

max
δ∈B
|g(zi, δ, w)− cij(w)(δ)| ≤ ε.

Therefore, we have

max
i∈[n]
|max
δ∈B

g(zi, δ, w)− c̃ij(w)| = max
i∈[n]
|max
δ∈B

g(zi, δ, w)−max
δ∈B

cij(w)(δ)|

≤ max
i∈[n]

max
δ∈B
|g(zi, δ, w)− cij(w)(δ)|

≤ ε.

The first equality follows from the construction of CGadv . The first inequality follows from the following inequality: for
real-valued functions f , and g, we have |maxx f(x)−maxx g(x)| ≤ maxx |f(x)− g(x)|. It then follows that CGadv is an
(ε, `∞)-cover to Gadv . Since the cardinality of CG and CGadv are equal, we have

N∞(ε,Gadv, S) ≤ N∞(ε,G, S). (13)

The proof is completed.

Next, we present the proof of Lemma 4.4.
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Proof of Lemma 4.4. Our goal is to control the `∞-covering number of the infinite-dimensional class G with a finite-
dimensional counterpart. The core idea is to approximate the functions g ∈ G with a discrete version of it. We, therefore,
require the functions in G to be Lipschitz with respect to some norm ‖ · ‖ and a cover of B with respect to the same norm. To
that end, let CB(ε/2L, ‖ · ‖) be an ε/2L-cover w.r.t. a general norm ‖ · ‖ for the set B. Let MB be the size of CB(ε/2L, ‖ · ‖).
That is,

CB := CB(ε/2L, ‖ · ‖) =
{
δ̃i, i ∈ [MB]

}
⊂ B.

Now recall thatN∞(ε, G̃adv, S̃) is the smallest cardinality of the set covering Gdisc|S defined according to the set CB(ε/2L, ‖·
‖) as follows,

Gdisc|S =


g(z1, δ̃1, w) g(z1, δ̃2, w) · · · g(z1, δ̃MB , w)

...
...

. . .
...

g(zn, δ̃1, w) g(zn, δ̃2, w) · · · g(zn, δ̃MB , w)

 : w ∈W

 ⊂ Rn×MB

Our goal now is to construct an (ε, `∞)-cover of G|S by utilizing an (ε/2, `∞)-cover of Gdisc|S . To that extent, let the set

CGdisc|S =


ĉ

1
i (δ̃1) ĉ1i (δ̃2) · · · ĉ1i (δ̃MB)

...
...

. . .
...

ĉni (δ̃1) ĉni (δ̃2) · · · ĉni (δ̃MB)

 : i ∈ [MGdisc|S ]

 ⊂ Rn×MB .

be an ε/2-cover for Gdisc|S of size MBdisc|S . We now construct a cover of G|S . The key idea here is to construct functions
ci(·), i ∈ [MGdisc|S ] to be piece-wise constant around each δ̃j , for j ∈ [MB]. Consider the set

CG =


c

1
i (δ) := ĉ1i (arg minδ′∈CB ‖δ − δ′‖)

...
cni (δ) := ĉni (arg minδ′∈CB ‖δ − δ′‖)

 : i ∈ [MGdisc ]

 ∈ (RB)n.

We claim that it is an ε-cover for G. Indeed, for any w ∈W, by construction of CGdisc|S , there exist j(w), such that

max
i

max
δ̃∈CB(ε/2L)

|g(zi, δ̃, w)− ĉij(w)(δ̃)| ≤ ε/2. (14)

Therefore,

max
i

max
δ∈B
|g(zi, δ, w)− cij(w)(δ)| = max

i
max
δ∈B
|g(zi, δ, w)− g(zi, δ

∗(δ), w) + g(zi, δ
∗(δ), w)− cij(w)(δ)|

≤ max
i

max
δ∈B

(
|g(zi, δ, w)− g(zi, δ

∗(δ), w)|+ |g(zi, δ
∗(δ), w)− cij(w)(δ)|

)
,

where δ∗(δ) := arg minδ′∈CB(ε/2L) ‖δ − δ∗‖. The inequality follows from triangle inequality. Since by construction of CG
we have cij(w)(δ) = ĉij(w)(δ

∗(δ))2, we have

max
i

max
δ∈B

(
|g(zi, δ, w)− g(zi, δ

∗(δ), w)|+|g(zi, δ
∗(δ), w)− cij(w)(δ)|

)
= max

i
max
δ∈B

(
|g(zi, δ, w)− g(zi, δ

∗(δ), w)|+ |g(zi, δ
∗(δ), w)− ĉij(w)(δ

∗(δ))|
)

