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Abstract

This paper provides analysis for convergence of the singular value thresholding algorithm for

solving matrix completion and affine rank minimization problems arising from compressive sensing,

signal processing, machine learning, and related topics. A necessary and sufficient condition for the

convergence of the algorithm with respect to the Bregman distance is given in terms of the step size

sequence {δk}k∈N as
∑∞

k=1 δk = ∞. Concrete convergence rates in terms of Bregman distances and

Frobenius norms of matrices are presented. Our novel analysis is carried out by giving an identity

for the Bregman distance as the excess gradient descent objective function values and an error

decomposition after viewing the algorithm as a mirror descent algorithm with a non-differentiable

mirror map.
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1 Introduction

Matrix completion and affine rank minimization are important research problems arising from nu-

merous applications in various fields including compressive sensing, signal processing, machine learning,

computer vision and control [6, 7, 18]. A simple and efficient first-order method for solving these prob-

lems is the singular value thresholding (SVT) algorithm introduced in [5].

Let A be a linear transformation mapping n1 × n2 matrices to Rm and b ∈ Rm. SVT aims to find

a low-rank solution to the linear system A(X) = b by iteratively producing a sequence of matrix pairs

{(Xk, Y k)}k∈N as {
Y k+1 = Y k + δkA∗(b−A(Xk)),

Xk+1 = Dτ (Y k+1),
(1)

where A∗ denotes the adjoint of A, X1 = Y 1 is the zero matrix in Rn1×n2 and {δk}k∈N is a sequence

of positive step sizes. Here Dτ (Y k+1) is a soft-thresholding operator at level τ > 0 to be defined in

(4) below, acting on the matrix Y k+1 to produce a low-rank approximation Xk+1 = Dτ (Y k+1). Due
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No. 61806091), and the NSFC/RGC Joint Research Scheme [RGC Project No. N CityU120/14 and NSFC Project No.

11461161006].
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to the ability of producing low-rank solutions with the soft-thresholding operator, SVT was shown to

be extremely efficient at addressing problems with low-rank optimal solutions such as recommender

systems [5]. It was shown in [5] that SVT is equivalent to the gradient descent algorithm applied to

the dual problem of

min
X∈Rn1×n2

[
Ψ(X) := τ‖X‖∗ +

1

2
‖X‖2F

]
subject to A(X) = b, (2)

where ‖X‖∗ = ‖σ(X)‖1 and ‖X‖F = ‖σ(X)‖2 are the nuclear norm and Frobenius norm of X,

respectively. Here σ(X) denotes the vector of all singular values of X in nonincreasing order and

‖x‖p = [
∑d
i=1 |xi|p]

1
p denotes the `p-norm of x = (xi)

d
i=1 ∈ Rd. Based on this interpretation, it was

further shown that the sequence {Xk} converges to the unique solution X? of the optimization problem

(2) with the error satisfying
∑∞
k=1 ‖Xk − X?‖2F < ∞, provided that the linear system A(X) = b is

consistent and that the step size sequence is bounded above and below from 0 satisfying 0 < infk δk ≤
supk δk <

2
‖A‖2 , where ‖A‖ is the operator norm of A defined by ‖A‖ = sup

X∈Rn1×n2 :‖X‖F≤1

‖A(X)‖2.

In this paper, we refine the existing convergence analysis of SVT in terms of both convergence

conditions and convergence rates. We shall show that {Xk} converges to the unique solution X? of

the optimization problem

min
X∈Rn1×n2

Ψ(X) subject to A(X) = b0, (3)

with respect to the Bregman distance if and only if the step size sequence {δk}k∈N satisfies
∑∞
k=1 δk =

∞, under the mild assumption that the orthogonal projection b0 of b onto the range of A is nonzero.

This gives a precise characterization on the convergence of SVT, while only sufficient conditions for

the convergence of SVT were considered in the literature. Then we shall establish a convergence rate

‖XT+1 −X?‖2F = O( 1∑T
k=1 δk

), which gives the order O( 1
T ) in the general case 0 < infk δk ≤ supk δk <

2
‖A‖2 . This improves the previous convergence result

∑∞
k=1 ‖Xk−X∗‖2F <∞ under the same condition

with no explicit convergence rates [5]. Our convergence rate discussion is based on a key identity on the

Bregman distance between XT and X? and the excess objective function values of the dual problem

of (3) in gradient descent at step T . Our discussion in getting the necessary condition
∑∞
k=1 δk = ∞

is based on a novel error decomposition for the excess Bregman distance after interpreting SVT as

a specific mirror descent algorithm with a non-differentiable mirror map. Our basic idea with this

error decomposition is to control the Bregman distance between Xk and X∗ from below by making

full use of the smoothness of the objective function. The new interpretation of SVT also opens the

door of studying SVT in the mirror descent framework [2, 12]. Notice the above definition of b0 also

allows us to remove the assumption on the consistency of the linear system A(X) = b considered in

the literature.

