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Abstract

We study stochastic composite mirror descent, a class of scalable algorithms able
to exploit the geometry and composite structure of a problem. We consider both
convex and strongly convex objectives with non-smooth loss functions, for each
of which we establish high-probability convergence rates optimal up to a loga-
rithmic factor. We apply the derived computational error bounds to study the
generalization performance of multi-pass stochastic gradient descent (SGD) in a
non-parametric setting. Our high-probability generalization bounds enjoy a loga-
rithmical dependency on the number of passes provided that the step size sequence
is square-summable, which improves the existing bounds in expectation with a
polynomial dependency and therefore gives a strong justification on the ability
of multi-pass SGD to overcome overfitting. Our analysis removes boundedness
assumptions on subgradients often imposed in the literature. Numerical results are
reported to support our theoretical findings.

1 Introduction

Stochastic gradient descent (SGD) has found wide applications in machine learning problems due
to its simplicity in implementation, low memory requirement and low computational complexity
per iteration, as well as good practical behavior [2, 6, 28, 32, 41]. As an iterative method, SGD
minimizes empirical errors by moving iterates along the direction of a negative gradient calculated
based on a loss function on a single training example or a batch of few examples. This strategy of
processing few examples per iteration makes SGD particularly suitable for large scale applications
with very large data points [2, 41], which are becoming ubiquitous in the big data era.

Stochastic composite mirror descent (SCMD) is a powerful extension of SGD based on two moti-
vations [12]. Firstly, it relaxes the Hilbert space structure of SGD by using a mirror map to capture
geometric properties of data from a Banach space [4, 25]. Secondly, it exploits the problem structure
by separating, at every iteration, a data-fitting term and a regularization term in structured optimization
problems to obtain a desired regularization effect, which arise naturally since a regularizer is often
introduced to either avoid overfitting or impose a priori information [12, 37].

Although much theoretical analysis has been performed to understand the practical behavior of
SGD and SCMD, the existing theoretical results are still not quite satisfactory. Firstly, most of
the existing theoretical results are stated in expectation which inevitably ignore some information
on high-order moments of the random variable we are interested in. In practice, we may be more
interested in high-probability bounds to understand the variability of the learned model which is
also an important factor we should take into account when measuring the quality of models [32].
Secondly, the existing generalization bounds, stated in expectation, for SGD either are suboptimal
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or require to impose a smoothness assumption on loss functions [13, 21]. Thirdly, a non-trivial
assumption on the boundedness of subgradients is often imposed in the literature to proceed with
the analysis [11, 12, 28, 32], especially in the derivation of high-probability bounds. However, this
boundedness assumption may not hold if the optimization is conducted in an unbounded domain,
under which scenario the derived bounds may not be intuitive.

In this paper, we aim to contribute towards a refined analysis on both convergence rates and gen-
eralization properties of SCMD. We consider both general convex and strongly convex objectives,
for each of which we show that SCMD can achieve almost optimal convergence rates with high
probability, which match the minimax lower rates for stochastic approximation up to a logarithmic
factor [1, 25]. In particular, we identify a constraint on step sizes to guarantee the boundedness of
iterates with high probability (up to a logarithmic factor). Furthermore, we apply these convergence
rates related to computational errors to establish high-probability generalization bounds for the model
trained by SGD through multiple passes over the training examples, which is a typical way of using
SGD to process large datasets [20]. Our generalization bounds do not require to impose smoothness
assumptions on loss functions and can be optimal up to a logarithmic factor. Surprisingly, we show
that estimation errors scale logarithmically with respect to (w.r.t.) the number of passes provided that
the step size sequence is square-summable, which implies that SGD may be immune to overfitting.
As a contrast, estimation error bounds based on stability arguments [13] and uniform deviation
arguments [21] scale polynomially w.r.t. the number of passes, which may not justify well the ability
of SGD in overcoming overfitting in practice. All our theoretical results are derived without any
boundedness assumptions on subgradients based on two tricks. The first trick is to use a self-bounding
property of loss functions (Assumption 1) to show that a (weighted) summation of function values
can be controlled by step sizes (Lemma 2). The second trick is to show that conditional variances of
martingales in a one-step progress inequality of SCMD can be partially offset by some other terms in
the one-step progress inequality.

The paper is organized as follows. We introduce SCMD and state convergence rates in Section 2 and
Section 3, respectively. We study generalization bounds of SGD in Section 4. Discussions are given
in Section 5. Simulation results and conclusions are given in Section 6 and Section 7, respectively.

2 Stochastic Composite Mirror Descent

Many machine learning problems involve optimization problems of a composite structure [12, 37]

min
w∈W

φ(w) = Ez[f(w, z)] + r(w), (2.1)

where W is a Banach space with a norm ‖ · ‖, F (w) := Ez[f(w, z)] is a data-fitting term and
r : W → R+ is a simple regularizer possibly inducing sparsity. Here f : W × Z 7→ R+ is a
function with f(w, z) measuring the quality of a model indexed by w ∈ W on a random example
z = (x, y) drawn from a probability measure ρ̃ defined in a sample space Z = X × Y with an input
space X ⊂ W∗ and an output space Y ⊂ R. We denote by Ez the expectation w.r.t. z, and byW∗
the dual ofW with the dual norm ‖ · ‖∗. A typical choice of the data-fitting term takes the form
f(w, z) = `(〈w, x〉, y), where ` : R × Y 7→ R+ is a loss function and 〈w, x〉 is the dual element
x ∈ W∗ acting on w ∈ W . With specific instantiations of loss functions ` and regularizers r, the
formulation (2.1) covers many famous machine learning problems in a unifying framework, including
least squares, support vector machines, logistic regression, lasso and elastic-net, etc [12, 37].

As an extension of SGD, SCMD uses a strongly convex and Fréchet differentiable mirror map Ψ
to generate an appropriate Bregman distance DΨ(w, w̃) := Ψ(w) − Ψ(w̃) − 〈w − w̃,∇Ψ(w̃)〉 to
capture the involved non-Euclidean geometry [4, 25], where ∇Ψ(w̃) denotes the gradient of Ψ at
w̃. Let w1 = 0 ∈ W and {ηt}t∈N be a positive step size sequence. Upon the arrival of zt at the
t-th iteration, SCMD calculates a subgradient f ′(wt, zt) ∈ ∂wf(wt, zt) as an unbiased estimate of
F ′(wt) ∈ ∂F (wt), and updates the model as follows

wt+1 = arg min
w∈W

ηt
[
〈w − wt, f ′(wt, zt)〉+ r(w)

]
+DΨ(w,wt). (2.2)

Here ∂wf(wt, zt) :=
{
g : f(w, zt)− f(wt, zt) ≥ 〈w−wt, g〉 for all w

}
denotes the subdifferential

of f(·, zt) at wt. Intuitively, SCMD uses f ′(wt, zt) to form a first-order approximation of f(·, zt) at
wt and uses the Bregman distance DΨ(w,wt) to keep wt+1 not far away from the current iterate.
The regularizer r is kept intact here for a regularization effect [12, 37]. A typical choice of Ψ is the

2



p-norm divergence Ψp(w) = 1
2‖w‖

2
p (1 < p ≤ 2), which works favorably for sparse problems by

setting p close to 1 [12, 37]. Here ‖ · ‖p is the p-norm defined by ‖w‖p =
(∑d

i=1 |w(i)|p
)1/p

for
w = (w(1), . . . , w(d)) ∈ Rd. SCMD recovers SGD by taking Ψ = Ψ2 and r(w) = 0, stochastic
forward-backward splitting by taking Ψ = Ψ2 [11], stochastic mirror descent by taking r(w) = 0 [24]
and stochastic mirror descent algorithm made sparse by taking Ψ = Ψp and r(w) = λ‖w‖1 [30].

3 Convergence Rates

Before stating our high-probability convergence rates, we introduce some assumptions. Throughout
the paper, we assume that the mirror map Ψ is Fréchet differentiable and σΨ-strongly convex in the
sense that DΨ(w, w̃) ≥ 2−1σΨ‖w − w̃‖2 for all w, w̃ ∈ W ⊂ Rd (σΨ > 0), and f(w, z) is convex
w.r.t. the first argument. We also always assume that Assumption 1 and Assumption 2 hold, the
sample space Z is bounded and supz∈Z f(0, z) <∞.
Assumption 1. We assume that there exist A and B ≥ 0 such that the following inequalities hold
for any w ∈ W, z ∈ Z and any f ′(w, z) ∈ ∂f(w, z), r′(w) ∈ ∂r(w)

‖f ′(w, z)‖2∗ ≤ Af(w, z) +B and ‖r′(w)‖2∗ ≤ Ar(w) +B. (3.1)

This is a standard assumption and satisfied in many practical problems [11, 41]. For example, Lemma
A.5 shows that r(w) = λ‖w‖pp satisfies the second inequality of (3.1) with ‖ · ‖ = ‖ · ‖p(1 ≤ p ≤ 2),
A = 2λp(p − 1) and B = λp(2 − p). Furthermore, if f(w, z) = `(〈w, x〉, y), then Lemma A.4
shows that ‖f ′(w, z)‖2∗ = |`′(〈w, x〉, y)|2‖x‖2∗ would satisfy the first inequality of (3.1) if

|`′(a, y)|2 ≤ Ã`(a, y) + B̃, ∀a ∈ R, y ∈ Y (3.2)

for some Ã, B̃ > 0 [41], where `′(a, y) denotes a subgradient of ` w.r.t. the first argument. Many
popular loss functions satisfy (3.2), including the p-norm hinge loss `(a, y) = max{0, 1 − ya}p
(1 ≤ p ≤ 2) [34], the logistic loss `(a, y) = log(1 + exp(−ya)) for classification, and the p-th
power absolute distance loss `(a, y) = |a − y|p (1 ≤ p ≤ 2), the Huber loss `(a, y) = (a − y)2 if
|a− y| ≤ 1 and `(a, y) = 2|a− y| − 1 otherwise for regression [41]. We refer the interested readers
to [41] for constants Ã, B̃ in (3.2) with different loss functions `.
Assumption 2. We assume the existence of σF , σr ≥ 0 such that

F (w)− F (w̃)− 〈w − w̃, F ′(w̃)〉 ≥ σFDΨ(w, w̃),

r(w)− r(w̃)− 〈w − w̃, r′(w̃)〉 ≥ σrDΨ(w, w̃)
(3.3)

hold for all w, w̃ ∈ W and any F ′(w̃) ∈ ∂F (w̃), r′(w̃) ∈ ∂r(w̃).

The case σφ := σF + σr = 0 corresponds to general convex objectives, while the case σφ > 0
corresponds to strongly convex objectives. Let w∗ = arg minw∈W φ(w) be the minimizer of φ inW
with the minimal norm. We always assume ‖w∗‖ <∞ in this paper.

Our theoretical analysis is based on the following lemma quantifying the one-step progress of SCMD
measured by Bregman distance, which shows how DΨ(w,wt) would change in a single iteration.
Lemma 1. Let {wt}t∈N be generated by (2.2), then the following inequality holds for any w ∈ W

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt〈w − wt, f ′(wt, zt)〉+ ηt(r(w)− r(wt))
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)︸ ︷︷ ︸
:=At

−σrηtDΨ(w,wt+1). (3.4)

Existing one-step progress inequality can be found in the literature with At replaced by Bt :=
‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗, see, e.g., [12]. Then, a non-trivial assumption as Bt ≤ G for all t ∈ N
and aG ∈ R is imposed to control

∑T
t=1 η

2
tBt byO(

∑T
t=1 η

2
t ). We refine these discussions by using

Assumption 1 to replace Bt with At. Equation (3.6) allows us to control
∑T
t=1 η

2
tAt by O(

∑T
t=1 η

2
t )

without imposing any boundedness assumptions on subgradients. In our discussion for strongly
convex objectives, we require to divide both sides of (3.4) by η2

t . In this way, Eq. (3.7) plays an
analogous role in removing boundedness assumptions in the strongly convex case. Both proofs of
Lemma 1 and Lemma 2 are given in Supplementary Material B.
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Lemma 2. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ. Then, we have

‖wt+1‖2 ≤ 2C1σ
−1
Ψ

t∑
k=1

ηk, ∀t ∈ N, (3.5)

where C1 = supz∈Z f(0, z) + r(0) +A−1B. Furthermore, if ηt+1 ≤ ηt, then for all t ∈ N
t∑

k=1

η2
k

(
f(wk, zk) + r(wk)

)
≤ 2C1

t∑
k=1

η2
k, (3.6)

t∑
k=1

(
f(wk, zk) + r(wk)

)
≤ 2C1t+ 2C1

( t∑
k=1

ηk
)
η−1
t . (3.7)

3.1 Convex Objectives

We study the behavior of SCMD for convex objectives with σφ = 0. The assumption
∑∞
t=1 η

2
t <∞

is satisfied if ηt = η1t
−θ with θ > 1/2 or ηt = η1(t logβ(et))−

1
2 with β > 1. Our idea is to take

a summation of Eq. (3.4) with w = w∗, and show that the conditional variance of the involved
martingale

∑t
k=1 ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉 can be partially offset by some other

terms. The proofs of Theorems 3 and 4 are given in Supplementary Material C.
Theorem 3. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt and∑∞

t=1 η
2
t <∞. Then, there exists a constant C2 independent of T (explicitly given in the proof) such

that for any δ ∈ (0, 1) the following inequality holds with probability at least 1− δ

max
1≤t≤T

‖wt‖2 ≤ C2 log
T

δ
. (3.8)

Remark 1. Although implemented in a possibly unbounded domain, Theorem 3 shows that {wt}t∈N
by (2.2) falls into a bounded ball (up to a logarithmic factor) with high probabilities. Intuitively, this
suggests that SCMD is immune to overfitting if we take appropriate step sizes. In this case, we can
run SCMD with many iterations without essentially harming the quality of the output model.