≤ max
i

max
δ∈B
|g(zi, δ, w)− g(zi, δ

∗(δ), w)|+ max
i

max
δ̃∈CB

|g(zi, δ̃, w)− ĉij(w)(δ̃)|

≤ max
i

max
δ∈B

L‖δ − δ∗(δ)‖+ max
i

max
δ̃∈CB

|g(zi, δ̃, w)− ĉij(w)(δ̃)|

≤ Lε/2L+ ε/2 = ε

2Ties are resolved in arbitrary but fixed manner
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The second inequality follows from the Lipschtizness of g with respect to δ and the ‖ · ‖-norm. The third inequality is due to
the construction of δ∗(·) and equation (14). Since CGdisc|S and CG have equal size, we conclude that

N∞(ε,G, S) ≤ N∞(ε,Gdisc, S̃). (15)

By combining inequalities (13) and (15), the result follows.

Now we proceed to prove Theorem 4.8. We first present the Rademacher theorem, which controls the generalization of
learning algorithms by the Rademacher complexity.

Theorem A.1 (Mohri et al. 2018). Let S = {zi}mi=1 be i.i.d. random sample from a distribution D defined over Z . Further
let F ⊂ [0, 1]Z be a loss class parameterized by the set W. Then for all δ ∈ (0, 1), we have with probability at least 1− δ
over the draw of the sample S, for all w ∈W that

R(w) ≤ R̂(w) + 2RS(F) + 3

√
log(2/δ)

2n
.

The theorem states that the generalization of the function class F can be controlled, with high probability, by the empirical
risk and the Rademacher complexity.

Our approach relies, however, on another complexity measure, namely `∞-covering numbers. The following classical result
of Dudley’s entropy integral (Boucheron et al., 2003; Bartlett et al., 2017; Ledent et al., 2021a; Srebro et al., 2010) gives a
relationship between the Rademacher complexity and `∞-covering number. We apply the version by Srebro et al. (2010).

Theorem A.2 (Srebro et al. 2010). Let F be a class of functions mapping from a space Z and taking values in [0, b], and
assume that 0 ∈ F . Let S be a finite sample of size m and Ê[f(z)2] = 1

m

∑m
i=1 f(zi)

2 We have the following relationship
between the empirical Rademacher complexity RS(F) and the covering number N2(ε,F , S).

R(F) ≤ inf
α>0

4α+
10√
n

∫ supf∈F

√
Ê[f(z)2]

α

√
logN2(ε,F , S)dε

 .

We are now ready to present the proof of Theorem 4.8.

Proof of Theorem 4.8. The proof is a direct application of Theorems A.2 and A.1 combined with Lemma 4.2 and Lemma
4.4. For δ ∈ (0, 1), we have with probability at least 1− δ, for all w ∈W

Radv(w) ≤ R̂adv(w) + 2RS(Gadv) + 3

√
log(2/δ)

2n

≤ R̂adv(w) + inf
α>0

(
8α+

24√
n

∫ 1

α

√
logN∞(ε,Gadv, S)dε

)
+ 3

√
log(2/δ)

2n

≤ R̂adv(w) + inf
α>0

(
8α+

24√
n

∫ 1

α

√
logN∞(ε/2, G̃adv, S̃)dε

)
+ 3

√
log(2/δ)

2n
.

The first inequality is due to Theorem A.1 while the second is derived from Theorem A.2. The third inequality follows from
Lemmas 4.2 and 4.4.

B. Proofs of Results on Linear Models in Section 5.1
In this section, we present the omitted proof of section 5.1. The first step of our approach is to show that the loss function is
`∞-Lipschtiz with respect to the noise parameter δ. We then derive a bound on the size of the set CB(ε/2L). We finally
bound the `∞-covering number of the extended class G̃adv on the extended data set S̃.

Throughout the paper, we will require upper bounds on the covering number of bounded balls in Rd. We begin by reviewing
the following result deriving an upper bound on the size of the set CB(ε) defined for the general norm ‖ · ‖.
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Lemma B.1 (Long & Sedghi 2020). Let d be a positive integer, ‖ · ‖ be a norm, ρ be the metric induced by it, and κ, ε > 0.
A ball of radius κ in Rd w.r.t. ρ can be covered by ( 3κ

ε )d balls of radius ε.

Our approach relies on `∞-covering numbers for the loss classes. We now review the upper bounds on the `∞-covering
numbers of linear models. The bound used in our work is a combination of the approach in Lei et al. (2019) and the covering
number bound in Zhang (2002).