2 Main Results

Before stating our main results, we define the operator Dτ . Let Y = UΣV ∗ be a singular value

decomposition of a matrix Y ∈ Rn1×n2 of rank r, where U and V are n1 × r and n2 × r matrices with

orthonormal columns, respectively, and Σ = diag({σ1, . . . , σr}) is the r × r diagonal matrix with the

main diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0 being the positive singular values of Y . The singular

value shrinkage operator Dτ at level τ is defined [5] by

Dτ (Y ) = UDτ (Σ)V ∗, (4)

where

Dτ (Σ) = diag
(
{(σ1 − τ)+, . . . , (σr − τ)+}

)
and (t)+ = max(0, t).
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Observe from the definition (3) of X? that X? = 0 is equivalent to b0 = 0. Since b0 is the

projection of b onto the range of A, we know that b− b0 is orthogonal to the range of A and thereby

A∗(b − b0) = 0. So from the definition (1) of SVT, we see that in this special case, for any choice of

the step size sequence, Xk = 0 and Y k = 0 for all k ∈ N, and the convergence holds obviously.

Our first main result provides a necessary and sufficient condition for the convergence of {Xk}
to X? with respect to the Bregman distance when the trivial case b0 = 0 is excluded. We denote

〈X,Y 〉 =
∑n1

i=1

∑n2

j=1XijYij the standard inner product between the matrices X = (Xij) ∈ Rn1×n2

and Y = (Yij) ∈ Rn1×n2 , and the subdifferential of a function f : Rn1×n2 → R at X ∈ Rn1×n2 as

∂f(X) = {Y ∈ Rn1×n2 : f(X̃) ≥ f(X) + 〈X̃ −X,Y 〉, ∀X̃ ∈ Rn1×n2}.

If f is convex, the Bregman distance between X and X̃ under f and Ỹ ∈ ∂f(X̃) is defined as

DỸ
f (X, X̃) = f(X)− f(X̃)− 〈X − X̃, Ỹ 〉.

If f is differentiable, then ∂f(X) consists of ∇f(X), the gradient of f at X.

Now we can state our first main result as follows.

Theorem 1. Let {(Xk, Y k)}k∈N be produced by (1) and b0 6= 0. Then the following statements hold.

(a) If supk δk <
1

2‖A‖2 , then

lim
T→∞

DY T

Ψ (X?, XT ) = 0 if and only if

∞∑
k=1

δk =∞.

(b) If supk δk <
2
‖A‖2 , then

∥∥XT+1 −X?
∥∥2

F
≤ C̃

[ T∑
k=1

δk

]−1

, ∀T ∈ N,

where C̃ is a constant independent of T .

The necessity part of (a) of Theorem 1 will be proved by Proposition 5 in Section 3 while the

sufficiency part of (a) and (b) follows from Proposition 9 in Section 4. We see from Theorem 1 that

when 0 < infk δk ≤ supk δk <
2
‖A‖2 , there holds

∥∥XT+1 −X?
∥∥2

F
= O(1/T ). Theorem 1 also applies to

the linearized Bregman iteration for compressive sensing [4, 22].

Our second main result, to be proved in Section 3, is a monotonic property of the sequence {Xk}
in terms of the least squares error F (X) used often in learning theory and defined for X ∈ Rn1×n2 by

F (X) = 1
2‖A(X)− b‖22.

Theorem 2. Let {(Xk, Y k)}k∈N be produced by (1) with the step-size sequence {δk}k∈N satisfying

0 < δk ≤ 1
‖A‖2 for every k ∈ N. Then the following statements hold.

(a) F (Xk+1) ≤ F (Xk) for k ∈ N.

(b) X? is a minimizer of F over Rn1×n2 .