Based on Theorem 3, we establish high-probability convergence rates for a weighted average of
iterates without any assumptions on the boundedness of iterates. In Theorem 4 and Corollary 5, we
establish bounds on suboptimality of objectives w.r.t. any w and an optimal solution w∗, respectively.

Theorem 4. Let w ∈ W and δ ∈ (0, 2/e). Let w̄(1)
T =

(∑T
t=1 ηt

)−1∑T
t=1 ηtwt be a weighted

average of the first T iterates. Under the conditions of Theorem 3, with probability 1− δ we have

φ(w̄
(1)
T )− φ(w) ≤

( T∑
t=1

ηt

)−1(
2C3DΨ(w, 0) + C4

)
log

3
2

2T

δ
, (3.9)

where C3 and C4 are two constants (explicitly given in the proof) independent of T .
Remark 2. A similar high-probability bound was established for SCMD in [12]. However, their
discussion needs to impose an additional almost-sure boundedness assumption on iterates, i.e.,
‖wt‖2 ≤ G for a G > 0 and all t ∈ N. These boundedness assumptions on either subgradients
or iterates are fundamental to the existing analysis but hard to check in practice. Moreover, the
high-probability analysis makes these assumptions non-trivial to remove since one also needs to
consider high-order moments of random variables.
Corollary 5. If δ ∈ (0, 2/e) and conditions of Theorem 4 are satisfied, then (3.9) holds with
probability 1 − δ with w = w∗. Furthermore, if we choose ηt = η1t

−θ with θ > 1/2, then with
probability 1−δ we have φ(w̄

(1)
T )−φ(w∗) = O

(
T θ−1 log

3
2 T
δ

)
; if we choose ηt = η1(t logβ(et))−

1
2

with β > 1, then with probability 1− δ we have φ(w̄
(1)
T )− φ(w∗) = O

((
T−1 logβ T

) 1
2 log

3
2 T
δ

)
.

The convergence rate O
((
T−1 logβ T

) 1
2 log

3
2 T
δ

)
in Corollary 5 is optimal up to a logarithmic

factor [1], which follows directly from Theorem 4 and
∑T
t=1 t

−θ ≥ (1− θ)−1(T 1−θ− 1), θ ∈ (0, 1).
We omit the proof for brevity.
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In Theorem 6, we give sufficient conditions for the almost sure finiteness of limt→∞DΨ(w∗, wt)
and

∑∞
t=1 ηt

(
φ(wt) − φ(w∗)

)
. As a direct corollary, we also establish convergence rates with

probability one in Corollary 7. Theorem 6 is a part of Proposition E.3 to be presented and proved in
Supplementary Material E, while the proof of Corollary 7 is omitted for brevity.
Theorem 6. Consider {wt}t∈N by (2.2) with

∑∞
t=1 η

2
t <∞. Then {DΨ(w∗, wt)}t converges almost

surely (a.s.) to a non-negative random variable and limt→∞DΨ(w∗, wt) <∞ a.s.. Furthermore, if
ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, then

∑∞
t=1 ηt

(
φ(wt)− φ(w∗)

)
<∞ a.s..

Corollary 7. Let {wt}t∈N be produced by (2.2) and η1 ≤ (2A)−1σΨ. If we choose ηt = η1t
−θ with

θ > 1/2, then limT→∞ T 1−θ(φ(w̄
(1)
T ) − φ(w∗)

)
< ∞ a.s.. If we choose ηt = η1(t logβ(et))−

1
2

with β > 1, then limT→∞
(

T
logβ T

) 1
2
(
φ(w̄

(1)
T )− φ(w∗)

)
<∞ a.s..

3.2 Strongly Convex Objectives

We now turn to strongly convex objectives with σφ > 0. In Theorem 8, we establish high-probability
bounds for both ‖wt − w∗‖2 and φ(w̄

(2)
t ) − φ(w∗) with w̄(2)

t being another weighted average of
the first t iterates, for each of which we derive optimal convergence rates up to a logarithmic factor
[1]. The optimality means that not only the dependency on t but also the dependency on the strong-
convexity parameter σφ can not be improved up to a logarithmic factor [16, 28] (σφ is often chosen
to be very small in practical learning problems [28, 31]). It should be mentioned that our analysis
removes boundedness assumptions on subgradients in the literature [28]. Our idea is to take a
weighted summation of (3.4) with w = w∗, and show that the conditional variance of an involved
martingale

∑t
k=1(k + t0 + 1)〈w∗ − wk, f ′(wk, zk) − Ezk [f ′(wk, zk)]〉 can be partially offset by

another term in this weighted summation of (3.4), which is another trick to remove boundedness
assumptions on subgradients. We also give a sufficient condition on the almost sure convergence of
wt to w∗ in Theorem 9. The proof of Theorem 8 is given in Supplementary Material D. Theorem 9 is
a part of Proposition E.3 to be presented in Supplementary Material E.

Theorem 8. Assume σφ > 0 and δ ∈ (0, e−
1
4 ). Let {wt}t∈N be produced by (2.2) with ηt =

2
σφt+2σF+σφt0

, where t0 ≥
16A log T

δ

σφσΨ
. Let w̄(2)

t =
(∑t

k=1(k+t0+1)
)−1∑t

k=1(k+t0+1)wk, t ∈ N.
Then, the following inequalities hold with probability 1− δ for all t = 1, . . . , T

‖w∗ − wt‖2 ≤
CT

t+ t0 + 1
and φ(w̄

(2)
t )− φ(w∗) ≤ C̃T

t
. (3.10)

Moreover, the dependencies of CT and C̃T on T/δ are logarithmic. The dependencies of CT and C̃T
on σ−1

φ are quadratic and linear, respectively.

Theorem 9. Let {wt}t∈N be the sequence produced by (2.2) with σφ > 0. If
∑∞
t=1 ηt = ∞ and∑∞

t=1 η
2
t <∞, then limt→∞DΨ(w∗, wt) = 0 a.s..

4 Generalization Error Bounds

Here we apply our high-probability convergence rates for SCMD to establish generalization error
bounds for SGD. In this setting, we assume a training sample z = {z1, . . . , zn} of size n ∈ N is drawn
independently from a probability measure ρ defined on the sample space Z , and our aim is to learn a
hypothesis h : X 7→ R from a hypothesis spaceW with good generalization performance. The quality
of h at (x, y) is quantified by `(h(x), y), where ` : R× Y 7→ R+ is convex w.r.t. the first argument.
The generalization error and empirical error of h are defined respectively by E(h) = Ez

[
`(h(x), y)

]
and Ez(h) = 1

n

∑n
i=1 `

(
h(xi), yi

)
. The best model minimizing the generalization error then becomes

hρ = arg minh E(h). We consider a non-parametric learning setting withW being a reproducing
kernel Hilbert space (RKHS) associated to a Mercer kernel K : X × X 7→ R which is continuous,
symmetric and positive semi-definite [9, 34]. In this learning setting, the candidate models take the
form hw(x) = 〈w,Kx〉 with w ∈ W . For brevity, we denote the norm in the RKHSW by ‖ · ‖2
and introduce abbreviations E(w) = E(hw), Ez(w) = Ez(hw). We assume (3.2) and apply the SGD
scheme to minimize Ez(w). To be specific, we let w1 = 0. At the t-th iteration, we randomly choose
an index jt from the uniform distribution over {1, . . . , n} and produce wt+1 by

wt+1 = wt − ηt`′
(
〈wt,Kxjt

〉, yjt
)
Kxjt

, t ∈ N. (4.1)
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It is clear that (4.1) is a specific instantiation of (2.2) with Ψ(w) = 1
2‖w‖

2
2, f(w, z) =

`(〈w,Kx〉, y), r(w) = 0 and ρ̃ in Section 2 being the uniform distribution over {z1, . . . , zn}2.
Therefore, the objective function to which SGD is applied becomes φ(w) = Ez(w).

To state our generalization bounds, we need to introduce an assumption on a polynomial decay rate
of approximation errors.
Assumption 3. We assume the approximation errorD(λ) := infw∈W E(w)−E(hρ)+λ‖w‖22 enjoys
a polynomial decay with exponent 0 < α ≤ 1 in the sense D(λ) ≤ cαλα,∀λ > 0, where cα > 0.
Remark 3. Assumption 3 is standard in learning theory and satisfied under some mild conditions
on the smoothness of the function hρ and the representation power of W [9, 33]. If ` is smooth,
then D(λ) can be controlled by D̃(λ) := infw∈W ‖hw − hρ‖2L2

ρX
+ λ‖w‖22, which quantifies the

approximation of hρ by RKHS in L2
ρX (square-integrable function class with marginal measure

ρX ) and is well studied in approximation theory. D̃(λ) decays polynomially with α ∈ (0, 1] if
hρ ∈ Lα/2K (L2

ρX ), where LK : L2
ρX 7→ L2

ρX is the integral operator associated to K [9, Proposition
8.5]. Similar results hold if ` is Lipschitz continuous. Assumption 3 also holds if we use Gaussian
kernels with flexible variances and distributions with geometric noise conditions [35]. It should be
mentioned that kernels need not to be universal for Assumption 3 since it concerns the target function
hρ, which may admit more regularity (e.g., expressed by LK) than continuity, while universality
means that D(λ)→ 0 as λ→ 0 for all continuous hρ [34].

We now establish a generalization error bound for a weighted average of iterates produced by (4.1) to
be proved in Supplementary Material F, which is derived by decomposing the excess generalization
error E(w̄

(1)
T ) − E(hρ) into three components: an estimation error, an approximation error and a

computational error. As we will see in the proof, the term
(∑T

t=1 ηt
)−α

is due to the approximation
and computational error, while the term n−

α
1+α is due to the estimation and approximation error. The

bound becomes n−
α

1+α log
3
2 8T

δ for sufficiently large T , which enjoys a logarithmic dependency on
T and demonstrates the ability of SGD to avoid overfitting.
Theorem 10. Let {wt}t∈N be the sequence produced by (4.1) with ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt
and

∑∞
t=1 η

2
t < ∞. Suppose Assumption 3 holds. Then, for any T satisfying

∑T
t=1 ηt ≥ 1 and

δ ∈ (0, 2/e), the following inequality holds with probability at least 1− δ

E(w̄
(1)
T )− E(hρ) ≤ C5 max

{( T∑
t=1

ηt

)−α
, n−

α
1+α

}
log

3
2

8T

δ
, (4.2)

where C5 is a constant independent of T (explicitly given in the proof).

We consider specific step sizes in Theorem 10 and choose an appropriate time index to get concrete
generalization bounds, as shown in Corollary 11. The bound O

(
n−

α
1+α log

3+αβ
2 n

δ

)
coincides with

O(n−
α

1+α log n) (up to a logarithmic factor) in expectation for convex and smooth loss functions [21],
and largely improves the bound O(n−

α
1+2α log n) in expectation for convex and non-smooth loss

functions [21]. In particular, if α = 1 we derive the optimal bound O(n−
1
2 log

3+β
2 n

δ ) in a general
case with neither Bernstein conditions on variances nor capacity assumptions on hypothesis spaces
(up to a logarithmic factor). It is also clear that SGD with different step sizes can achieve similar
generalization bounds. However, the computational complexity to fulfill this statistical potential can
be significantly different. Corollary 11, with the proof omitted, follows directly from Theorem 10
and

∑T
t=1 t

−θ ≥ (1− θ)−1(T 1−θ − 1), θ ∈ (0, 1). Denote dae the least integer no less than a.

Corollary 11. Consider {wt}t∈N by (4.1) and δ ∈ (0, 2/e). Let Assumption 3 hold and
∑T
t=1 ηt ≥ 1.

(a) If we take ηt = η1t
−θ with η1 ≤ (2A)−1 and θ ∈ (1/2, 1), then with probability 1− δ that

E(w̄
(1)
T )− E(hρ) = O

((
T−α(1−θ) + n−

α
1+α

)
log

3
2
T

δ

)
.

If we further take T ∗ =
⌈
n

1
(1+α)(1−θ)

⌉
, then we get E(w̄

(1)
T∗ )− E(hρ) = O

(
n−

α
1+α log

3
2 n
δ

)
.

2ρ is related to the draw of training examples while ρ̃ is related to the draw of indices for SGD.
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(b) If we take ηt = η1(t logβ(et))−
1
2 with η1 ≤ (2A)−1 and β > 1, then with probability 1− δ that

E(w̄
(1)
T )− E(hρ) = O

((
T−

α
2 log

αβ
2 T + n−

α
1+α

)
log

3
2
T

δ

)
.

If we further take T ∗ =
⌈
n

2
1+α
⌉
, then we get E(w̄

(1)
T∗ )− E(hρ) = O

(
n−

α
1+α log

3+αβ
2 n

δ

)
.

It should be noted that our discussions depend on the existence of a minimizer of Ez(·) over the RKHS
with a finite norm. This assumption can be relaxed to the existence of a minimizer of E(·) over the
RKHS with a finite norm to derive similar generalization bounds. Indeed, one can perform deductions
similar to the proof of Theorem 3 by taking w in (3.4) to be the minimizer of E(·). However, in this
case it becomes a challenge to derive estimation error bounds with a logarithmic dependency on T .