Lemma B.2 (Lei et al. 2019). Let F = {x 7→ (w>1 x,w
>
2 x, . . . , x

>
Kx) : w̃ = (w1, . . . , wK) ∈ RKd, ‖w̃‖2 ≤ Λ} be the

linear model hypothesis class, S = {(xi, yi)}ni=1 be a given data set. Consider an ‖ · ‖∞-Lipschitz loss ` with constant L,
for all y ∈ [K]. Let S̃ be an extended data set defined as S̃ = {φj(xi) : i ∈ [n], j ∈ [K]} where φj(·) is defined as

φj(x) :=
(

0, . . . , 0︸ ︷︷ ︸
j−1

, x, 0, . . . , 0︸ ︷︷ ︸
K−j

)
∈ RKd.

Further let F̃ := {x 7→ 〈w̃, x〉 , x ∈ S̃, w̃ ∈ RKd, ‖w̃‖2 ≤ Λ}. For all ε > 0, we have the following inequality

N∞(ε, ` ◦ F , S) ≤ N∞(ε/L, F̃ , S̃).

The above lemma allows for controlling the `∞-covering number of multi-class loss classes by a real-valued function class
F̃ on an extended dataset S̃. The following lemma gives a covering number bound for real-valued linear function classes.

Lemma B.3 (Zhang 2002). Let L be a class of linear functions on a set of size n. That is, L = {〈w, x〉 , x, w ∈ RN}. If
‖x‖q ≤ b and ‖w‖p ≤ a, where 2 ≤ q <∞ and 1/p+ 1/q = 1, then ∀ε > 0,

logN∞(ε,L, n) ≤ 36(q − 1)
a2b2

ε2
log[2d4ab/ε+ 2en+ 1],

where N∞(ε,L, n) is the worst case covering number of the class L on a dataset of size n.

The above result controls the covering numbers by norms of the data and weights. A direction application of Lemmas B.3
and B.2 gives the following corollary.

Corollary B.4. Let F be the linear multi-class linear hypothesis class, `ρ be the loss (5). Let S = {(xi, yi)}ni=1 be a given
dataset with ‖x‖2 ≤ Ψ, for all x ∈ X , and ‖W‖2,2 ≤ Λ, then for all ε > 0, we have

logN∞(ε, `ρ ◦ F , S) ≤ CΨ2Λ2

ρ2ε2
log (2d8ΨΛ/ερ+ 2enK + 1) .

Proof. We apply Lemmas B.2 and B.3 noting that `ρ is ‖ · ‖∞-Lipschitz with constant 2
ρ -norm, for all y ∈ Y .

B.1. `∞-additive Perturbation Attack

We are now ready to prove the bounds of the `∞-additive attacks applied to linear models. Our first step is to derive the
‖ · ‖∞-Lipschitz constant of the function δ 7→ `ρ(W (x+ δ)). The following is the poof of Lemma 5.1.

Proof of Lemma 5.1. The proof is a direct derivation. Observe the following, for all (x, y) ∈ Z and ‖W‖1,∞ ≤ Λ1, and
δ, δ′ ∈ B, we have

|`ρ(W (x+ δ), y)− `ρ(W (x+ δ′), y)| ≤ 2

ρ
‖Wδ −Wδ′‖∞ ≤

2

ρ
max
i
|Wi,.δ −Wi,.δ

′|

≤ 2

ρ
max
i
‖Wi,.‖1‖δ − δ′‖∞ ≤

2Λ1

ρ
‖δ − δ′‖∞,

where Wi,· denotes the i-th row of W . The first inequality is derived from that `ρ is ‖ · ‖∞-Lipschitz with constant 2
ρ .

In the following we present the proof of Lemma 5.2.
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Proof of Lemma 5.2. First consider the `∞-norm on the set B. By Lemma 5.1, we have the function δ 7→ `ρ(W (x+ δ)y) is
‖ · ‖∞-Lipschitz with constant 2Λ1

ρ . Consider the set CB(ερ/4Λ1). By Lemma B.1, and that ‖δ‖∞ ≤ β, for all δ ∈ B, we
have

|CB(ερ/4Λ1)| ≤
(

12Λ1β

ερ

)d
.

Therefore,

|S̃| = n

(
12Λ1β

ερ

)d
,

and for (x̃, y) ∈ S̃ with x̃ = (x, δ̃),

‖x̃‖2 ≤ ‖x‖2 + ‖δ̃‖2 ≤ Ψ +
√
d‖δ‖∞ = Ψ′.

Thus, the result follows from Corollary B.4.

In the following, we present the proof of Corollary 5.3.