(c) The following inequality holds for all T ∈ N

F (XT+1)− F (X?) =
1

2
‖A(XT+1 −X?)‖22 ≤ Ψ(X?)

[ T∑
k=1

δk

]−1

. (5)

Some of our ideas in the above results can be used to analyze some other thresholding algorithms

such as those derived from spectral algorithms [1, 8, 9]. It would be interesting to establish learning

theory analysis [14, 15, 20, 21] for SVT algorithms in a noisy setting.
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3 Necessity of Convergence

Our proof of the necessity part of (a) of Theorem 1 is based on interpreting SVT as a specific

instantiation of mirror descent algorithms, a class of algorithms performing gradient descent in the dual

space mapped from the primal space by the subgradient of the mirror map [2, 16]. This interpretation

enables us to use arguments for mirror descent algorithms to analyze the convergence of SVT. However,

standard analysis for mirror descent algorithms requires the mirror map to be differentiable, which is

not the case for SVT having the non-differentiable mirror map Ψ. We use Bregman distances to

overcome the difficulty. Our analysis can be extended to study SVT in the online setting [11, 13].

Our analysis needs some basic facts about convex functions. A function f : Rn1×n2 → R is said to

be σ-strongly convex with σ > 0 if DỸ
f (X, X̃) ≥ σ

2 ‖X−X̃‖
2
F for any X, X̃ ∈ Rn1×n2 and Ỹ ∈ ∂f(X̃).

It is said to be L-strongly smooth if it is differentiable and D
∇f(X̃)
f (X, X̃) ≤ L

2 ‖X − X̃‖
2
F for any

X, X̃. We denote f∗(Y ) = sup
X∈Rn1×n2

[
〈X,Y 〉 − f(X)

]
the Fenchel (convex) conjugate of f .

Lemma 3. For a convex function f : Rn1×n2 → R, the following statements hold.

(a) f∗∗ = f and

∂f∗(Y ) = {X : Y ∈ ∂f(X)}, ∀Y ∈ Rn1×n2 .

(b) For β > 0, the function f is β-strongly convex if and only if f∗ is 1
β -strongly smooth.

(c) If there exists a constant L > 0 such that

‖∇f(X)−∇f(X̃)‖F ≤ L‖X − X̃‖F (6)

for all X, X̃ ∈ Rn1×n2 , then we have

f(X) ≤ f(X̃) + 〈X − X̃,∇f(X̃)〉+
L

2
‖X − X̃‖2F .

Part (a) of Lemma 3 on the duality between f and its Fenchel conjugate f∗ can be found in [3].

Part (b) on the duality between strong convexity and strong smoothness can be found in [10]. Part

(c) is a standard result in relating the Lipschitz continuity of ∇F to the strong smoothness of F (see,

e.g., [17, 23]).

The idea of applying Bregman distances to SVT has been introduced in the literature. For example,

it can be found in [5] that

DỸ
Ψ(X, X̃) ≥ 1

2
‖X − X̃‖2F (7)

for all X, X̃ ∈ Rn1×n2 , Ỹ ∈ ∂Ψ(X̃).

We observe the relation Xk = ∇Ψ∗(Y k) for SVT, which is a novelty of our analysis.

Lemma 4. The sequence {(Xk, Y k)}k produced by (1) satisfies Y k ∈ ∂Ψ(Xk) and Xk = ∇Ψ∗(Y k),

and Ψ∗ is differentiable. Hence from ∇F (X) = A∗(A(X)− b), we have

Y k+1 = Y k − δk∇F (Xk) = Y k − δkA∗
(
A(∇Ψ∗(Y k))− b

)
. (8)

Proof. The gradient of F reads directly as∇F (X) = A∗(A(X)−b). It was shown in [5] that for each τ >

0 and Y ∈ Rn1×n2 , the singular value shrinkage operator obeys Dτ (Y ) = arg minX
1
2‖X−Y ‖

2
F+τ‖X‖∗.

It follows that the second equation in (1) for Y k is equivalent to

Xk = arg min
X∈Rn1×n2

1

2
‖X − Y k‖2F + τ‖X‖∗.

Combining this with the optimality condition implies 0 ∈ Xk−Y k+τ∂‖Xk‖∗. That is, Y k ∈ ∂Ψ(Xk).