5 Related Work and Discussions

5.1 Convex Objectives

For general convex objectives, regret bounds O(
√
T ) were established for online gradient descent

with T iterations [44], from which one can directly derive convergence rates O(T−
1
2 ) for SGD

with some averaging schemes. This result was extended to stochastic forward-backward split-
ting [11]. A convergence rate O(T−

1
2 log T ) was established for the T -th individual iterate of

SGD [32]. All the above mentioned rates were stated in expectation and derived based on an
assumption E[‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗] ≤ G for a G ≥ 0 and t ∈ N. This boundedness as-
sumption was successfully removed for studying convergence rates in expectation under some
smoothness assumption [23, 40, 42] or Assumption 1 [30]. As compared to these convergence
rates in expectation, high-probability convergence rates were much less studied and were often
based on a stronger assumption on the almost sure boundedness of subgradients. Under the assump-
tion max{DΨ(w∗, wt), supz ‖f ′(wt, z)‖∗} ≤ G for a G > 0 and all t ∈ N, it was shown with
probability 1− δ that φ(w̄

(1)
T )− φ(w∗) = O

(
T−

1
2 log

1
2 1
δ

)
for w̄(1)

T defined in Theorem 4 [12, 24].
High-probability bounds were also established for stochastic dual averaging under the boundedness as-
sumption on iterates and subgradients [37]. In our discussion, we show that the same high-probability
convergence rate (up to a logarithmic factor) holds without any boundedness assumptions on either
the iterates {wt} or the associated subgradients. In particular, we show that {wt}t≤T automatically
falls into a ball with radius O(

√
log T/δ) with high probability. It was shown with probability

1 − δ that ‖wt − w∗‖22 = O(‖w∗‖22 log T
δ ) for the particular SGD [19]. However, the discussion

in [19] requires a stronger assumption on the Hölder continuity of loss functions which excludes
non-differentiable loss functions such as hinge loss and the absolute loss satisfying (3.2). Secondly,
they only consider the one-pass SGD where each training example is used only once.

We also give a sufficient condition for almost sure finiteness of
∑∞
t=1 ηt

(
φ(wt) − φ(w∗)

)
, while

most results on almost sure convergence are achieved for strongly convex objectives.

5.2 Strongly Convex Objectives

For λ-exp-concave loss functions, a regret bound O(λ−1 log T ) was established for an online Newton
method [15], which implies convergence rates O

(
(λT )−1 log T

)
for some average of iterates pro-

duced by the stochastic counterpart. This result was extended to online forward-backward splitting
[11] and SCMD [12] applied to λ-strongly convex objectives. Optimal convergence rates O((λT )−1)
for the suboptimality of objective values were derived based on a suffix averaging scheme [28], a
epoch-GD scheme based on a doubling trick [14] and a weighted averaging with a weight of t+ 1 for
wt [16]. However, the above mentioned results are all associated to convergence rates in expectation
and require to impose boundedness assumptions on subgradients encountered during the iterations.
This boundedness assumption was relaxed as Ez[‖f ′(wt, z)‖2∗] ≤ A1 +B1‖F ′(wt)‖2∗ for SGD [6]
with A1, B1 ≥ 0, which was further removed for SGD [26] and stochastic mirror descent [17] by
imposing smoothness assumptions on loss functions. All the above mentioned results are stated in ex-
pectation. With probability 1−δ, it was shown ‖wT−w∗‖2 = O

(
(λ2T )−1+(λT )−1 log(δ−1 log T )

)
for SGD [28]. High-probability convergence rates O

(
(λT )−1 log(δ−1 log T )

)
were also established

for the suboptimality of objective values for the T -th iterate of the epoch-GD [14]. These two high-
probability rates were derived based on an assumption on almost sure boundedness of subgradients
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which is more challenging to remove [14, 28]. As a comparison, we establish the same convergence
rate (up to a logarithmic factor) for a more general SCMD without boundedness assumptions on
subgradients. Sufficient conditions as in Theorem 9 were established for almost sure convergence of
SGD [5, 26] and stochastic mirror descent [17], which were extended to SCMD in Theorem 9.

5.3 Generalization Error Bounds

While computational complexity of SGD has been extensively studied in the optimization community,
there is much less work on the generalization property of the model trained by SGD. Classical
generalization bounds only hold for one-pass SGD [24, 27, 28, 32, 36, 38, 39] where each training
example can be used at most once. In practice, however, multiple passes are often used to produce a
model with good generalization behavior [13]. The landmark work in [7] developed a framework
to analyze generalization performance of multi-pass stochastic learning algorithms by taking into
account the computational complexity of learning algorithms. Under this framework, the interplay
among estimation errors, computational errors and approximation errors can be studied, showing that
an implicit regularization can be achieved in the absence of penalization or constraints by tuning either
the step size or the number of passes (the iteration number divided by the training set size) [13, 20, 21,
29]. In a parametric setting, it was shown that SGD is algorithmically stable and the stability measure
of SGD with T iterates scales as O(n−1

∑T
t=1 ηt) [13], based on which a generalization bound

E[E(w̄
(1)
T )]− infw∈W E(w) = O(n−

1
2 ) was established for ηt = O(1/

√
n) and T = O(n) without

considering approximation errors. The discussion in [13] requires to impose a smoothness assumption
on loss functions. Generalization analysis was considered separately for smooth and non-smooth loss
functions [21]. For smooth loss functions, it was shown E[E(w̄

(1)
T )]− E(hρ) = O(n−

α
1+α log n) for

ηt = η1/
√
t with T = dn

2
α+1 e [21], based on the stability property of SGD established in [13]. For

non-smooth loss functions, it was shown E[E(w̄
(1)
T )]− E(hρ) = O(n−

α
2α+1 log n) for ηt = η1/

√
t

and T = dn
2

2α+1 e, by controlling estimation errors with Rademacher complexities [3, 21]. Still,
the bounds in [13, 21] require to impose a boundedness assumption on subgradients and are stated
in expectation. As a comparison, we establish high-probability bounds without any boundedness
assumptions on subgradients. Furthermore, our generalization analysis extends the analysis in [13] to
non-smooth loss functions and substantially improve the bound O(n−

α
2α+1 log n) [21] in this setting.

The generalization error bound O
(
n−

α
1+α log

3+αβ
2 n

δ

)
in Corollary 11 is optimal in the sense that it

matches the best available bound for Tikhonov regularization (up to a logarithmic factor) [9, 21, 34].

We achieve this improvement by controlling better estimation errors. Specifically, estimation errors
were shown to scale polynomially w.r.t. the number of passes [13, 21], which dominate the other two
errors for large T . In this way, one needs to tune T to balance the estimation, approximation and
computational errors. As a comparison, we show bounds scaling logarithmically w.r.t. the number of
passes for E(w̄

(1)
T )−Ez(w̄

(1)
T ) (Theorem 10). This implies that estimation errors will never essentially

dominate the other two errors and one can run SGD with a sufficient number of passes with little
overfitting if step sizes are square-summable, due to the key observation on the almost boundedness
of iterates established in Theorem 3. Another trick in getting almost optimal bounds includes the
use of Assumption 3 to control E(wλ) − Ez(wλ) with a linear (instead of quadratic) function of
supz f(wλ, z) and to select a suitable λ, where wλ = arg minw∈W E(w)+λ‖w‖22. Optimal learning
rates were given for multi-pass SGD with the least squares loss function [10, 20, 29]. However,
their analysis is based on an integral operator approach and does not apply to general loss functions.
Generalization bounds for SGD were also studied from a PAC-Bayesian perspective [22]. However,
the high-probability bounds there require to impose Lipschitz continuity, smoothness and strong
convexity assumptions on loss functions, and ignore computational and approximation errors [22].

6 Simulations

Our analysis implies that SGD can be run with a sufficient number of iterations with little overfitting
if step sizes are square-summable, which meanwhile can achieve similar generalization performance
with different computational complexities. In this section, we include some experimental results to
validate these theoretical findings. We apply SGD (4.1) with a linear kernel Kx = x and the hinge
loss `(a, y) = max{0, 1− ya} to several binary classification datasets (ADULT, GISETTE, IJCNN,
MUSHROOMS, PHISHING and SPLICE). All these datasets, described in Supplementary Material

8



G, can be download from the LIBSVM website [8]. We consider polynomially decaying step sizes of
the form ηt = 5t−θ with θ ∈ {0.25, 0.51, 0.75} (we consider θ = 0.51, instead of θ = 0.5, since the
associated step size sequence is square-summable). We repeat experiments 12 times and report the
average of results. In Figure 1, we plot test errors of w̄(3)

t =
(∑t

k=t̃+1 ηk
)−1∑t

k=t̃+1 ηkwk versus
the number of passes (the iteration number divided by the training set size), where t̃ = 2blog2 tc−1.
Intuitively, w̄(3)

t returns an α-suffix average of iterates [28] with α ∈ [1/2, 3/4] and one can adapt the
proof of Theorem 4 to show that w̄(3)

t enjoys similar generalization bounds as w̄(1)
t . Moreover, w̄(3)

t

is easily computable on-the-fly by storing only
∑k
j=1 ηjwj with k = 20, 21, 22, . . .. From Figure 1,

we see that SGD is resistant to overfitting for appropriate step sizes. For example, we observe no
overfitting even if the number of passes exceeds 1000 for SGD with θ ∈ {0.51, 0.75}. Moreover,
SGD with θ ∈ {0.51, 0.75} can achieve similar generalization errors on ADULT, IJCNN, PHISHING
and SPLICE, towards which SGD with θ = 0.51 requires a significantly smaller number of passes.
This is well consistent with Corollary 11.
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Figure 1: Test errors versus the number of passes.

7 Conclusions

In this paper, we establish a rigorous theoretical foundation for SCMD by providing optimal conver-
gence rates (up to a logarithmic factor) in the stochastic optimization setting without boundedness
assumptions on either subgradients or iterates, which in turn also shed new insights on the generaliza-
tion behavior of the multi-pass SGD in the statistical learning theory setting. In particular, we justify
the immunity of multi-pass SGD to overfitting by giving estimation error bounds with a logarithmic
dependency on the number of passes for square-summable step sizes, while existing bounds scale
polynomially [13, 21]. This improvement is based on the key observation on the almost boundedness
of iterates with high probability. Our generalization analysis of SGD also substantially improves
learning rates in [21], removes bounded subgradient assumptions in [13, 21, 22], removes smoothness
assumptions in [13, 22] and is performed in high probability instead of in expectation [13, 21]. It
would be interesting to extend our results to a non-convex setting [43] and to general mirror descent
algorithms with a non-differentiable mirror map [18].
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A Technical Lemmas

A.1 Concentration Inequalities

Our discussion on high-probability bounds is based on the following two concentration inequalities.
Lemma A.1 quantifies the concentration behavior of martingales. Part (a) is the Azuma-Hoeffding
inequality for martingales with bounded increments [4], and part (b) is a conditional Bernstein
inequality using the conditional variance to quantify better the concentration behavior of martingales
[10]. Lemma A.2 is the McDiarmid’s inequality to arbitrary real-valued functions of independent
random variables that satisfy a bounded increment condition [6].
Lemma A.1. Let z1, . . . , zn be a sequence of random variables such that zk may depend on the
previous random variables z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of functionals
ξk(z1, . . . , zk), k = 1, . . . , n. Let σ2

n =
∑n
k=1 Ezk

[(
ξk − Ezk [ξk]

)2]
be the conditional variance.

(a) Assume that |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ we
have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2

n∑
k=1

b2k log
1

δ

) 1
2

. (A.1)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability at least
1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤ ρσ2
n

b
+
b log 1

δ

ρ
. (A.2)

Lemma A.2. Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be independent random variables taking values
in a set Z , and assume that f : Zn → R satisfies

sup
z1,...,zn,z̄k∈Z

|f(z1, · · · , zn)− f(z1, · · · , zk−1, z̄k, zk+1, · · · , zn)| ≤ ck (A.3)

for k = 1, . . . , n. Then, for any 0 < δ < 1, with probability at least 1− δ we have

f(Z1, . . . , Zn) ≤ E
[
f(Z1, . . . , Zn)

]
+

√∑n
k=1 c

2
k log(1/δ)

2
.

A.2 Behavior of Objectives

In this section, we collect some lemmas on functions g satisfying

‖g′(w)‖2∗ ≤ Ag(w) +B (A.4)

for some constant A,B ≥ 0. Lemma A.3 shows that, if g satisfies (A.4), then both ‖g′(w)‖2∗ and
g(w) can be controlled by quadratic functions of ‖w‖.
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Lemma A.3. Let g :W 7→ R be a convex function. If there exist A and B such that (A.4) holds for
all w ∈ W . Then

‖g′(w)‖2∗ ≤ 2A2‖w‖2 + 2Ag(0) + 2B and g(w) ≤
(
A2 +

1

2

)
‖w‖2 + (A+ 1)g(0) +B. (A.5)

Proof. According to (A.4) and the convexity of g, we know
‖g′(w)‖2∗ ≤ A

(
g(w)− g(0)

)
+Ag(0) +B

≤ A〈w, g′(w)〉+Ag(0) +B ≤ A‖w‖‖g′(w)‖∗ +Ag(0) +B.

Solving the above quadratic inequality of ‖g′(w)‖∗ shows

‖g′(w)‖∗ ≤ A‖w‖+
√
Ag(0) +B,

from which and the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we derive the first inequality.

We now turn to the second inequality. By the convexity of g and the first inequality in (A.5), we get
g(w)− g(0) ≤ 〈w, g′(w)〉 ≤ ‖w‖‖g′(w)‖∗

≤ ‖w‖
2

2
+
‖g′(w)‖2∗

2
≤ ‖w‖

2

2
+A2‖w‖2 +Ag(0) +B,

from which we derive the second inequality. The proof is complete.