Proof of Corollary 5.3. The proof is a direct application of Theorem 4.8 by setting α to 1
n . Thus, consider the following

integral

∫ 1

α

√
logN∞(ε/2, G̃adv, S̃)dε ≤

∫ 1

1
n

√
C

Λ2(Ψ +
√
dβ)2

ε2ρ2
Llogdε

≤
√
C

L̃log

log(n)

ΛΨ′

ρ

∫ 1

1
n

1

ε
dε ≤

√
C

L̃log

log(n)

ΛΨ′

ρ
[log(ε)]

1
1
n

=
√
C

L̃log

log(n)

ΛΨ′

ρ
log(n) =

√
CL̃log

ΛΨ′

ρ

The first inequality is due to the monotone property of integral. The second is by noticing that replacing ε by 1
n in Llog can

only increase its value. Plugging this in Theorem 4.8 gives the result.

B.2. Spatial Adversarial Attack

In this section we present the proof of adversarial generalization bound in Corollary 5.9. The first step is to show that the
transformation δ 7→ `(W (A(x, δ), y) is ‖ · ‖∞-Lipschitz as summarized in Lemma B.5. We first show that δ 7→ A(x, δ) is
(‖ · ‖∞, ‖ · ‖∞)-Lipschitz. The following lemma states the result.

Lemma B.5. Let A(x, δ) be defined as in (9). For all ‖x‖1 ≤ Ψ1, and δ, δ′ ∈ B, we have,

‖A(x, δ)−A(x, δ′)‖∞ ≤ 4
√
dΨ1‖δ − δ′‖∞.

Proof. Let Us and V s be the indexes corresponding to δ and Us′ and V s′ be indexes corresponding to δ′. Further let
a = ‖(Us, V s)− (Us′, V s′)‖∞ . Then by the definition of the `∞-norm and the transformation A, we have,

‖A(x, δ)−A(x, δ′)‖∞

= max
i∈[d]

∣∣∣∣∣∣
√
d∑

k=1

√
d∑

l=1

xkl(max(0, 1− |V si − k|) max(0, 1− |Usi − l|)−max(0, 1− |V si
′ − k|) max(0, 1− |Usi

′ − l|))

∣∣∣∣∣∣
≤ max

i∈[d]

√
d∑

k=1

√
d∑

l=1

|xkl|
∣∣(max(0, 1− |V si − k|) max(0, 1− |Usi − l|)−max(0, 1− |V si

′ − k|) max(0, 1− |Usi
′ − l|))

∣∣ ,
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where the inequality follows from the triangular inequality. For arbitrary k, l, i ∈ [
√
d], let a = max(0, 1 − |V si − k|),

b = max(0, 1− |Usi − l|), a′ = max(0, 1− |V si
′ − l|), and b′ = max(0, 1− |Usi

′ − l|). Consider the following inequality

|ab− a′b′| ≤ |ab− ab′|+ |ab′ − a′b′|
≤ |a||b− b′|+ |b′||a− a′|
≤ |b− b′|+ |a− a′|.

The first inequality is due to the triangular inequality and the last follows by |a|, |b′| ≤ 1. Thus,

‖A(x, δ)−A(x, δ′)‖∞

≤ max
i∈[d]

√
d∑

k=1

√
d∑

l=1

|xkl| (|max(0, 1− |Usi − k|)−max(0, 1− |Usi
′ − k|)|

+ |max(0, 1− |V si − k|)−max(0, 1− |V si
′ − k|)|)

≤ max
i∈[d]

√
d∑

k=1

√
d∑

l=1

|xkl| (||Usi − k| − |Usi
′ − k||+ ||V si − k| − |V si

′ − k||)

≤ max
i∈[d]

√
d∑

k=1

√
d∑

l=1

|xkl| (|Usi − Usi
′|+ |V si − V si

′|)

≤

√
d∑

k=1

√
d∑

l=1

|xkl| 2‖(Us, V s)− (Us′, V s′)‖∞ ≤ 2Ψ1‖(Us, V s)− (Us′, V s′)‖∞.

The first inequality is due to the triangular inequality. The second inequality follows from 1-Lipschitzness of the function
x 7→ max(0, x). The third inequality is due to the reverse triangular inequality (i.e., ||c| − |d|| ≤ |c− d|). Now it remains to
derive a bound for ‖(Us, V s)− (Us′, V s′)‖∞ by ‖δ − δ′‖∞. Observe the following

‖(Us, V s)− (Us′, V s′)‖∞ = max
i∈[d]

max(|V si − V si
′|, |Usi − Usi

′|)

= max
i∈[d]

max(|V ti (δ22 − δ′22)− U ti (δ21 − δ′21)|, |V ti (δ12 − δ′12)− U ti (δ11 − δ′11)|)

≤ max
i∈[d]

max(|V ti ||δ22 − δ′22|+ |U ti ||δ21 − δ′21|, |V ti ||δ12 − δ′12|+ |U ti ||δ11 − δ′11))

≤ 2
√
d‖δ − δ′‖∞.