By Part (a) of Lemma 3, this implies Xk ∈ ∂Ψ∗(Y k). But (7) shows that Ψ is 1-strongly convex, which

implies that Ψ∗ is differentiable according to Part (b) of Lemma 3. Therefore, Xk = ∇Ψ∗(Y k). This

proves the desired statement.
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Now we can carry out the novel analysis stated in the following proposition which proves the

necessity part of Theorem 1.

Proposition 5. Let {(Xk, Y k)}k∈N be produced by (1). If b0 6= 0 and for some κ > 0, the step-size

sequence {δk}k∈N satisfies 0 < δk ≤ 1
(2+κ)‖A‖2 for every k ∈ N, then DY T

Ψ (X?, XT ) > 0 for T ∈ N and

T∑
k=1

δk ≥
log Ψ(X?)

DY T+1
Ψ (X?,XT+1)

(2 + κ)‖A‖2 log 2+κ
κ

. (9)

In particular, limT→∞DY T

Ψ (X?, XT ) = 0 implies
∑∞
k=1 δk =∞.

Proof. Let us first analyze how the Bregman distance is reduced in one step iteration of SVT.

Let k ∈ N. By Lemma 4 and the definition of the Bregman distance, for X ∈ Rn1×n2 , we have

∆k(X) := DY k

Ψ (X,Xk)−DY k+1

Ψ (X,Xk+1)

=
[
Ψ(X)−Ψ(Xk)−〈X−Xk, Y k〉

]
−
[
Ψ(X)−Ψ(Xk+1)−〈X−Xk+1, Y k+1〉

]
= Ψ(Xk+1)−Ψ(Xk) + 〈X −Xk+1, Y k+1〉 − 〈X −Xk, Y k〉. (10)

Notice that

DY k+1

Ψ (Xk, Xk+1) = Ψ(Xk)−Ψ(Xk+1)− 〈Xk −Xk+1, Y k+1〉.

Hence, by Lemma 4

∆k(X) = 〈X −Xk, Y k+1 − Y k〉 −DY k+1

Ψ (Xk, Xk+1)

= −δk〈X −Xk,∇F (Xk)〉 −DY k+1

Ψ (Xk, Xk+1).

Setting X = X?, we have

∆k(X?) = −δk〈X? −Xk,∇F (Xk)〉 −DY k+1

Ψ (Xk, Xk+1). (11)

To estimate the inner product in (11), we apply Part (c) of Lemma 3 to the function F whose gradient

satisfies the Lipschitz condition as

‖∇F (X)−∇F (X̃)‖F = ‖A∗(A(X)− b)−A∗(A(X̃)− b)‖F
= ‖A∗(A(X − X̃))‖F ≤ ‖A‖2‖X − X̃‖F . (12)

Setting X = X?, X̃ = Xk yields

F (X?)− F (Xk) ≤ 〈X? −Xk,∇F (Xk)〉+
‖A‖2

2
‖Xk −X?‖2F , (13)

while the choice of X = Xk, X̃ = X? gives

F (Xk)− F (X?) ≤ 〈Xk −X?,∇F (X?)〉+
‖A‖2

2
‖Xk −X?‖2F .

Recall that A∗(b− b0) = 0. It follows that

∇F (X?) = A∗(A(X?)− b) = A∗(b0 − b) = 0, (14)

and

F (Xk)− F (X?) ≤ ‖A‖
2

2
‖Xk −X?‖2F .

Combining this with (11) and (13) tells us that

∆k(X?) ≤ δk‖A‖2‖Xk −X?‖2F −DY k+1

Ψ (Xk, Xk+1) ≤ δk‖A‖2‖Xk −X?‖2F .

5



But ‖Xk −X?‖2F ≤ 2DY k

Ψ (X?, Xk) according to (7). Then we have

DY k+1

Ψ (X?, Xk+1) ≥ (1− 2δk‖A‖2)DY k

Ψ (X?, Xk). (15)

Now we need the restriction 0 < δk ≤ 1
(2+κ)‖A‖2 with κ > 0 on the step size sequence. Denote

a = 2+κ
2 log 2+κ

κ and apply the elementary inequality

1− x ≥ exp(−ax), ∀0 < x ≤ 2

2 + κ
.

Then we see from (15) that

DY k+1

Ψ (X?, Xk+1) ≥ exp
{
−2aδk‖A‖2

}
DY k

Ψ (X?, Xk).