Lemma A.4 shows that functions of the form f(w, z) = `(〈w, x〉, y) would satisfy (3.1) if ` satisfies
(A.6).
Lemma A.4. Let ` : R×Y 7→ R and f(w, z) = `(〈w, x〉, y) with z = (x, y). If there exist Ã, B̃ ≥ 0
such that

|`′(a, y)|2 ≤ Ã`(a, y) + B̃, ∀a ∈ R, y ∈ Y. (A.6)
Then we have ‖f ′(w, z)‖2∗ ≤ Af(w, z) + B for any w ∈ W and z ∈ Z , where κ = supx∈X ‖x‖∗,
A = Ãκ2 and B = B̃κ2.

Proof. For any w ∈ W and z ∈ Z , it follows from (A.6) that

‖f ′(w, z)‖2∗ =
∥∥`′(〈w, x〉, y)x

∥∥2

∗ ≤ κ
2
(
Ã`(〈w, x〉, y) + B̃

)
= κ2

(
Ãf(w, z) + B̃

)
.

The proof is complete.

Lemma A.5 shows that regularizers rp(w) = ‖w‖pp, p ∈ [1, 2] satisfy the condition (3.1). For a ∈ R,
denote by sgn(a) the sign of a, i.e., sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0 and sgn(a) = 0 if
a = 0.
Lemma A.5. The function rp(w) = ‖w‖pp with 1 ≤ p ≤ 2 defined onW satisfies

‖r′p(w)‖2p∗ ≤ p
(
2(p− 1)‖w‖pp + 2− p

)
, ∀w ∈ W,

where p∗ = p
p−1 is the conjugate exponent of p.

Proof. If p = 1, then any r′1(w) ∈ ∂r1(w) would satisfy ‖r′1(w)‖∞ ≤ 1, from which and p∗ =∞
we know ‖r′1(w)‖2p∗ ≤ 1.

If p > 1, then the gradient of rp at w can be calculated by ∇rp(w) = p
(
sgn(w(i))|w(i)|p−1

)d
i=1

,
from which we have

‖∇rp(w)‖p∗ = p
( d∑
i=1

∣∣sgn(w(i))|w(i)|p−1
∣∣p∗) 1

p∗
= p
( d∑
i=1

|w(i)|p
∗(p−1)

) 1
p∗

= p‖w‖p−1
p .

It then follows from the Young’s inequality

ab ≤ as

s
+
bs̃

s̃
, ∀a, b, s, s̃ > 0 with

1

s
+

1

s̃
= 1

that

‖∇rp(w)‖2p∗ = p2‖w‖2(p−1)
p ≤ p2

(
‖w‖

2(p−1) p
2(p−1)

p
p

2(p−1)

+
2− p
p

)
= p
(
2(p− 1)‖w‖pp + 2− p

)
.

The proof is complete by combining the above two cases together.
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B Proofs for Lemma 1 and Lemma 2

In this section, we prove Lemma 1 quantifying the one-step progress of SCMD (2.2), and Lemma 2
which plays an important role in removing the boundedness assumptions on subgradients.

Proof of Lemma 1. According to the first-order optimality condition in (2.2), there exists an
r′(wt+1) ∈ ∂r(wt+1) satisfying

ηtf
′(wt, zt) + ηtr

′(wt+1) +∇Ψ(wt+1)−∇Ψ(wt) = 0,

from which and the identity DΨ(w,wt+1) +DΨ(wt+1, wt)−DΨ(w,wt) = 〈w−wt+1,∇Ψ(wt)−
∇Ψ(wt+1)〉, we derive

DΨ(w,wt+1)−DΨ(w,wt) = DΨ(w,wt+1) +DΨ(wt+1, wt)−DΨ(w,wt)−DΨ(wt+1, wt)

= 〈w − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉 −DΨ(wt+1, wt)

= ηt〈w − wt+1, f
′(wt, zt) + r′(wt+1)〉 −DΨ(wt+1, wt)

≤ ηt〈w − wt+1, f
′(wt, zt)〉+ ηt

[
r(w)− r(wt+1)− σrDΨ(w,wt+1)

]
−DΨ(wt+1, wt)

= ηt〈w − wt, f ′(wt, zt)〉+ ηt〈wt − wt+1, f
′(wt, zt)〉+ ηt[r(w)− r(wt)]

+ ηt[r(wt)− r(wt+1)]− σrηtDΨ(w,wt+1)−DΨ(wt+1, wt).
(B.1)

Here, we have used the σr-strong convexity of r (3.3) in the inequality. From the convexity of r, the
definition of dual norm and the strong convexity of Ψ, it follows that

ηt
[
〈wt − wt+1, f

′(wt, zt)〉+ r(wt)− r(wt+1)
]
−DΨ(wt+1, wt)

≤ ηt‖wt − wt+1‖‖f ′(wt, zt)‖∗ + ηt〈wt − wt+1, r
′(wt)〉 − 2−1σΨ‖wt − wt+1‖2

≤ ηt‖wt − wt+1‖
[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]
− 2−1σΨ‖wt − wt+1‖2

≤ 2−1σΨ‖wt − wt+1‖2 + 2−1σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]2 − 2−1σΨ‖wt − wt+1‖2

≤ σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗

]
≤ σ−1

Ψ η2
t

[
Af(wt, zt) +Ar(wt) + 2B

]
,

where we have used the elementary inequality (a + b)2 ≤ 2(a2 + b2) and (3.1) in the last two
inequalities. Plugging the above inequality back into (B.1), we get the stated inequality and complete
the proof.

Proof of Lemma 2. Using the convexity of f in (3.4), we derive the following inequality for any
w ∈ W

DΨ(w,wt+1)−DΨ(w,wt)

≤ ηt
(
f(w, zt)− f(wt, zt)

)
+ ηt(r(w)− r(wt)) + σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
= ηt(f(w, zt) + r(w)) + (σ−1

Ψ η2
tA− ηt)

(
f(wt, zt) + r(wt)

)
+ 2σ−1

Ψ Bη2
t (B.2)

≤ ηt(f(w, zt) + r(w)) +A−1Bηt,

where the last inequality is due to the assumption ηt ≤ (2A)−1σΨ. Plugging w = 0 in the above
inequality and using the definition of C1, we derive

DΨ(0, wt+1)−DΨ(0, wt) ≤ ηt(f(0, zt) + r(0)) +A−1Bηt ≤ ηtC1.

It then follows that

DΨ(0, wt+1) = DΨ(0, w1) +

t∑
k=1

[
DΨ(0, wk+1)−DΨ(0, wk)

]
≤ C1

t∑
k=1

ηk, (B.3)

where we have used w1 = 0 in the last inequality. The stated inequality (3.5) then follows from the
σΨ-strong convexity of Ψ.

We now prove (3.6). Taking w = 0 in (B.2) and using ηt ≤ 2−1A−1σΨ, we get

2−1ηt
(
f(wt, zt) + r(wt)

)
≤ ηt

(
f(0, zt) + r(0)

)
+ 2σ−1

Ψ Bη2
t +DΨ(0, wt)−DΨ(0, wt+1). (B.4)
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Multiplying both sides by 2ηt then gives

η2
t

(
f(wt, zt) + r(wt)

)
≤ 2η2

t

(
f(0, zt) + r(0)

)
+ 4σ−1

Ψ Bη3
t + 2ηt

(
DΨ(0, wt)−DΨ(0, wt+1)

)
≤ 2η2

t

(
f(0, zt) + r(0)

)
+ 2A−1Bη2

t + 2ηtDΨ(0, wt)− 2ηt+1DΨ(0, wt+1)

≤ 2C1η
2
t + 2ηtDΨ(0, wt)− 2ηt+1DΨ(0, wt+1),

where we have used ηt ≤ (2A)−1σΨ, ηt+1 ≤ ηt in the second inequality and the definition of C1 in
the last inequality. Taking a summation of the above inequality further implies

t∑
k=1

η2
k

(
f(wk, zk) + r(wk)

)
≤ 2C1

t∑
k=1

η2
k + 2η1DΨ(0, w1) = 2C1

t∑
k=1

η2
k,

where the last identity is due to w1 = 0. This proves (3.6).

We now prove (3.7). Plugging the inequality ηt ≤ (2A)−1σΨ into (B.4) and multiplying both sides
by 2η−1

t , we know

f(wt, zt) + r(wt) ≤ 2
(
f(0, zt) + r(0)

)
+ 2A−1B + 2η−1

t

(
DΨ(0, wt)−DΨ(0, wt+1)

)
.

Taking a summation of the above inequality, we derive
t∑

k=1

(
f(wk, zk)+r(wk)

)
≤ 2

t∑
k=1

(
f(0, zk)+r(0)+A−1B

)
+2

t∑
k=1

η−1
k

(
DΨ(0, wk)−DΨ(0, wk+1)

)
.

The last term can be controlled by (note w1 = 0)

t∑
k=1

η−1
k

(
DΨ(0, wk)−DΨ(0, wk+1)

)
=

t∑
k=2

DΨ(0, wk)
(
η−1
k −η

−1
k−1

)
+η−1

1 DΨ(0, w1)−η−1
t DΨ(0, wt+1)

≤ max
1≤k̃≤t

DΨ(0, wk̃)

t∑
k=2

(
η−1
k − η

−1
k−1

)
≤ max

1≤k̃≤t
DΨ(0, wk̃)η−1

t ≤ C1

( t∑
k=1

ηk
)
η−1
t ,

where the last inequality is due to (B.3). Combining the above two inequalities together and using the
definition of C1, we derive the stated inequality (3.7). The proof is complete.

C Proofs for General Convex Objectives

In this section, we prove Theorem 3 and Theorem 4. We first provide a proposition to show that
‖wt+1 − w∗‖2 can be controlled by O

(∑t
k=1 η

2
k‖wk − w∗‖2

)
with high probability. To this aim,

we take w = w∗ in (3.4) to derive

DΨ(w∗, wt+1) ≤
t∑

k=1

ξk +

t∑
k=1

ηk
(
φ(w∗)− φ(wk)

)
+ C̃1

t∑
k=1

η2
k, (C.1)

where ξk is defined in (C.4) and C̃1 ∈ R. A key idea is to use a conditional Bernstein inequality to
show

∑t
k=1 ξk ≤

∑t
k=1 ηk

(
φ(wk)− φ(w∗)

)
+ C̃2

∑t
k=1 η

2
k‖wk −w∗‖2 with high probability. An

interesting observation is that one can offset the term
∑t
k=1 ηk

(
φ(w∗)−φ(wk)

)
in (C.1) by the above

bound on
∑t
k=1 ξk, leading to the inequality DΨ(w∗, wt+1) ≤ C̃1

∑t
k=1 η

2
k + C̃2

∑t
k=1 η

2
k‖wk −

w∗‖2 with high probability. In the discussion of the conditional variance, we use Ezk
[(
ξk −

Ezk [ξk]
)2] ≤ η2

k‖wk − w∗‖2(Aφ(wk) +B) and introduce the following decomposition

η2
k‖wk−w∗‖2

(
Aφ(wk)+B

)
= η2

k‖wk−w∗‖2A
(
φ(wk)−φ(w∗)

)
+η2

k‖wk−w∗‖2
(
Aφ(w∗)+B

)
.

We apply (3.5) to control the first ‖wk−w∗‖2 on the right-hand side to show η2
k‖wk−w∗‖2A

(
φ(wk)−

φ(w∗)
)
≤ C̃3ηk

(
φ(wk)− φ(w∗)

)
for a C̃3 > 0. As a comparison, the second ‖wk − w∗‖2 is kept

intact.
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Proposition C.1. Let {wt}t∈N be the sequence produced by (2.2) with ηt ≤ (2A)−1σΨ and ηt+1 ≤
ηt. We assume C6 = supk∈N ηk

∑k−1
j=1 ηj < ∞. Then for any δ ∈ (0, 1), with probability at least

1− δ we have

‖wt+1−w∗‖2 ≤
Aφ(w∗) +B

2C1C6A

t∑
k=1

η2
k‖wk−w∗‖2+

2DΨ(w∗, 0)

σΨ
+

2C7 log 1
δ

ρ1σΨ
+4σ−2

Ψ (B+AC1)

t∑
k=1

η2
k,

(C.2)
where ρ1 = min{1, (2A)−1(η1‖w∗‖2 + 2C1C6σ

−1
Ψ )−1C7} and

C7 = η1

(
sup
z∈Z

f(w∗, z) + ‖w∗‖2 +AF (0) +B
)

+ 2(A2 + 1)C1σ
−1
Ψ C6.

Proof. Setting w = w∗ in (3.4) shows

DΨ(w∗, wt+1)−DΨ(w∗, wt) ≤ ηt〈w∗ − wt, f ′(wt, zt)〉+ ηt(r(w
∗)− r(wt))

+ σ−1
Ψ η2

t

(
Af(wt, zt) +Ar(wt) + 2B

)
.

We write

〈w∗ − wt, f ′(wt, zt)〉 = 〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+ 〈w∗ − wt,Ezt [f ′(wt, zt)]〉
≤ 〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+

(
F (w∗)− F (wt)

)
.

Combining the above equations together and using the definition of φ, we derive

DΨ(w∗, wt+1)−DΨ(w∗, wt) ≤ ηt〈w∗ − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉
+ ηt(φ(w∗)− φ(wt)) + σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
.