The second equality is due to the definition of S and (7). The first inequality follows from the triangular inequality. The last
inequality is derived from the fact maxi∈[d] |V ti | =

√
d. Combining the two inequalities we get

‖A(x, δ)−A(x, δ′)‖∞ ≤ 4
√
dΨ1‖δ − δ′‖∞.

The proof is completed.

We now utilize this result to prove Lemma 5.7.

Proof of Lemma 5.7. For δ, δ′ ∈ B, we then have

|`ρ(WA(x, δ), y)− `ρ(WA(x, δ′), y)| ≤ 2

ρ
‖WA(x, δ)−WA(x, δ′)‖∞

≤ 2

ρ
max
i
| 〈Wi,., (A(x, δ)−A(x, δ′))〉 |

≤ 2

ρ
max
i
‖Wi,.‖1‖A(x, δ)−A(x, δ′)‖∞

≤ 8

ρ
Λ1Ψ1

√
d‖δ − δ′‖∞,

where the first inequality follows from the Lipschitzness of the loss `ρ, the second from the definition of `∞-norm, the third
from the Hölder inequality, and the final from Lemma B.5.
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Proof of Lemma 5.8. We consider the `∞-covering number of the set B. Recall that, we have, by Lemma 5.7, the function
δ 7→ `ρ(WA(x, δ), y), is ‖ · ‖∞-Lipschitz with the Lipschitz constant 8

ρΛ1Ψ1

√
d. We now aim to control the size of the set

CB(ερ/16Λ1Ψ1

√
d). By Lemma B.1, for the ball B = {δ : ‖δ‖∞ ≤ β}, we have

∣∣∣CB(ερ/16Λ1Ψ1

√
d)
∣∣∣ ≤ (48Λ1Ψ1

√
dβ

ερ

)4

.

By the construction of S̃, we then have

|S̃| = n

(
48Λ1Ψ1

√
d(β

ερ

)4

.

Further note that ‖A(x, δ)‖2 ≤ 4‖x‖2 ≤ 4Ψ, for all x ∈ X , since spatial transformation does not alter the norm of the input
except for the factor of 4 due to the bilinear interpolation. Thus, the result then follows from Corollary B.4.

C. Proofs of Applications to Neural Networks in Section 5.2
In this section, we present the omitted proofs of section 5.2. The technique is similar to the linear case. We first establish
the Lipschitzness property of the functions δ 7→ `ρ(NW(A(x, δ)), y). We then extend the data set and apply `∞-covering
number results of the neural networks function class.

We first review the following Lemma (Ledent et al., 2021b). It establishes a bound on the `∞-covering numbers of
norm-bounded neural network function classes.

Lemma C.1 (Ledent et al. 2021b). Let F be the class of neural networks that is, F = {x 7→ NW(x)}, where W =
(W 1, . . . ,WL) are a set of weights and NW = WLσ(WL−1σ(. . .W 1x)) with 1-Lipschitz element-wise non-linearities σ.
Define the loss class L = `p ◦ F where `p is defined as (5). Suppose that ‖W l‖21 ≤ al and ‖W l‖σ ≤ sl for all l ∈ [L− 1],
‖WL‖2 ≤ aL, ‖WL‖2,∞ ≤ sL, ‖x‖2 ≤ b, and ml is the width of the l’th layer. Then given a data set S with n elements
and ε > 0,

logN∞(ε,L, S) ≤ CL2b2

ρ2ε2

L∏
l=1

s2
l

(
L∑
l=1

a2
l

s2
l

)
log ((C1bΓ/(ερ) + C2m̄ )n+ 1) ,

where Γ = maxl∈[L](
∏L
i=1 si)alml/sl, m̄ = maxl∈[L]ml, and C,C1, C2 are universal constants.

C.1. `∞-additive Perturbation Attack

The first step is to derive the ‖ · ‖∞-Lipschitz constant of the loss function as a function in the noise parameter. We start by
the following lemma on ‖ · ‖∞-Lipschitzness of neural network as a function of the input.

Lemma C.2. Consider the neural network function NW(x) defined as (10). Given x, x′ ∈ X , then for all y ∈ Y

|`ρ(NW(x), y)− `ρ(NW(x′), y)| ≤ 2

ρ

(
L∏
l=2

sl

)
√
m1s

′
1‖x− x′‖∞.



On the Generalization Analysis of Adversarial Learning

Proof. Let N l
W be the output of the l’th layer of the network NW . Consider the following,

|`ρ(NW(x), y)− `ρ(NW(x′), y)| ≤ 2

ρ
‖NW(x)−NW(x′)‖∞

=
2

ρ
‖WL(NL−1

W (x)−NL−1
W (x′))‖∞

≤ 2

ρ
max
i∈[mL]

‖WL
i,.‖2‖(NL−1

W (x)−NL−1
W (x′))‖2

≤ 2

ρ

L∏
l=2

sl‖W 1x−W 1x′‖2 ≤
2

ρ

L∏
l=2

sl
√
m1‖W 1x−W 1x′‖∞

≤ 2

ρ

L∏
l=2

sl
√
m1 max

i∈[m1]
‖W 1

i,.‖1‖x− x′‖∞ =
2

ρ

L∏
l=2

sl
√
m1s

′
1‖x− x′‖∞.