Applying this inequality iteratively for k = 1, . . . , T yields

DY T+1

Ψ (X?, XT+1) ≥
T∏
k=1

exp
{
−2aδk‖A‖2

}
DY 1

Ψ (X?, X1).

Since Y 1 = X1 = 0, we have DY 1

Ψ (X?, X1) = Ψ(X?) > 0 by our assumption of b0 6= 0. So

DY T+1

Ψ (X?, XT+1) > 0 and

2a‖A‖2
T∑
k=1

δk ≥ log Ψ(X?)− logDY T+1

Ψ (X?, XT+1).

This verifies the desired lower bound on
∑T
k=1 δk. The proof is complete.

We are in a position to prove our second main result.

Proof of Theorem 2. We follow (10), but decompose ∆k(X) in a different way by means ofDY k

Ψ (Xk+1, Xk) =

Ψ(Xk+1)−Ψ(Xk)− 〈Xk+1 −Xk, Y k〉 to get

∆k(X) = 〈X −Xk+1, Y k+1 − Y k〉+DY k

Ψ (Xk+1, Xk).

By (8), Y k+1 − Y k = −δk∇F (Xk). To be consistent with the gradient at Xk, we separate X −Xk+1

into X −Xk +Xk −Xk+1 and decompose ∆k(X) as

∆k(X) = −δk〈X − Xk,∇F (Xk)〉 +
{
δk〈Xk+1 −Xk,∇F (Xk)〉+DY k

Ψ (Xk+1, Xk)
}
. (16)

The inner product in the above last term can be estimated by applying Part (c) of Lemma 3 to the

function F satisfying (12) as

〈Xk+1 −Xk,∇F (Xk)〉 ≥ F (Xk+1)− F (Xk)− ‖A‖
2

2
‖Xk −Xk+1‖2F .

But

DY k

Ψ (Xk+1, Xk) ≥ 1

2
‖Xk+1 −Xk‖2F

according to (7). Putting these lower bounds into the last term of (16) and applying the bound

〈X −Xk,∇F (Xk)〉 ≤ F (X)− F (Xk) derived from the convexity of F , we find

∆k(X) ≥ −δk
[
F (X)− F (Xk)

]
+
{
δk
[
F (Xk+1)− F (Xk)

]
− δk‖A‖2

2
‖Xk −Xk+1‖2F +

1

2
‖Xk+1 −Xk‖2F

}
= δk

[
F (Xk+1)− F (X)

]
+

1− δk‖A‖2

2
‖Xk+1 −Xk‖2F .

6



By the assumption on the step size, δk‖A‖2 ≤ 1. Therefore, the following inequality holds for all

X ∈ Rn1×n2

δk[F (Xk+1)− F (X)] ≤ DY k

Ψ (X,Xk)−DY k+1

Ψ (X,Xk+1). (17)

Then the property F (Xk+1) ≤ F (Xk) stated in Part (a) follows by setting X = Xk in (17) because

DY k

Ψ (Xk, Xk) = 0 and DY k+1

Ψ (Xk, Xk+1) ≥ 0.

The statement in Part (b) follows immediately from (14). In fact, from the orthogonality of b− b0
and the range of A and A(X?) = b0, we see the following well known relation in learning theory

F (X) =
1

2
‖A(X −X?) +A(X?)− b‖22 =

1

2
‖A(X −X?)‖22 +

1

2
‖A(X?)− b‖22

=
1

2
‖A(X −X?)‖22 + F (X?). (18)

To prove the statement in Part (c), we apply the monotonicity F (Xk+1) ≤ F (Xk) derived in Part

(a) and find

F (XT+1)− F (X) ≤
∑T
k=1 δk[F (Xk+1)− F (X)]∑T

k̃=1 δk̃
.

Taking the summation of (17) from k = 1 to T gives

T∑
k=1

δk[F (Xk+1)− F (X)] ≤
T∑
k=1

[
DY k

Ψ (X,Xk)−DY k+1

Ψ (X,Xk+1)
]

= DY 1

Ψ (X,X1)−DY T+1

Ψ (X,XT+1).

But −DY T+1

Ψ (X,XT+1) ≤ 0 and DY 1

Ψ (X,X1) = Ψ(X) since X1 = Y 1 = 0. Hence

F (XT+1)− F (X) ≤ Ψ(X)∑T
k=1 δk

, ∀X ∈ Rn1×n2 .