Together with w1 = 0, it then follows that

DΨ(w∗, wt+1) = DΨ(w∗, w1) +

t∑
k=1

(
DΨ(w∗, wk+1)−DΨ(w∗, wk)

)
≤ DΨ(w∗, 0) +

t∑
k=1

ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

+

t∑
k=1

ηk
(
φ(w∗)− φ(wk)

)
+ σ−1

Ψ

t∑
k=1

η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
. (C.3)

Introduce a sequence of random variables as follows

ξk = ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉, k ∈ N. (C.4)

It is clear that Ezk [ξk] = 0 and therefore {ξk}k is a martingale difference sequence. Since E[(ξ −
E[ξ])2] ≤ E[ξ2] for any real-valued random variable ξ, we know

Ezk
[∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

∣∣2] ≤ Ezk
[∣∣〈w∗ − wk, f ′(wk, zk)〉

∣∣2]
≤ ‖w∗ − wk‖2Ezk

[
‖f ′(wk, zk)‖2∗

]
≤ ‖w∗ − wk‖2Ezk

[
Af(wk, zk) +B

]
≤ ‖w∗ − wk‖2

(
AF (wk) +Ar(wk) +B

)
,
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where we have used (3.1) in the third inequality. Then, the conditional variance of ξk can be controlled
by
t∑

k=1

Ezk
[(
ξk − Ezk [ξk]

)2]
=

t∑
k=1

η2
kEzk

[∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉
∣∣2]

≤
t∑

k=1

η2
k‖w∗ − wk‖2

(
Aφ(wk)−Aφ(w∗)

)
+

t∑
k=1

η2
k‖w∗ − wk‖2

(
Aφ(w∗) +B

)
≤ 2

t∑
k=1

η2
k(‖w∗‖2 + ‖wk‖2)

(
Aφ(wk)−Aφ(w∗)

)
+

t∑
k=1

η2
k‖w∗ − wk‖2

(
Aφ(w∗) +B

)
≤ 2A

t∑
k=1

ηk

(
ηk‖w∗‖2 + 2C1σ

−1
Ψ ηk

k−1∑
j=1

ηj

)(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

)
≤ 2A(η1‖w∗‖2 + 2C1σ

−1
Ψ C6)

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

)
,

(C.5)

where the last second inequality is due to (3.5) and the last inequality is due to the definition of C6.

Furthermore, it follows from the convexity of f that

ξk − Ezk [ξk] = ηk〈w∗ − wk, f ′(wk, zk)〉+ ηk〈wk − w∗,Ezk [f ′(wk, zk)]〉
≤ ηk(f(w∗, zk)− f(wk, zk)) + ηk‖wk − w∗‖

∥∥Ezk [f ′(wk, zk)]
∥∥
∗. (C.6)

By the Schwarz’s inequality and Lemma A.3, we know

‖wk − w∗‖
∥∥Ezk [f ′(wk, zk)]

∥∥
∗

≤ 1

2

(
‖wk − w∗‖2 + ‖F ′(wk)‖2∗

)
≤ 1

2

(
2‖wk‖2 + 2‖w∗‖2 + 2A2‖wk‖2 + 2AF (0) + 2B

)
≤ 2(A2 + 1)C1σ

−1
Ψ

k−1∑
j=1

ηj + ‖w∗‖2 +AF (0) +B,

where the last inequality is due to (3.5). Plugging the above inequality back into (C.6) and using the
non-negativity of f(wt, zt) then give

ξk − Ezk [ξk] ≤ η1

(
sup
z∈Z

f(w∗, z) + ‖w∗‖2 +AF (0) +B
)

+ 2(A2 + 1)C1σ
−1
Ψ ηk

k−1∑
j=1

ηj ≤ C7.

Applying Part (b) of Lemma A.1 with the above estimates on magnitudes and variances of ξk, we
derive the following inequality with probability at least 1− δ
t∑

k=1

ξk ≤
ρ1

C7

(
2A
(
η1‖w∗‖2 + 2C1σ

−1
Ψ C6

) t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+

t∑
k=1

η2
k‖wk − w∗‖2

(
Aφ(w∗) +B

))
+
C7 log 1

δ

ρ1
≤

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
+
σΨ

(
Aφ(w∗) +B

)
4C1C6A

t∑
k=1

η2
k‖wk − w∗‖2 +

C7 log 1
δ

ρ1
,

where we have used 2ρ1A(η1‖w∗‖2 + 2C1C6σ
−1
Ψ ) ≤ C7. By (3.6) we know

t∑
k=1

η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
≤
(
2AC1 + 2B

) t∑
k=1

η2
k.

Plugging the above two inequalities back into (C.3) gives the following inequality with probability
1− δ

DΨ(w∗, wt+1) ≤ DΨ(w∗, 0)+
σΨ(Aφ(w∗) +B)

4C1C6A

t∑
k=1

η2
k‖wk−w∗‖2+

C7 log 1
δ

ρ1
+2σ−1

Ψ (B+AC1)

t∑
k=1

η2
k.
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This together with the σΨ-strong convexity of Ψ gives the stated bound with probability 1− δ. The
proof is complete.

We can use the assumption
∑∞
k=1 η

2
k <∞ to show that the right-hand side of (C.2) can be bounded

by 1
2 max1≤k≤t ‖wk − w∗‖2 + C̃ log 1

δ for a C̃ > 0, from which we can show the boundedness of
‖wt‖2 with high probability (up to a logarithmic factor).

Proof of Theorem 3. It follows from the assumption
∑∞
t=1 η

2
t < ∞ and ηt+1 ≤ ηt that

supt ηt
∑t−1
j=1 ηj ≤

∑∞
j=1 η

2
j < ∞. Therefore, C6 = supk∈N ηk

∑k−1
j=1 ηj is well defined. We

define the set ΩT as

ΩT =
{(
z1, . . . , zT

)
: ‖wt+1 − w∗‖2 ≤

Aφ(w∗) +B

2C1C6A

t∑
k=1

η2
k‖wk − w∗‖2 +

2DΨ(w∗, 0)

σΨ

+
2C7 log T

δ

ρ1σΨ
+ 4σ−2

Ψ (B +AC1)

t∑
k=1

η2
k for all t = 1, . . . , T

}
,

where ρ1 is defined in Proposition C.1. By Proposition C.1 and union bounds on probability
of events, we know Pr{ΩT } ≥ 1 − δ. Since

∑∞
t=1 η

2
t < ∞, we can find a t1 ∈ N such that(

Aφ(w∗) +B
)∑∞

k=t1+1 η
2
k ≤ C1C6A. With the occurrence of ΩT , the following inequality holds

for all t = 1, . . . , T

‖wt+1 − w∗‖2 −
2C7 log T

δ

ρ1σΨ
− 2DΨ(w∗, 0)

σΨ

≤ Aφ(w∗) +B

2C1C6A

( t1∑
k=1

η2
k‖wk − w∗‖2 +

t∑
k=t1+1

η2
k‖wk − w∗‖2

)
+

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

≤ Aφ(w∗) +B

2C1C6A

( t1∑
k=1

η2
k‖wk − w∗‖2 +

t∑
k=t1+1

η2
k sup

1≤k̃≤T
‖wk̃ − w

∗‖2
)

+
4(B +AC1)

∑t
k=1 η

2
k

σ2
Ψ

≤ Aφ(w∗) +B

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
1

2
sup

1≤k≤T
‖wk − w∗‖2 +

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

,

where we have used ‖wk − w∗‖2 ≤ 2(‖wk‖2 + ‖w∗‖2) and (3.5) in the last step. Under the event
ΩT , we then have

max
1≤t≤T

‖wt − w∗‖2 ≤
Aφ(w∗) +B

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
1

2
sup

1≤k≤T
‖wk − w∗‖2 +

2C7 log T
δ

ρ1σΨ
+

2DΨ(w∗, 0)

σΨ
+

4(B +AC1)
∑t
k=1 η

2
k

σ2
Ψ

,

from which and Pr{ΩT } ≥ 1− δ we derive the following inequality with probability at least 1− δ

max
1≤t≤T

‖wt − w∗‖2 ≤
2(Aφ(w∗) +B)

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
4C7 log T

δ

ρ1σΨ
+

4DΨ(w∗, 0)

σ2
Ψ

+
8(B +AC1)

∑t
k=1 η

2
k

σΨ
.

The stated inequality holds with C2 defined by (using (a+ b)2 ≤ 2a2 + 2b2)

C2 =
4(Aφ(w∗) +B)

C1C6A

t1∑
k=1

(
2C1σ

−1
Ψ η2

k

k−1∑
j=1

ηj + ‖w∗‖2
)

+
8C7

ρ1σΨ
+

+
8DΨ(w∗, 0)

σ2
Ψ

+
16(B +AC1)

∑t
k=1 η

2
k

σ2
Ψ

+ 2‖w∗‖2.

7



The proof is complete.

We are now in a position to prove Theorem 4. The basic idea is to control
∑T
t=1 ηt

(
φ(wt)− φ(w∗)

)
in terms of a martingale, which can be further controlled by the Azuma-Hoeffding inequality. The
bound of ‖wt‖2 in Theorem 3 allows us to control the increments of martingale by logarithmic
functions of T/δ.

Proof of Theorem 4. It follows from (3.4) that

DΨ(w,wt+1)−DΨ(w,wt)

≤ ηt〈w − wt, f ′(wt, zt)〉+ ηt
(
r(w)− r(wt)

)
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
≤ ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉+ ηt

(
φ(w)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
,

where we have used the inequality 〈w − wt,Ezt [f ′(wt, zt)]〉 ≤ F (w)− F (wt) and the definition of
φ in the last inequality.

Taking a summation over t = 1, . . . , T followed with a reformulation, we derive
T∑
t=1

ηt
(
φ(wt)− φ(w)

)
≤

T∑
t=1

ξt +

T∑
t=1

(
DΨ(w,wt)−DΨ(w,wt+1)

)
+ σ−1

Ψ

T∑
t=1

η2
t

(
Af(wt, zt) +Ar(wt) + 2B

)
≤

T∑
t=1

ξt +DΨ(w, 0) + 2σ−1
Ψ (AC1 +B)

T∑
t=1

η2
t , (C.7)

where we have introduced a sequence of random variables

ξt = ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉
and used (3.6). Let

ξ′t = ηt〈w − wt, f ′(wt, zt)− Ezt [f ′(wt, zt)]〉I{‖wt‖2≤C2 log 2T
δ }
, t = 1, . . . , T,

where IA denotes the indicator function of an event A, i.e., IA = 1 if A happens and 0 otherwise.
According to the elementary inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R

|ξ′t| ≤
ηt
2

[
‖w − wt‖2 + ‖f ′(wt, zt)− Ezt [f ′(wt, zt)]‖2∗

]
I{‖wt‖2≤C2 log 2T

δ }

≤ ηt
[
‖w‖2 + ‖wt‖2 + ‖f ′(wt, zt)‖2∗ + ‖Ezt [f ′(wt, zt)]‖2∗

]
I{‖wt‖2≤C2 log 2T

δ }
.

It follows from Lemma A.3 that

‖f ′(wt, zt)‖2∗ + ‖F ′(wt)‖2∗ ≤ 2A2‖wt‖2 + 2Af(0, zt) + 2B + 2A2‖wt‖2 + 2AF (0) + 2B

≤ 4A2‖wt‖2 + 2A
(

sup
z
f(0, z) + F (0)

)
+ 4B

≤ 4A2‖wt‖2 + 4AC1. (C.8)

Combining the above two inequalities together, we derive

|ξ′t| ≤ ηt
[
‖w‖2 + (4A2 + 1)‖wt‖2 + 4AC1

]
I{‖wt‖2≤C2 log 2T

δ }

≤ ηt
(
‖w‖2 + 4AC1 + (4A2 + 1)C2 log

2T

δ

)
≤ C(w)ηt log

2T

δ
,

where we introduceC(w) = ‖w‖2 +4AC1 +(4A2 +1)C2. It is clear that Ezt [ξ′t] = 0 and ξ′t depends
only on z1, . . . , zt. According to Part (a) of Lemma A.1, we can find an event ΩT := {(z1, . . . , zT ) :
z1, . . . , zT ∈ Z} with Pr{Ωt} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ ΩT the following inequality
holds

T∑
t=1

ξ′t ≤ C(w) log
2T

δ

(
2

T∑
t=1

η2
t log

2

δ

) 1
2 ≤ C(w) log

3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

.
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Furthermore, according to Theorem 3, there exists an event Ω′T := {(z1, . . . , zT ) : z1, . . . , zT ∈ Z}
with Pr{Ω′t} ≥ 1− δ

2 such that for any (z1, . . . , zT ) ∈ Ω′T the following inequality holds

max
1≤t≤T

‖wt‖2 ≤ C2 log
2T

δ
.

Under the intersection of these two events, we have ξt = ξ′t and therefore

T∑
t=1

ξt =

T∑
t=1

ξ′t ≤ C(w) log
3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

,

which, together with Pr{ΩT ∩Ω′T } ≥ 1−δ and (C.7), shows the following inequality with probability
at least 1− δ

T∑
t=1

ηt
(
φ(wt)− φ(w)

)
≤ DΨ(w, 0) + 2σ−1

Ψ

(
AC1 +B

) T∑
t=1

η2
t + C(w) log

3
2

2T

δ

(
2

T∑
t=1

η2
t

) 1
2

≤
(
2C3DΨ(w, 0) + C4

)
log

3
2

2T

δ
,

where

C3 = 2−1 + σ−1
Ψ

(
2

∞∑
t=1

η2
t

) 1
2

and

C4 := 2σ−1
Ψ (AC1 +B)

∞∑
t=1

η2
t + (4AC1 + 4A2C2 + C2)

(
2

∞∑
t=1

η2
t

) 1
2

.

The stated inequality then follows from the convexity of φ. The proof is complete.

D Proofs for Strongly Convex Objectives

This section is devoted to proving Theorem 8. First, we take a weighted summation of (3.4) and use
(3.7) to tackle

∑t
k=1

(
f(wk, zk) + r(wk)

)
without boundedness assumptions, yielding Lemma D.2.