The second inequality follows from the definition of `∞-norm and Hölder inequality, the third from the fact that the
non-linearity is 1-Lipschitz and by induction over the layers. The fourth is from the fact that ‖x‖2 ≤

√
d‖x‖∞, for all

x ∈ Rd.

We now present the proof of Lemma 5.13.

Proof of Lemma 5.13. The result follows directly from Lemma C.2. Let δ, δ′ ∈ B, then for all (x, y) ∈ Z

|`ρ(NW(x+ δ), y)− `ρ(NW(x+ δ′), y)| ≤ 2

ρ

L∏
l=2

sl
√
m1s

′
1‖(x+ δ)− (x+ δ′)‖∞ =

2

ρ

L∏
l=2

sl
√
m1s

′
1‖δ − δ′‖∞.

The proof is completed.

Proof of Lemma 5.14. We consider `∞ covering number of set B. By Lemma 5.13, the function δ 7→ `ρ(NW(x+ δ), y), is
‖ · ‖∞-Lipschitz with the Lipschitz constant 2

ρ

∏L
l=2 sl

√
m1s

′
1. By Lemma 4.4, we aim now to bound the size of the set

CB(ερ/4
∏L
l=2 sl

√
m1s

′
1). By Lemma B.1, and that ‖δ‖∞ ≤ β, we have

∣∣∣∣∣CB
(
ερ/4

L∏
l=2

sl
√
m1s

′
1

)∣∣∣∣∣ ≤
(

12
∏L
l=2 sl

√
m1s

′
1β

ερ

)d
.

Therefore,

|S̃| = n

(
12
∏L
l=2 sl

√
m1s

′
1β

ερ

)d
,

and for (x̃, y) ∈ S̃ with x̃ = (x, δ̃), we have

‖x̃‖2 ≤ ‖x‖2 + ‖δ̃‖2 ≤ Ψ +
√
d‖δ‖∞ = Ψ′.

Thus, the result follows from Lemma C.1.

C.2. Spatial Adversarial Attack

Proof of Lemma 5.18. The proof follows directly from Lemmas C.2 and B.5. Let δ, δ′ ∈ B, then for allW ∈W, (x, y) ∈ Z ,

|`ρ(NW(A(x, δ)), y)− `ρ(NW(A(x, δ′)), y)| ≤ 2

ρ

L∏
l=2

sl
√
m1s

′
1‖A(x, δ))−A(x, δ′))‖∞

≤ 8

ρ

L∏
l=2

sl
√
m1s

′
1Ψ1

√
d‖δ − δ′‖∞.

The proof is completed.
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Now we present the proof of Lemma 5.19.

Proof of Lemma 5.19. The function δ 7→ `ρ(NW(A(x, δ)), y) is ‖ · ‖∞-Lipschitz with the Lipschitz constant
8
ρ

∏L
l=2 sl

√
m1s

′
1Ψ1

√
d. By Lemma 4.4, we aim now to bound the size of the set CB(ερ/16

∏L
l=2 sl

√
m1s

′
1Ψ1

√
d).

By Lemma B.1, and that ‖δ‖∞ ≤ β, we have

∣∣∣∣∣CB
(
ερ/16

L∏
l=2

sl
√
m1s

′
1Ψ1

√
d

)∣∣∣∣∣ ≤
(

48
∏L
l=2 sl

√
m1s

′
1Ψ1

√
d)β

ερ

)4

.

Therefore, we have

|S̃| = n

(
48
∏L
l=2 sl

√
m1s

′
1Ψ1

√
dβ

ερ

)4

.

We again note that ‖A(x, δ)‖2 ≤ 4‖x‖2, by the fact that spatial transformation does not alter the input norms except for the
factor of 4 from the bilinear interpolation. The result, thus, follows by Lemma C.1.

D. Proofs of Optimistic Bounds
Proof of Lemma 6.5. The proof strategy is to show that the covering number of the set Gadv|rS is controlled by the covering
number of a set of functions of the adversarial noise. To that extent define the setHS |r =

{
(f(A(x1, .), w)1, . . . , f(A(x1, .), w)K , . . . f(A(xn, .), w)1, . . . f(A(xn, .), w)K) , w ∈W, R̂adv(w) ≤ r

}
⊂ (RnK)B

and

HS = {(f(A(x1, .), w)1, . . . , f(A(x1, .), w)K , . . . f(A(xn, .), w)1, . . . f(A(xn, .), w)K) , w ∈W} ⊂ (RnK)B.