In particular, taking X = X? and applying (18), we get (5). This completes the proof of Theorem

2.

4 Sufficiency of Convergence

This section presents the proof for the sufficiency part of (a) and (b) of Theorem 1. Our analysis

is based on the observation that SVT can be viewed as a gradient descent algorithm applied to the

dual problem of (3), hence results on gradient descent algorithms can be applied. Here we apply the

following standard estimates for the convergence of the gradient descent method applied to smooth

optimization problems. The proof is given in the appendix for completeness.

Lemma 6. Suppose f : Rm → R is convex and L-strongly smooth with λ? being a minimizer. Let

{λk}k∈N be the following sequence produced by the gradient descent algorithm

λ1 = 0, λk+1 = λk − δk∇f(λk), k ∈ N (19)

with a step size sequence {δk > 0}k∈N. Then the following statements hold.

(a) If supk δk < 2/L, then there exists a constant C̃

f(λT+1)− f(λ?) ≤ C̃
[ T∑
k=1

δk

]−1

. (20)

(b) If supk δk ≤ 1/L, then (20) holds with C̃ = ‖λ?‖22/2.
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The following lemma shows how SVT can be viewed as a gradient descent algorithm applied to the

dual of (3). Part (a) establishes the dual problem of the optimization problem (3), and Part (b) shows

that the sequence {Y k} coincides with {A∗(λk)}k∈N with {λk} produced by applying the gradient

descent algorithm (19) to the function G given in Part (a). This lemma was presented in [5] when A
is an orthogonal projector and the system A(X) = b is consistent. It is extended here to the general

linear transformation A allowing for inconsistent systems with b replaced by its orthogonal projection

onto the range of A.

Lemma 7. (a) The Lagrangian dual problem of (3) is

min
λ∈Rm

G(λ), where G(λ) := Ψ∗(A∗(λ))− 〈λ, b0〉. (21)

(b) If {(Xk, Y k)}k∈N is produced by (1), and {λk}k∈N is produced by applying the gradient descent

algorithm (19) to the function G, then we have Y k = A∗(λk) for k ∈ N.

Proof. The Lagrangian dual problem of (3) is

max
λ∈Rm

min
X∈Rn1×n2

[
Ψ(X)− 〈λ,A(X)〉+ 〈λ, b0〉

]
= max
λ∈Rm

[
− max
X∈Rn1×n2

[
〈X,A∗(λ)〉 −Ψ(X)

]
+ 〈λ, b0〉

]
= max
λ∈Rm

[
−Ψ∗(A∗(λ)) + 〈λ, b0〉

]
= − min

λ∈Rm

[
Ψ∗(A∗(λ))− 〈λ, b0〉

]
= − min

λ∈Rm
G(λ),

where in the second identity we have used the definition of Fenchel conjugate. This proves (21).

When the gradient descent algorithm (19) is applied to the function G defined in (21), we see by

the chain rule that the gradient equals

∇G(λ) = ∇
(
Ψ∗(A∗(λ))− 〈λ, b0〉

)
= A

(
(∇Ψ∗)(A∗(λ))

)
− b0. (22)

So the sequence {λk}k∈N produced by (19) translates to

λk+1 = λk − δk[A((∇Ψ∗)(A∗(λk)))− b0]. (23)

Applying the transformation A∗ to both sides and noticing A∗b0 = A∗b yield the following identity

for all k ∈ N

A∗(λk+1) = A∗(λk)− δkA∗
(
A((∇Ψ∗)(A∗(λk)))− b0

)
= A∗(λk)− δkA∗

(
A((∇Ψ∗)(A∗(λk)))− b

)
.

This iteration relation for the sequence {A∗(λk)}k∈N is exactly the same as (8) in Lemma 4 for the

sequence {Y k}k∈N. This together with the initial conditions Y 1 = 0,A∗(λ1) = 0 tells us that Y k =

A∗(λk) for k ∈ N. The proof of the lemma is complete.

Combining Lemma 6 and Lemma 7 enables us to bound the excess dual objective value G(λT+1)−
G(λ?) in terms of

∑T
k=1 δk. What is left for estimating DY T+1

Ψ (X?, XT+1) to prove the sufficiency

part of Theorem 1 is to find a relation between the excess dual objective value G(λT+1)−G(λ?) and

the Bregman distance DY T+1

Ψ (X?, XT+1). This is given in the following key identity which provides

an elegant scheme to transfer decay rates of excess dual objective values to those for the Bregman

distance of primal variables.