We need the following simple lemma on step sizes in this derivation.
Lemma D.1. Let ηk = 2

σφk+2σF+σφt0
, where t0 ∈ R+. Then,

t∑
k=1

ηk ≤ 2σ−1
φ log(et). (D.1)

Proof. It follows from the definition of ηt that
t∑

k=1

ηk ≤ 2σ−1
φ

t∑
k=1

(k + t0)−1 ≤ 2σ−1
φ log(et).

The proof is complete.

Lemma D.2. Assume σφ > 0. Let {wt}t∈N be the sequence produced by (2.2) with ηt =
2

σφt+2σF+σφt0
, where t0 ≥ 4A/(σΨσφ). Then the following inequality holds for all t = 1, . . . , T

2σ−1
φ

t∑
k=1

(k+t0+1)
(
φ(wk)−φ(w∗)

)
+(t+t0+1)(t+t0+2)DΨ(w∗, wt+1) ≤ (t0+1)(t0+2)DΨ(w∗, w1)

+ 2σ−1
φ

t∑
k=1

(k + t0 + 1)ξk + 16 log(eT )σ−1
Ψ σ−2

φ

(
AC1(2t+ t0 + 2) +Bt

)
, (D.2)

where we introduce

ξk = 〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉, k = 1, . . . , T.
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Proof. Since t0 ≥ 4A
σΨσφ

, we know ηt ≤ (2A)−1σΨ and therefore Lemma 2 holds. Taking w = w∗

in (3.4), we derive

DΨ(w∗, wk+1)−DΨ(w∗, wk) ≤ ηk〈w∗−wk, f ′(wk, zk)−Ezk [f ′(wk, zk)]〉+ηk〈w∗−wk, F ′(wk)〉
+ ηk

(
r(w∗)− r(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
− σrηkDΨ(w∗, wk+1).

Plugging the inequality F (w∗) − F (wk) ≥ 〈w∗ − wk, F ′(wk)〉 + σFDΨ(w∗, wk) into the above
inequality then shows

DΨ(w∗, wk+1)−DΨ(w∗, wk) ≤ ηkξk + ηk
(
F (w∗)− F (wk)− σFDΨ(w∗, wk)

)
+ ηk

(
r(w∗)− r(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
− σrηkDΨ(w∗, wk+1).

According to the definition of φ, we further get

(1 + σrηk)DΨ(w∗, wk+1) ≤ (1− ηkσF )DΨ(w∗, wk) + ηkξk + ηk
(
φ(w∗)− φ(wk)

)
+ σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
, (D.3)

which can be reformulated as follows
ηk
(
φ(wk)− φ(w∗)

)
1 + σrηk

+DΨ(w∗, wk+1) ≤ 1− ηkσF
1 + ηkσr

DΨ(w∗, wk) +
ηkξk

1 + σrηk

+
σ−1

Ψ η2
k

(
Af(wk, zk) +Ar(wk) + 2B

)
1 + σrηk

. (D.4)

Since ηk = 2
σφk+2σF+σφt0

, we know

1− σF ηk
1 + σrηk

=
σφk + 2σF + σφt0 − 2σF
σφk + 2σF + σφt0 + 2σr

=
k + t0

k + t0 + 2
,

ηk
1 + σrηk

=
2

σφ(k + t0 + 2)
.

Plugging the above two equations back into (D.4), we derive

2
(
φ(wk)− φ(w∗)

)
σφ(k + t0 + 2)

+DΨ(w∗, wk+1) ≤ k + t0
k + t0 + 2

DΨ(w∗, wk) +
2ξk

σφ(k + t0 + 2)

+
2ηk
(
Af(wk, zk) +Ar(wk) + 2B

)
σΨσφ(k + t0 + 2)

.

Multiplying both sides by (k + t0 + 1)(k + t0 + 2), we get

2(k + t0 + 1)

σφ

(
φ(wk)− φ(w∗)

)
+ (k + t0 + 1)(k + t0 + 2)DΨ(w∗, wk+1)

≤ (k+t0)(k+t0+1)DΨ(w∗, wk)+
2(k + t0 + 1)ξk

σφ
+

2ηk(k + t0 + 1)
(
Af(wk, zk) +Ar(wk) + 2B

)
σΨσφ

.

Taking a summation of the above inequality from k = 1 to k = t and using the inequality (k + t0 +
1)ηk ≤ 4σ−1

φ , we derive

2σ−1
φ

t∑
k=1

(k+t0+1)
(
φ(wk)−φ(w∗)

)
+(t+t0+1)(t+t0+2)DΨ(w∗, wt+1) ≤ (t0+1)(t0+2)DΨ(w∗, w1)

+ 2σ−1
φ

t∑
k=1

(k + t0 + 1)ξk + 8σ−1
Ψ σ−2

φ

t∑
k=1

(
Af(wk, zk) +Ar(wk) + 2B

)
. (D.5)

According to (3.7), (D.1) and η−1
t ≤ 2−1σφ(t+ t0 + 2), we know

t∑
k=1

(
Af(wk, zk) +Ar(wk) + 2B

)
≤ t(2AC1 + 2B) + 2AC1

( t∑
k=1

ηk
)
η−1
t

≤ 2t(AC1 +B) + 2AC1

(
2σ−1

φ log(et)
)(

2−1σφ(t+ t0 + 2)
)

= 2t(AC1 +B) + 2AC1(t+ t0 + 2) log(et)

≤ 2 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
.
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Plugging the above inequality into (D.5) gives the stated inequality. The proof is complete.

In the following lemma, we establish bounds on magnitudes and conditional variances on {ξk}k
defined in Lemma D.2.
Lemma D.3. Let the assumptions of Lemma D.2 hold with t0 ≥ 4A

σΨσφ
and ξk be defined in Lemma

D.2. Then for all k ≤ T we have

|ξk| ≤ C8 log(eT ) and Ezk
[(
ξk − Ezk [ξk]

)2] ≤ ‖w∗ − wk‖2(Aφ(wk) +B
)
,

where
C8 := (16A2 + 4)C1σ

−1
Ψ σ−1

φ + ‖w∗‖2 + 4AC1.

Proof. Since t0 ≥ 4A
σΨσφ

, we know ηt ≤ (2A)−1σΨ and therefore (3.5) holds. According to
Schwarz’s inequality, we have∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉

∣∣ ≤ ‖w∗ − wk‖(‖f ′(wk, zk)‖∗ + ‖F ′(wk)‖∗
)

≤ 1

2
‖w∗ − wk‖2 +

1

2

(
‖f ′(wk, zk)‖∗ + ‖F ′(wk)‖∗

)2
≤ ‖w∗‖2 + ‖wk‖2 + ‖f ′(wk, zk)‖2∗ + ‖F ′(wk)‖2∗.

Combining the above inequality and (C.8) together shows∣∣〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)]〉
∣∣ ≤ (4A2 + 1)‖wk‖2 + ‖w∗‖2 + 4AC1

≤ (8A2 + 2)C1σ
−1
Ψ

k∑
j=1

ηj + ‖w∗‖2 + 4AC1 ≤ C8 log(ek),

where we have used (3.5) and Lemma D.1 to control
∑k
j=1 ηj . This shows a bound on |ξk|.

It is clear that Ezk [ξk] = 0 and therefore it follows from E[(ξ − E[ξ])2] ≤ E[ξ2] for all real-valued
random variable ξ that

Ezk
[(
ξk − Ezk [ξk]

)2]
= Ezk [ξ2

k] ≤ Ezk
[
〈w∗ − wk, f ′(wk, zk)〉2

]
≤ ‖w∗ − wk‖2Ezk [‖f ′(wk, zk)‖2∗] ≤ ‖w∗ − wk‖2

(
AF (wk) +B

)
≤ ‖w∗ − wk‖2

(
Aφ(wk) +B

)
,

where we have used

Ezk [‖f ′(wk, zk)‖2∗] ≤ Ezk [Af(wk, zk) +B] = AF (wk) +B

due to (3.1). The proof is complete.

Then, we apply a Bernstein inequality to show
∑t
k=1(k+ t0 +1)ξk ≤ 1

2

∑t
k=1(k+ t0 +1)

(
φ(wk)−

φ(w∗)
)

+ Ct with high probability, where Ct is the summation of the last two terms in (D.10). An
interesting observation is that 1

2

∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
can be offset by the first term

in (D.2), from which one can derive (3.10). To apply the Bernstein inequality, we use Lemma D.3
to control the conditional variance as Ezk

[(
ξk − Ezk [ξk]

)2] ≤ ‖w∗ − wk‖2(Aφ(wk) + B
)
, and

introduce the decomposition Aφ(wk) + B = Aφ(wk) − Aφ(w∗) + Aφ(w∗) + B to get variance
partially offset by the first term in (D.2). This is a key trick for us to proceed with the discussion
without boundedness assumption on subgradients.

Proof of Theorem 8. Let ξk be defined in Lemma D.2. Since t0 ≥
16A log T

δ

σφσΨ
and δ ≤ e− 1

4 , we know

t0 ≥ 4A
σΨσφ

and therefore Lemma D.2 and Lemma D.3 hold. Define

CT = max
{4(t0 + 1)DΨ(w∗, w1)

σΨ
+

3t0
(
φ(w∗) +A−1B

)
σφσΨ

+

64 log(eT )(B + 2AC1)

σ2
Ψσ

2
φ

,
C8t0 log(eT )

2A

}
. (D.6)
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Let ρ2 = C8t0 log(eT )
2ACT

. It is clear from the definition of CT that ρ2 ∈ (0, 1]. According to Lemma
D.3, we derive the following inequalities for all k = 1, . . . , t(t ≤ T )

|(k + t0 + 1)ξk| ≤ C8(t+ t0 + 1) log(eT )

Ezk
[(

(k + t0 + 1)ξk − Ezk [(k + t0 + 1)ξk]
)2] ≤ (k + t0 + 1)2‖w∗ − wk‖2(Aφ(wk) +B).

Plugging the above two inequalities back into Part (b) of Lemma A.1, we derive the following
inequality with probability at least 1− δ

T

t∑
k=1

(k + t0 + 1)ξk ≤
ρ2

∑t
k=1

(
(k + t0 + 1)2‖w∗ − wk‖2

(
Aφ(wk) +B

))
C8(t+ t0 + 1) log(eT )

+
C8(t+ t0 + 1) log(eT ) log T

δ

ρ2
. (D.7)

Taking union bounds on probabilities of events, it is clear that (D.7) holds with probability at least
1− δ simultaneously for all t = 1, . . . , T . In the remainder of the proof, we always assume that (D.7)
holds for all t = 1, . . . , T , which happens with probability at least 1− δ.

Applying the σΨ-strong convexity of Ψ to (D.2) and dividing both sides by 2−1σΨ(t+ t0 + 1)(t+
t0 + 2), we derive the following inequality with probability 1− δ for all t = 1, . . . , T

4
∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
σφσΨ(t+ t0 + 1)(t+ t0 + 2)

+ ‖w∗ − wt+1‖2 ≤
2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)(t+ t0 + 2)
+

4
∑t
k=1(k + t0 + 1)ξk

(t+ t0 + 1)(t+ t0 + 2)σφσΨ
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
(t+ t0 + 1)(t+ t0 + 2)σ2

Ψσ
2
φ

. (D.8)

We now show by induction that ‖w∗ − wt̃‖2 ≤ CT
t̃+t0+1

for all t̃ = 1, . . . , T . It is clear from the
definition of CT that

‖w∗ − w1‖2 ≤
2DΨ(w∗, w1)(t0 + 2)

σΨ(t0 + 2)
≤ 4(t0 + 1)DΨ(w∗, w1)

σΨ(t0 + 2)
≤ CT
t0 + 2

.

Therefore, the induction assumption holds for the case with t̃ = 1. Suppose that ‖w∗−wt̃‖2 ≤ CT
t̃+t0+1

for all t̃ ≤ t. We now need to show that it also holds for t̃ = t + 1, i.e., ‖w∗ − wt+1‖2 ≤ CT
t+t0+2 .

According to (D.8) multiplied by t+ t0 + 2, it suffices to show

−
4
∑t
k=1(k + t0 + 1)

(
φ(wk)− φ(w∗)

)
σφσΨ(t+ t0 + 1)

+
2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)
+

4
∑t
k=1(k + t0 + 1)ξk

σφσΨ(t+ t0 + 1)
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σ2

Ψσ
2
φ(t+ t0 + 1)

≤ CT . (D.9)

Plugging the induction assumption ‖w∗ − wt̃‖2 ≤ CT /(t̃+ t0 + 1) for all t̃ ≤ t back into (D.7), we
derive
t∑

k=1

(k + t0 + 1)ξk

≤
ρ2CT

∑t
k=1

(
(k + t0 + 1)

(
Aφ(wk) +B

))
C8(t+ t0 + 1) log(eT )

+
C8(t+ t0 + 1) log(eT ) log T

δ

ρ2

=
t0A
−1

2(t+ t0 + 1)

t∑
k=1

(k + t0 + 1)
(
Aφ(wk)−Aφ(w∗) +Aφ(w∗) +B

)
+

2(t+ t0 + 1)ACT log T
δ

t0

≤ 1

2

t∑
k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
+
t0(Aφ(w∗) +B)

∑t
k=1(k + t0 + 1)

2A(t+ t0 + 1)
+

(t+ t0 + 1)CTσφσΨ

8
,

(D.10)
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where we have used the definition of ρ2 in the first identity and the assumption t0 ≥
16A log T

δ

σφσΨ
in the

last inequality. Plugging the above inequality into (D.9), it suffices to show

2(t0 + 1)(t0 + 2)DΨ(w∗, w1)

σΨ(t+ t0 + 1)
+

2t0(φ(w∗) +A−1B)
∑t
k=1(k + t0 + 1)

σΨσφ(t+ t0 + 1)2
+
CT
2

+
32(B + 2AC1) log(eT )

σ2
Ψσ

2
φ

≤ CT .