Let

CHS |r =
{(
cj1(·)1, . . . , c

j
1(·)K , . . . cjn(·)1, . . . c

j
n(·)K

)
, w ∈W

}
⊂ (RnK)B

be an ( ε
λ(2r)θ

, `∞)-cover ofHS |r. Further suppose that it is a proper cover, that is CHS |r ⊂ HS |r. Note that for any w ∈W
there exists a j(w) such that

max
i∈[n]

max
δ∈B

max
k∈[K]

|f(A(xi, δ), w)− cj(w)
i (δ)k| ≤

ε

λ(2r)θ
.

We now claim that CHS |r can be used to cover the set G|rS at an ε resolution as measured by `2 norm. In other words, we
aim to show that √√√√ 1

n

n∑
i=1

(
max
δ∈B

`(f(A(xi, δ), w), yi)−max
δ∈B

`(c
j(w)
i (δ), yi)

)2

≤ ε.
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Observe the following

1

n

n∑
i=1

(
max
δ∈B

`(f(A(xi, δ), w), yi)−max
δ∈B

`(c
j(w)
i (δ), yi)

)2

≤ 1

n

n∑
i=1

λ2 max{max
δ∈B

`(f(A(xi, δ), w), yi),max
δ∈B

`(c
j(w)
i (δ), yi)}2θ max

δ∈B
‖f(A(xi, δ), w)− cj(w)

i (δ)‖2∞

≤ 1

n

n∑
i=1

λ2 max{max
δ∈B

`(f(A(xi, δ), w), yi),max
δ∈B

`(c
j(w)
i (δ), yi)}2θ max

k∈[K]
max
i∈[n]

max
δ∈B
‖f(A(xi, δ), w)k − cj(w)

i (δ)k‖2∞

=

(
ελ

λ(2r)θ

)2
1

n

n∑
i=1

max{max
δ∈B

`(f(A(xi, δ), w), yi),max
δ∈B

`(c
j(w)
i (δ), yi))}2θ

≤
(

ελ

λ(2r)θ

)2
1

n

n∑
i=1

(max
δ∈B

`(f(A(xi, δ), w), yi) + max
δ∈B

`(c
j(w)
i (δ), yi))

2θ

≤
(

ελ

λ(2r)θ

)2
(

1

n

n∑
i=1

max
δ∈B

`(f(A(xi, δ), w), yi) +
1

n

n∑
i=1

max
δ∈B

`(c
j(w)
i (δ), yi)

)2θ

≤
(

ελ

λ(2r)θ

)2

(2r)2θ = ε2.

Since we can construct a proper cover at precision ε from a general cover at precision ε/2, we conclude that

N2(ε,Gadv|r, S) = N2(ε,Gadv|rS) ≤ N∞(
ε

2λ(2r)θ
,HS |r).

Furthermore, sinceHS |r ⊂ HS , we have

N2(ε,Gadv|r, S) ≤ N∞(
ε

2λ(2r)θ
,HS |r) ≤ N∞(

ε

2λ(2r)θ
,HS).

The following step is to show that we can control N∞( ε
λ(2r)θ

,HS) by a cover of a discretized version ofHS . This holds by
Lemma 4.4 and hence completes the proof.

Proof of Lemma 6.6. Note that by the definition of Mε, we have |Ŝ| = nKMε.

Now our goal is to bound the local Rademacher complexity of the adversarial class Rn(Fadv|r). By Theorem A.2 we have

R(Gadv|r) ≤ inf
α>0

(
4α+

10√
n

∫ √br
α

√
logN2(ε,Gadv|r, S)dε

)
.

Select α = 4λ(2r)θ/
√
n then

R(Gadv|r) ≤ 16λ(2r)θ/
√
n+

10√
n

∫ √br
4λ(2r)θ/

√
n

√
logN∞(

ε

4λ(2r)θ
, F̃adv, Ŝ)dε.