Lemma 8. If {(Xk, Y k)}k∈N is produced by (1), and {λk}k∈N is produced by applying the gradient

descent algorithm (19) to the function G, then there exists some λ? ∈ Rm such that A∗(λ?) ∈ ∂Ψ(X?)

and

DY k

Ψ (X?, Xk) = G(λk)−G(λ?).
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Proof. Since X? is an optimal point of the problem (3) with only linear constraints, the existence of

Lagrange multipliers (e.g., Corollary 28.2.2 in [19]) and the first-order optimality condition imply the

existence of λ? ∈ Rm satisfying

Y ? := A∗(λ?) ∈ ∂Ψ(X?). (24)

Together with Part (a) of Lemma 3 and Lemma 4, this implies that

X? = ∇Ψ∗(A∗(λ?)) = ∇Ψ∗(Y ?). (25)

Since Ψ is convex, we know (see, e.g., Proposition 3.3.4 in [3]) that for any X ∈ Rn1×n2 ,

Y ∈ ∂Ψ(X) =⇒ Ψ∗(Y ) = 〈X,Y 〉 −Ψ(X).

Applying this implication to the pairs (X?, Y ?) in (24) and (Xk, Y k) in Lemma 4 satisfying Y k ∈
∂Ψ(Xk), we know that

DY k

Ψ (X?, Xk) = Ψ(X?)−Ψ(Xk)− 〈X? −Xk, Y k〉
= Ψ(X?)− 〈X?, Y ?〉+ 〈X?, Y ?〉 −Ψ(Xk)− 〈X? −Xk, Y k〉
= −Ψ∗(Y ?) + 〈X?, Y ? − Y k〉+ Ψ∗(Y k)

= Ψ∗(Y k)−Ψ∗(Y ?)− 〈Y k − Y ?,∇Ψ∗(Y ?)〉,

where we have used (25) in the last equality. But Y k = A∗(λk) according to Part (b) of Lemma 7.

Then we see from the definition of the function G that DY k

Ψ (X?, Xk) equals

Ψ∗(A∗(λk))−Ψ∗(A∗(λ?))− 〈A∗(λk − λ?),∇Ψ∗(Y ?)〉
= Ψ∗(A∗(λk))−Ψ∗(A∗(λ?))−〈λk − λ∗, b0〉+〈λk−λ?, b0〉−〈A∗(λk−λ?),∇Ψ∗(Y ?)〉
= G(λk)−G(λ?) + 〈λk − λ?, b0 −A(∇Ψ∗(Y ?))〉.

This together with the identities (25) and A(X?) = b0 implies

DY k

Ψ (X?, Xk) = G(λk)−G(λ?) + 〈λk − λ?, b0 −A(X?)〉
= G(λk)−G(λ?).

The proof of the lemma is complete.

Now we can prove the sufficiency part of (a) and (b) of Theorem 1 by presenting the following more

general estimate.

Proposition 9. Let {(Xk, Y k)}k∈N be produced by (1) with a positive step-size sequence {δk} satisfying

supk δk <
2
‖A‖2 . Then we have

DY T+1

Ψ (X?, XT+1) ≤ C̃
[ T∑
k=1

δk

]−1

, (26)

where C̃ is a constant independent of T . Furthermore, if supk δk ≤ 1
‖A‖2 , then (26) holds with C̃ =

‖λ?‖22/2, where λ? is an element in Rm satisfying A∗(λ?) ∈ ∂Ψ(X?).

Proof. Recall the expression (22) for the gradient of G. Take the vector λ? given in Lemma 8. The

identity (25) implies

∇G(λ?) = A(∇Ψ∗(A∗(λ?)))− b0 = A(X?)− b0 = 0

and therefore λ? minimizes G.
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By (7), Ψ is 1-strongly convex. So its Fenchel conjugate Ψ∗ is 1-strongly smooth according to Part