Since
t∑

k=1

(k + t0 + 1) =
t(t+ 2t0 + 3)

2
≤ 3(t+ t0 + 1)2

4
, (D.11)

it suffices to show

2(t0 + 1)DΨ(w∗, w1)

σΨ
+

3t0(φ(w∗) +A−1B)

2σΨσφ
+
CT
2

+
32(B + 2AC1) log(eT )

σ2
Ψσ

2
φ

≤ CT .

which is clear from the definition of CT in (D.6). Therefore, ‖w∗ − wt+1‖2 ≤ CT
t+t0+2 . This proves

the first inequality in (3.10).

We now prove the second inequality in (3.10). According to (D.2), we know

t∑
k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
≤ σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1)

2
+

t∑
k=1

(k + t0 + 1)ξk +
8 log(eT )

(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

.

Plugging (D.10) into the above inequality and using (D.11), we derive the following inequality with
probability at least 1− δ for all t = 1, . . . , T∑t

k=1(k + t0 + 1)
(
φ(wk)− φ(w∗)

)
2

≤ σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1)

2
+

3t0(Aφ(w∗) +B)(t+ t0 + 1)

8A
+

(t+ t0 + 1)CTσφσΨ

8
+

8 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

.

With probability at least 1− δ, it then follows from the convexity of φ and the identity in (D.11) that

φ(w̄
(2)
t )− φ(w∗) ≤

( t∑
k=1

(k + t0 + 1)
)−1( t∑

k=1

(k + t0 + 1)
(
φ(wk)− φ(w∗)

))
≤ 1

t(t+ 2t0 + 3)

(
2σφ(t0 + 1)(t0 + 2)DΨ(w∗, w1) +

3t0(Aφ(w∗) +B)(t+ t0 + 1)

2A

+
(t+ t0 + 1)CTσφσΨ

2
+

32 log(eT )
(
AC1(2t+ t0 + 2) +Bt

)
σφσΨ

)
, for all t = 1, . . . , T.

This establishes the second inequality in (3.10) with C̃T defined by

C̃T = σφ(t0 + 1)DΨ(w∗, w1) +
3t0(Aφ(w∗) +B)

2A
+
CTσφσΨ

2
+

32 log(eT )(2AC1 +B)

σφσΨ
.

The proof is complete.

Remark 1. According to the definition of CT and C̃T , it is clear that both CT and C̃T only involves
logarithmic functions of T/δ. It is also clear that CT is a quadratic function of σ−1

φ and C̃T is a linear
function of σ−1

φ .
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E Proofs for Almost Sure Convergence

In this section, we present a proposition on almost sure convergence which covers both the general
convex case (Theorem 6) and the strongly convex case (Theorem 9). To this aim, we need to introduce
two lemmas. Lemma E.1 is the Doob’s martingale convergence theorem [see, e.g., 2, page 195]
which is a powerful tool to study almost sure convergence. We will use Lemma E.2 [9] to show that
the random variable to which DΨ(w∗, wt) converges is zero almost surely in the strongly convex
case.
Lemma E.1. Let {X̃t}t∈N be a sequence of non-negative random variables with E[X̃1] <∞ and
let {Ft}t∈N be a nested sequence of sets of random variables with Ft ⊂ Ft+1 for all t ∈ N. If
E[X̃t+1|Ft] ≤ X̃t for every t ∈ N, then X̃t converges to a nonnegative random variable X̃ almost
surely. Furthermore, X̃ <∞ almost surely.
Lemma E.2. Let {ηt}t∈N be a sequence of non-negative numbers such that limt→∞ ηt = 0 and∑∞
t=1 ηt = ∞. Let a > 0 and t1 ∈ N such that ηt < a−1 for any t ≥ t1. Then we have

limT→∞
∑T
t=t1

η2
t

∏T
k=t+1(1− aηk) = 0.

The basic idea in proving Proposition E.3 is to construct non-negative supermartingales based on the
one-step progress inequality (3.4), whose almost sure convergence based on Lemma E.1 will imply
the almost sure convergence of the random variables we are interested in. We will construct different
supermartingales in the general convex case and the strongly convex case.
Proposition E.3. Let {wt}t∈N be the sequence produced by (2.2). If ‖w∗‖ < ∞ and∑∞
t=1 η

2
t <∞, then {DΨ(w∗, wt)}t converges almost surely to a non-negative random variable and

limt→∞DΨ(w∗, wt) <∞ almost surely. Furthermore,

(a) if ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, then
∑∞
t=1 ηt

(
φ(wt)− φ(w∗)

)
<∞ almost surely;

(b) if σφ > 0 and
∑∞
t=1 ηt =∞, then limt→∞DΨ(w∗, wt) = 0 almost surely.

Proof. Since
∑∞
t=1 η

2
t <∞, there exists a t2 ∈ N such that ηt ≤ min{(2A)−1σΨ, 2σ

−1
φ , σ−1

r } for
all t ≥ t2. Taking conditional expectations w.r.t. zt on both sides of (D.3), we derive the following
inequality for all t ≥ t2

Ezt [DΨ(w∗, wt+1)] ≤ 1− σF ηt
1 + σrηt

DΨ(w∗, wt) +
ηt

1 + σrηt

(
φ(w∗)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Aφ(wt)−Aφ(w∗) +Aφ(w∗) + 2B

)
,

where we have used 1 + σF ηt ≥ 1 and Ezt [ξt] = 0 for ξt defined in Lemma D.2. According to
φ(w∗) ≤ φ(wt) and ηt ≤ min{(2A)−1σΨ, σ

−1
r }, we know

ηt(1 + σrηt)
−1
(
φ(w∗)− φ(wt)

)
+ σ−1

Ψ η2
t

(
Aφ(wt)−Aφ(w∗)

)
≤ 2−1ηt

(
φ(w∗)− φ(wt)

)
+ 2−1ηt

(
φ(wt)− φ(w∗)

)
= 0.

Combining the above two inequalities together, we derive

Ezt [DΨ(w∗, wt+1)] ≤ (1− σF ηt)(1 + σrηt)
−1DΨ(w∗, wt) + σ−1

Ψ η2
t

(
Aφ(w∗) + 2B

)
. (E.1)

Introduce a sequence of non-negative random variables X̃t as

X̃t = DΨ(w∗, wt) + σ−1
Ψ

(
Aφ(w∗) + 2B

) ∞∑
k=t

η2
k,

which is well defined since
∑∞
t=1 η

2
t <∞. By (E.1), it is clear that Ezt [X̃t+1] ≤ X̃t for all t ≥ t2.

Taking w = w∗ and expectations on both sides of (B.2), we derive

E[DΨ(w∗, wt+1)] ≤ E[DΨ(w∗, wt)] + σ−1
Ψ η2

tAE[φ(wt)] + 2σ−1
Ψ Bη2

t , for all t ∈ N,

where we have used φ(w∗) ≤ φ(wt). According to Lemma A.3, the term E[φ(wt)] can be controlled
by E[DΨ(w∗, wt)] and ‖w∗‖. Therefore, we derive an upper bound on E[DΨ(w∗, wt+1)] in terms
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of E[DΨ(w∗, wt)], ‖w∗‖ and step sizes, from which we know E[X̃t2 ] <∞ (t2 is a fixed constant).
Therefore, one can apply Lemma E.1 to show that X̃t converges almost surely to a non-negative
random variable, which, together with

∑∞
t=1 η

2
t < ∞, further implies limt→∞DΨ(w∗, wt) = X̃

almost surely for a non-negative random variable X̃ . It is clear that X̃ <∞ almost surely by Lemma
E.1.

We now turn to part (a). Under the assumption ηt ≤ (2A)−1σΨ and ηt+1 ≤ ηt, (C.7) holds.
According to (C.7) with w = w∗, we know

t∑
k=1

ηk
(
φ(wk)− φ(w∗)

)
≤

t∑
k=1

ξk +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

t∑
k=1

η2
k, (E.2)

where
ξk = ηk〈w∗ − wk, f ′(wk, zk)− Ezk [f ′(wk, zk)].〉

Introduce a sequence of random variables

X̃ ′t+1 =

t∑
k=1

ξk +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

∞∑
k=1

η2
k, t = 0, 1, . . . ,

which is well defined since
∑∞
t=1 η

2
t <∞. It is clear from Ezt [ξt] = 0 that

Ezt [X̃ ′t+1] =

t−1∑
k=1

ξk + Ezt [ξt] +DΨ(w∗, 0) + 2σ−1
Ψ (AC1 +B)

∞∑
k=1

η2
k = X̃ ′t.

Furthermore, according to the definition of w∗ and (E.2), we know X̃ ′t ≥ 0 for all t ∈ N. Therefore,
one can apply Lemma E.1 to show that {X̃ ′t}t∈N converges to a non-negative variable X̃ ′ almost
surely and X̃ ′ < ∞ almost surely. This, together with (E.2) and the definition of X̃ ′t, implies that∑∞
k=1 ηk

(
φ(wk)− φ(w∗)

)
<∞ almost surely. This finishes the proof of part (a).

We now turn to part (b). We have shown limt→∞DΨ(w∗, wt) = X̃ almost surely. It suffices to show
X̃ = 0 almost surely under the condition σφ > 0 and

∑∞
t=1 ηt =∞. Since ηt ≤ σ−1

r for all t ≥ t2,
we know

1− σF ηt
1 + σrηt

=
1 + σrηt − σφηt

1 + σrηt
≤ 1− 2−1σφηt, ∀t ≥ t2.

Plugging the above inequality back into (E.1) and taking expectations over both sides, we derive

E[DΨ(w∗, wt+1)] ≤
(
1− 2−1σφηt

)
E[DΨ(w∗, wt)] + σ−1

Ψ (Aφ(w∗) + 2B)η2
t , ∀t ≥ t2.

Applying this inequality iteratively for t = T, T − 1, . . . , t2 yields

E[DΨ(w∗, wT+1)] ≤
T∏
t=t2

(1− 2−1σφηt)E[DΨ(w∗, wt2)]

+ σ−1
Ψ (Aφ(w∗) + 2B)

T∑
t=t2

η2
t

T∏
k=t+1

(1− 2−1σφηk), (E.3)

where we denote
∏T
k=t+1(1− 2−1σφηk) = 1 for t = T . The first term of the above inequality can

be controlled by the standard inequality 1− a ≤ exp(−a), a > 0 together with
∑∞
t=1 ηt =∞

lim
T→∞

T∏
t=t2

(1− 2−1σφηt)E[DΨ(w∗, wt2)] ≤ lim
T→∞

T∏
t=t2

exp
(
− 2−1σφηt

)
E[DΨ(w∗, wt2)]

= lim
T→∞

exp
(
− 2−1σφ

T∑
t=t2

ηt

)
E[DΨ(w∗, wt2)] = 0.
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Applying Lemma E.2 with a = 2−1σφ, we get limT→∞
∑T
t=t2

η2
t

∏T
k=t+1(1 − 2−1σφηk) = 0.

Plugging the above two expressions into (E.3) implies limT→∞ E[DΨ(w∗, wT )] = 0. This together
with Fatou’s lemma shows

0 ≤ E[X̃] = E
[

lim
T→∞

DΨ(w∗, wT )
]
≤ lim inf

T→∞
E[DΨ(w∗, wT )] = 0,

from which and X̃ ≥ 0 we know X̃ = 0 almost surely. This finishes the proof of part (b). The proof
is complete.

F Proofs for Generalization Bounds

In this section, we prove generalization error bounds presented in Section 4. The following lemma is
a standard probabilistic bound on the uniform deviation between empirical errors and generalization
errors over a RKHS ball. In our case, we need to control the Lipschitz constants and the magnitudes
for functions satisfying Assumption 1. According to (3.2) and Lemma A.4 we know ‖f ′(w, z)‖22 ≤
Af(w, z) + B with A = Ãκ2 and B = B̃κ2, where κ = supx∈X ‖Kx‖2. Recall that f(w, z) =
`(hw(x), y).
Lemma F.1. Let R > 0 and define BR =

{
w ∈ W : ‖w‖2 ≤ R

}
. Then, for any δ ∈ (0, 1), with

probability at least 1− δ we have

sup
w∈BR

[
E(w)− Ez(w)

]
≤
(
C9R

2 + C10

)
n−

1
2 log

1
2

1

δ
, (F.1)

where

C9 = κ2 + 2Ã2κ2 +
(A2

√
2

+
1

2
√

2

)
and C10 =

(
2Ã+

A+ 1√
2

)
sup
z
f(0, z) + 2B̃ +

B√
2
.