Now by change of variable we get

R(Gadv|r) ≤ 16λ(2r)θ/
√
n+

40λ(2r)θ√
n

∫ b1/2r1/2−θ
22+θλ

1√
n

√
logN∞(ε, F̃ , Ŝ)dε

≤ 16λ(2r)θ/
√
n+

40λ(2r)θ√
n

∫ b1−θ
22+θλ

1√
n

√
logN∞(ε, F̃adv, Ŝ)dε,
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where the second inequality is due to the fact that b ≥ r. By the assumption N∞
(
ε, F̃adv, Ŝ

)
≤ Ra

ε2 , for ε ∈ [a, b], we have

R(Gadv|r) ≤ 16λ(2r)θ/
√
n+

40λ(2r)θ√
n

∫ b1−θ
22+θλ

1√
n

√
logN∞(ε, F̃adv, Ŝ)dε

≤ 16λ(2r)θ/
√
n+

40λ(2r)θ√
n

∫ b1−θ
22+θλ

1√
n

√
R 1√

n

ε
dε

= 16λ(2r)θ/
√
n+

40λ(2r)θ
√
R 1√

n√
n

∫ b1−θ
22+θλ

1√
n

1

ε
dε

= 16λ(2r)θ/
√
n+

40λ(2r)θ
√
R 1√

n√
n

[
log(

b1−θ

22+θλ
)− log(

1√
n

)

]
= λrθ/

√
n

[
24+θ + 40

√
R 1√

n
log

(
b1−θ
√
n

22+θλ

)]
.

The proof is completed.

To prove Theorem 6.8 we require the following lemma, which gives optimistic bounds for learning with smooth loss
functions. We say φ is sub-root if r 7→ φ(r)/

√
r is nonincreasing. We say r∗ is a fixed-point of φ if r∗ = φ(r∗).

Lemma D.1 (Srebro et al. 2010). Consider a real hypothesis class F . Further assume that, for all f ∈ F , ‖f(x)‖ ≤ B.
Let ` be a loss function bounded by b. Let S be sampled i.i.d. from some distribution D. Suppose that the local Rademacher
complexity Rn(` ◦ F|r) ≤ φ(r), where φ is a sub-root functions. We have with probability at least 1− δ, for all f ∈ F ,

R(f) ≤ R̂(f) + 106r∗ +
48b

n
(log(1/δ) + log(log(n))) +

√
R̂(f)

(
8r∗ +

4b

n
(log(1/δ) + log(log(n)))

)
.

Proof of Theorem 6.8. Note that by Lemma D.1, with probability at least 1 − δ we have the following inequality for all
w ∈W,

Radv(w) ≤ R̂adv(w) + 106r∗ +
48b

n
(log(1/δ) + log(log(n))) +

√
R̂adv(w)

(
8r∗ +

4b

n
(log(1/δ) + log(log(n)))

)
,

where r∗ is the fixed point solution of the sub-root function φ(r) satisfying Rn(Gadv) ≤ φ(r). Observe also that by

Lemma 6.6 and that θ = 1/2 a good candidate of φ is φ(r) = λ
√

2r/
√
n

[
16 + 40

√
R 1√

n
log
(
b1−θ

√
n

22+θλ

)]
. Therefore,

r∗ = λ2

n

[
16
√

2 + 40
√
R 1√

n
log
(
b1−θ

√
n

22+θλ

)]2

. It follows the following inequality with probability at least 1− δ for all w

Radv(w) ≤R̂adv(w) +
106λ2

n

[
16
√

2 + 40
√
R 1√

n
log

(
b1−θ
√
n

22+θλ

)]2

+
48b

n
(log(1/δ)

+ log(log(n))) +

√√√√R̂adv(w)

(
8λ2

n

[
16
√

2 + 40
√
R 1√

n
log

(
b1−θ
√
n

22+θλ

)]2

+
4b

n
(log(1/ε) + log(log(n)))

)
.

The proof is completed.

E. Example of Robust-self-bounding Loss
In this section we show that the loss function

Lρ(t, y) =


1 if M(t, y) ≤ 0,

2 (M(t, y)/ρ)
3−3 (M(t, y)/ρ)

2
+1 if 0 < M(t, y) < ρ,

0 if M(t, y) ≥ ρ,
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is a robust-self-bounding function. It was shown in Reeve & Kaban (2020) that for t, t′ ∈ RK

|Lρ(t, y)− `(t′, y)| ≤ 2
√

6/ρmax{`(t, y), `(t′, y)} 1
2 ‖t− t′‖∞. (16)

Now consider the function ν : B → RK and µ : B → RK . Then

|max
δ∈B

Lρ(µ(δ), y)−max
δ∈B

Lρ(ν(δ), y)| ≤ max
δ∈B
|Lρ(µ(δ), y)− Lρ(ν(δ), y)|

≤ max
δ∈B

2
√

6/ρmax{Lρ(µ(δ), y), Lρ(ν(δ), y)} 1
2 ‖µ(δ)− ν(δ)‖∞

≤ 2
√

6/ρmax{max
δ∈B

Lρ(µ(σ), y),max
δ∈B

Lρ(ν(σ), y)} 1
2 max
δ∈B
‖µ(δ)− ν(δ)‖∞,

where the second inequality is due to Eq. (16).