(b) of Lemma 3. It follows that for λ, λ̃ ∈ Rm,

G(λ)−G(λ̃) = Ψ∗(A∗(λ))− 〈λ, b0〉 −Ψ∗(A∗(λ̃)) + 〈λ̃, b0〉

≤ 〈∇Ψ∗(A∗(λ̃)),A∗(λ− λ̃)〉+
1

2
‖A∗(λ− λ̃)‖2F − 〈λ− λ̃, b0〉

= 〈λ− λ̃,A((∇Ψ∗)(A∗(λ̃)))− b0〉+
1

2
‖A∗(λ− λ̃)‖2F

≤ 〈λ− λ̃,∇G(λ̃)〉+
‖A‖2

2
‖λ− λ̃‖22,

where in the last step we have used (22) and the definition of operator norm. It tells us that the

function G(λ) is ‖A‖2-strongly smooth. So we apply Lemma 8 and Lemma 6 (a) and know that when

{δk}k satisfies supk δk ≤ 2
‖A‖2 , the following inequality holds with a constant C̃ independent of T

DY T+1

Ψ (X?, XT+1) = G(λT+1)−G(λ?) ≤ C̃
[ T∑
k=1

δk

]−1

.

According to Lemma 8 and Lemma 6 (b), the constant C̃ can be chosen to be ‖λ?‖22/2 if δk ≤ 1
‖A‖2 .

The proof is complete.

Appendix. Proof of Lemma 6

We first prove part (a). Since supk δk < 2/L, there exists a γ ∈ (0, 2) such that δk ≤ (2− γ)/L for

all k ∈ N. According to the iteration (19), we know

‖λk+1 − λ?‖22 = ‖λk − λ?‖22 + δ2
k‖∇f(λk)‖22 − 2δk〈λk − λ?,∇f(λk)〉. (27)

Since f is convex and L-strongly smooth, the co-coercivity of ∇f implies (see, e.g., Theorem 2.1.5 in

[17]

‖∇f(λk)−∇f(λ?)‖22 ≤ L〈λk − λ?,∇f(λk)−∇f(λ?)〉.

Plugging this inequality back into (27) and using ∇f(λ?) = 0, we derive

‖λk+1 − λ?‖22 ≤ ‖λk − λ?‖22 + (Lδk − 2)δk〈λk − λ?,∇f(λk)〉
≤ ‖λk − λ?‖22 + (Lδk − 2)δk

(
f(λk)− f(λ?)

)
≤ ‖λk − λ?‖22 − γδk

(
f(λk)− f(λ?)

)
,

where we have used the Jensen inequality and δk < 2/L in the second inequality and δk ≤ (2 − γ)/L

in the last inequality. It then follows that

min
1≤k≤T

f(λk)− f(λ?) ≤
γ
∑T
k=1 δk

(
f(λk)− f(λ?)

)
γ
∑T
k=1 δk

≤
∑T
k=1

[
‖λk − λ?‖22 − ‖λk+1 − λ?‖22

]
γ
∑T
k=1 δk

≤ ‖λ?‖22
γ
∑T
k=1 δk

. (28)

Furthermore, it follows from Lemma 3 (c) and the iteration (19) that

f(λk+1) ≤ f(λk) + 〈λk+1 − λk,∇f(λk)〉+
L‖λk+1 − λk‖22

2

= f(λk)− δk
(
1− 2−1Lδk

)
‖∇f(λk)‖22. (29)
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The assumption δk < 2/L then implies f(λk+1) ≤ f(λk) for all k ∈ N. This monotonicity together

with (28) then shows (20) with C̃ = ‖λ?‖22/γ.

We now prove part (b) under the assumption supk δk ≤ 1/L. An application of the Jensen inequality

in (29) then implies

f(λk+1) ≤ f(λ?) + 〈λk − λ?,∇f(λk)〉 − δk
(
1− 2−1Lδk

)
‖∇f(λk)‖22

≤ f(λ?) + 〈λk − λ?,∇f(λk)〉 − 2−1δk‖∇f(λk)‖22

= f(λ?) +
‖λk − λ?‖22 − ‖λk+1 − λ?‖22

2δk
,

where we have used δk ≤ 1/L in the second inequality and (27) in the last identity. It then follows

that

min
1≤k≤T

f(λk+1)− f(λ?) ≤
2
∑T
k=1 δk

[
f(λk+1)− f(λ?)

]
2
∑T
k=1 δk

≤ ‖λ?‖22
2
∑T
k=1 δk

,

which together with the monotonicity of f(λk) implies the stated inequality (20) with C̃ = ‖λ?‖22/2.

The proof of Lemma 6 is complete.
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