Proof. We prove this lemma by McDiarmid’s inequality (Lemma A.2). To this aim, we first show
that the function z 7→ supw∈BR

[
E(w)− Ez(w)

]
satisfies a bounded difference property. Indeed, for

any z = {z1, . . . , zi−1, zi, zi+1, . . . , zn} and z̄ = {z1, . . . , zi−1, z̄i, zi+1, . . . , zn}, we have∣∣∣ sup
w∈BR

[
E(w)− Ez(w)

]
− sup
w∈BR

[
E(w)− Ez̄(w)

]∣∣∣ ≤ sup
w∈BR

∣∣Ez(w)− Ez̄(w)
∣∣

≤ 1

n
sup
w∈BR

∣∣f(w, zi)− f(w, z̄i)
∣∣ ≤ 1

n
sup
w∈BR

sup
z∈Z

f(w, z)

≤ 1

n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
,

where the third inequality is due to the non-negativity of f and the last inequality is due to (A.5)
applied to the function w 7→ f(w, z). Applying McDiarmid’s inequality with increments bounded
above, we derive the following inequality with probability at least 1− δ

sup
w∈BR

[
E(w)− Ez(w)

]
≤ Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
+

√
log 1/δ

2n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
. (F.2)

We now control the term Ez

[
supw∈BR

[
E(w)−Ez(w)

]]
. Let z̃ = {z̃1, . . . , z̃n} be training examples

independently drawn from ρ and independent of z. Let σ1, . . . , σn be a sequence of independent
Rademacher variables with Pr{σi = 1} = Pr{σi = −1} = 1

2 . By Jensen’s inequality and the
standard symmetrization technique, we get

Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
= Ez

[
sup
w∈BR

[
Ez̃[Ez̃(w)]− Ez(w)

]]
≤ Ez,z̃

[
sup
w∈BR

[
Ez̃(w)− Ez(w)

]]
=

1

n
Ez,z̃

[
sup
w∈BR

n∑
i=1

(
f(w, z̃i)− f(w, zi)

)]
=

1

n
Ez,z̃,σ

[
sup
w∈BR

n∑
i=1

σi

(
f(w, z̃i)− f(w, zi)

)]
≤ 2

n
Ez,σ

[
sup
w∈BR

n∑
i=1

σif(w, zi)
]
. (F.3)
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For any w ∈ BR, it follows from Lemma A.3 that∣∣`′(〈w,Kx〉, y)
∣∣2 ≤ 2Ã2|〈w,Kx〉|2 + 2Ã`(0, y) + 2B̃ ≤ 2Ã2‖w‖22‖Kx‖22 + 2Ã`(0, y) + 2B̃

≤ 2Ã2R2κ2 + 2Ã sup
y
`(0, y) + 2B̃,

from which we know∣∣`′(〈w,Kx〉, y)
∣∣ ≤√2Ã2R2κ2 + 2Ã sup

y
`(0, y) + 2B̃, ∀w ∈ BR.

Applying Talagrand’s contraction lemma [5] to the last term of (F.3) together with f(w, z) =
`(〈w,Kx〉, y) and the above bound on derivative of `, we derive

Ez

[
sup
w∈BR

[
E(w)−Ez(w)

]]
≤

2
√

2Ã2R2κ2 + 2Ã supy `(0, y) + 2B̃

n
Ez,σ

[
sup
w∈BR

n∑
i=1

σi〈w,Kxi〉
]
.

(F.4)
According to the Schwarz’s inequality and Jensen’s inequality, we get

Eσ
[

sup
w∈BR

n∑
i=1

σi〈w,Kxi〉
]

= Eσ
[

sup
w∈BR

〈
w,

n∑
i=1

σiKxi

〉]
≤ Eσ

[
sup
w∈BR

‖w‖2

√√√√∥∥∥ n∑
i=1

σiKxi

∥∥∥2

2

]

≤ R

√√√√Eσ
〈 n∑
i=1

σiKxi ,

n∑
i=1

σiKxi

〉
= R

√√√√ n∑
i=1

‖Kxi‖22 ≤ Rκ
√
n.

Plugging the above inequality back into (F.4), we derive

Ez

[
sup
w∈BR

[
E(w)− Ez(w)

]]
≤

2Rκ
√

2Ã2R2κ2 + 2Ã supy `(0, y) + 2B̃
√
n

.

Plugging the above inequality back into (F.2) and using 2ab ≤ a2 + b2 for a, b ∈ R, we derive the
following inequality with probability at least 1− δ

sup
w∈BR

[
E(w)− Ez(w)

]
≤ 1√

n

(
R2κ2 + 2Ã2R2κ2 + 2Ã sup

y
`(0, y) + 2B̃

)
+

√
log 1/δ

2n

((
A2 +

1

2

)
R2 + (A+ 1) sup

z
f(0, z) +B

)
,

which can be written as (F.1) with the stated C9 and C10. The proof is complete.

The following lemma aims to bound Ez(wλ)− E(wλ) with wλ defined in (F.5). Since wλ is a fixed
element inW , we do not need to resort to uniform deviation arguments. Instead, we can apply a
Bernstein inequality to study Ez(wλ)− E(wλ), based on the observation that Assumption 3 allows
us to control the variance of f(wλ, z) by a linear function of supz f(wλ, z).
Lemma F.2. Let λ ∈ (0, 1] and define

wλ = arg min
w∈W

E(w) + λ‖w‖22. (F.5)

Let ρ ∈ (0, 1] and δ ∈ (0, 1). Then, with probability at least 1− δ we have

Ez(wλ)− E(wλ) ≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1 sup

z
f(wλ, z) log δ−1.

Proof. Let ξi = f(wλ, zi), i = 1, . . . , n. According to the definition of wλ and Assumption 3, we
know

E(wλ)− E(hρ) + λ‖wλ‖22 ≤ cαλα,
from which and λ ≤ 1 we derive

E(wλ) ≤ E(hρ) + cα.
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It then follows that ξi − E[ξi] ≤ supz f(wλ, z) (non-negativity of ξi) and

E
[(
ξi − E[ξi]

)2] ≤ E[f2(wλ, zi)] ≤ sup
z
f(wλ, z)E[f(wλ, z)] ≤ sup

z
f(wλ, z)

(
cα + E(hρ)

)
.

Applying Part (b) of Lemma A.1 with ξi = f(wλ, zi) and the above bounds on variances and
magnitudes, we derive the following inequality with probability at least 1− δ

Ez(wλ)− E(wλ) =
1

n

n∑
i=1

ξi − E[ξ] ≤
ρn supz f(wλ, z)

(
cα + E(hρ)

)
n supz f(wλ, z)

+
supz f(wλ, z) log 1

δ

ρn
.

The stated inequality then follows directly. The proof is complete.

We are now in a position to prove Theorem 10. Our basic idea is to use the decomposition (F.6)
with wλ and λ proportional to n−

α
1+α . The term Ez(w̄

(1)
T ) − Ez(wλ) is the computational error

related to the optimization process. Both E(w̄
(1)
T )− Ez(w̄

(1)
T ) and Ez(wλ)− E(wλ) are estimation

errors related to the sampling process. The term E(wλ) − E(hρ) is the approximation error. In
the following, we apply Lemma F.1 and Lemma F.2 to control estimation errors, Theorem 4 to
control the computational error and Assumption 3 to control the approximation error. Here we use
three tricks to get almost optimal generalization error bounds. First, we show that ‖w̄(1)

T ‖22 grows
as a logarithmic function of T , which allows us to get E(w̄

(1)
T ) − Ez(w̄

(1)
T ) = O(n−

1
2 log T ) (we

omit the dependency on 1/δ for brevity). Second, in the analysis of Ez(wλ)− E(wλ), we show the
variance of f(wλ, z) grows as a linear function of supz f(wλ, z) instead of a quadratic function of
supz f(wλ, z) by exploiting Assumption 3, which allows us to get a bound with a mild dependency
on ‖wλ‖22. As a comparison, if we use ‖wλ‖22 = O(λα−1) due to Assumption 3 and the Azuma-
Hoeffding inequality we will get Ez(wλ)− E(wλ) = O(λα−1n−

1
2 ), which is suboptimal since λ is

chosen to be very small to trade the estimation, computational and approximation errors. Indeed, if
one plug Ez(wλ) − E(wλ) = O(λα−1n−

1
2 ) into (F.6), one can only derive the suboptimal bound

E(w̄
(1)
T )− E(hρ) = O(n−

α
2 log

3
2 T ) worse than O(n−

α
1+α log

3
2 T ) in Theorem 10. The third trick

is to choose wλ with an appropriate λ in (F.6) to fully exploit Assumption 3.

Proof of Theorem 10. Let λ, ρ ∈ (0, 1] be real numbers to be fixed later and w = wλ defined by
(F.5). We use the following error decomposition w.r.t. wλ to study the excess generalization error
E(w̄

(1)
T )− E(hρ)

E(w̄
(1)
T )− E(hρ) =

(
E(w̄

(1)
T )− Ez(w̄

(1)
T )
)

+
(
Ez(w̄

(1)
T )− Ez(wλ)

)
+
(
Ez(wλ)− E(wλ)

)
+
(
E(wλ)− E(hρ)

)
. (F.6)

It is clear that (4.1) is a specific instantiation of (2.2) with f(w, z) = `
(
〈w,Kx〉, y

)
,Ψ(w) =

1
2‖w‖

2
2, r(w) = 0 and ρ̃ being the uniform distribution over {z1, . . . , zn}. During the iteration

of (4.1), the training sample z = {z1, . . . , zn} is fixed and the randomness comes from the index
sequence {jt}t∈N. Since jt is drawn from a uniform distribution over {1, . . . , n}, the objective
function minimized by the SGD scheme (4.1) is the empirical error φ(w) = Ejt [f(w, zjt)] = Ez(w).
An application of Theorem 4 to the SGD scheme (4.1) with w = wλ then gives the following
inequality with probability 1− δ/4

Ez(w̄
(1)
T )− Ez(wλ) ≤

( T∑
t=1

ηt

)−1(
C3‖wλ‖22 + C4

)
log

3
2

8T

δ
. (F.7)

We can apply Lemma F.2 to derive the following inequality with probability at least 1− δ/4

Ez(wλ)− E(wλ) ≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1 sup

z
f(wλ, z) log

4

δ

≤ ρ
(
cα + E(hρ)

)
+ (ρn)−1

((
A2 +

1

2

)
‖wλ‖22 + (A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

(F.8)
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where the last inequality is due to Lemma A.3.

According to Theorem 3, with probability at least 1− δ/4 we have max1≤t≤T ‖wt‖2 ≤
√
C2 log 4T

δ ,
from which and the convexity of norm we derive the following inequality with probability 1− δ/4

‖w̄(1)
T ‖2 ≤

√
C2 log

4T

δ
. (F.9)

Furthermore, an application of Lemma F.1 with R̃ =
√
C2 log 4T

δ shows the following inequality
with probability 1− δ/4

sup
w∈BR̃

[
E(w)− Ez(w)

]
≤
(
C9C2 log

4T

δ
+ C10

)
n−

1
2 log

1
2

4

δ
.

Combining the above inequality and (F.9) together, we derive the following inequality with probability
1− δ/2 [

E(w̄
(1)
T )− Ez(w̄

(1)
T )
]
≤
(
C9C2 + C10

)
n−

1
2 log

3
2

4T

δ
. (F.10)

Plugging (F.7), (F.8) and (F.10) into (F.6), we derive the following inequality with probability at
least 1− δ

E(w̄
(1)
T )− E(hρ) ≤ E(wλ)− E(hρ) + ‖wλ‖22

(
C3

( T∑
t=1

ηt
)−1

+ (ρn)−1
(
A2 + 2−1

))
log

3
2

8T

δ

+ C4

( T∑
t=1

ηt
)−1

log
3
2

8T

δ
+
(
C9C2 + C10

)
n−

1
2 log

3
2

4T

δ

+ ρ
(
cα + E(hρ)

)
+ (ρn)−1

(
(A+ 1) sup

z
f(0, z) +B

)
log

4

δ
.

We choose λ = max
{(∑T

t=1 ηt
)−1

, (ρn)−1
}

in the above inequality and derive the following
inequality with probability 1− δ

E(w̄
(1)
T )−E(hρ) ≤

(
C3+A2+2−1

)
D

(
max

{( T∑
t=1

ηt
)−1

, (ρn)−1
})

log
3
2

8T

δ
+

(
C4

( T∑
t=1

ηt
)−1

+

(
C9C2 + C10

)
n−

1
2

)
log

3
2

8T

δ
+ ρ
(
cα + E(hρ)

)
+ (ρn)−1

(
(A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

where in the first inequality we have used C3 +A2 + 2−1 ≥ 1 and

E(wλ)− E(hρ) + ‖wλ‖22
(
C3

( T∑
t=1

ηt
)−1

+ (ρn)−1
(
A2 + 2−1

))
log

3
2

8T

δ

≤
(
C3 +A2 + 2−1

)(
E(wλ)−E(hρ) + λ‖wλ‖22

)
log

3
2

8T

δ
=
(
C3 +A2 + 2−1

)
D(λ) log

3
2

8T

δ
.

Since the above inequality holds for any ρ ∈ (0, 1], we can take ρ = n−
α

1+α to derive the following
inequality with probability at least 1− δ

E(w̄
(1)
T )−E(hρ) ≤ cα

(
C3+A2+2−1

)
max

{( T∑
t=1

ηt
)−α

, n−
α

1+α

}
log

3
2

8T

δ
+

(
C4

( T∑
t=1

ηt
)−1

+

(
C9C2 + C10

)
n−

1
2

)
log

3
2

8T

δ
+ n−

α
1+α
(
cα + E(hρ) + (A+ 1) sup

z
f(0, z) +B

)
log

4

δ
,

from which it follows directly the stated inequality (4.2) with C5 defined by

C5 = cα(C3 +A2 + 2−1) + C4 + C9C2 + C10 + cα + E(hρ) + (A+ 1) sup
z
f(0, z) +B.

It is clear both ρ and λ defined above satisfy ρ, λ ∈ (0, 1]. The proof is complete.
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Dataset No. of Training Examples No. of Test Examples No. of Attributes Source
ADULT 32, 561 16, 281 123 [7]

GISETTE 6, 000 1, 000 5, 000 [3]
IJCNN1 49, 990 91, 701 22 [8]

MUSHROOMS 4,062 4,062 112 [1]
PHISHING 5, 527 5, 528 68 [1]

SPLICE 1, 000 2, 175 60 [1]

Table G.1: Description of datasets used in the experiments.

G Additional Information on Simulation

We present a detailed description of datasets, used in Section 6, in Table G.1.
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