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Abstract

Recently, there is a growing interest in studying pairwise learning since it includes
many important machine learning tasks as specific examples, e.g., metric learning,
AUC maximization and ranking. While stochastic gradient descent (SGD) is an
efficient method, there is a lacking study on its generalization behavior for pairwise
learning. In this paper, we present a systematic study on the generalization analysis
of SGD for pairwise learning to understand the balance between generalization
and optimization. We develop a novel high-probability generalization bound for
uniformly-stable algorithms to incorporate the variance information for better
generalization, based on which we establish the first nonsmooth learning algorithm
to achieve almost optimal high-probability and dimension-independent excess risk
bounds with O(n) gradient computations. We consider both convex and nonconvex
pairwise learning problems. Our stability analysis for convex problems shows
how the interpolation can help generalization. We establish a uniform convergence
of gradients, and apply it to derive the first excess risk bounds on population
gradients for nonconvex pairwise learning. Finally, we extend our stability analysis
to pairwise learning with gradient-dominated problems.

1 Introduction

Many machine learning problems can be formulated as learning with pairwise loss functions, where
the performance of the associated models needs to be quantified on a pair of training examples.
Representative problems include AUC maximization [14, 25, 42, 63, 66], metric learning [8, 31],
ranking [1, 13] and learning with minimum error entropy loss functions [29]. For example, in
supervised metric learning we wish to find a distance function between pairs of examples so that
examples within the same class are relatively close while examples from different classes are far
apart from each other. In ranking, we aim to find a function to predict the ordering of examples. This
motivates the recent growing interest in a unifying study of these problems, under the framework of
pairwise learning [29, 32, 40, 58].

Stochastic gradient descent (SGD) is a workhorse for machine learning due to its cheap computation
complexity, simplicity and efficiency [7, 20, 49, 53, 62, 65]. SGD iteratively updates the model based
on stochastic gradients computed on one or several randomly selected training examples, which
can achieve sample-size independent iteration complexity for a prescribed optimization accuracy.
This is especially attractive for pairwise learning as the objective function involves O(n2) terms for
problems with n training examples. An important problem on SGD is to understand its generalization
performance, i.e., how the models trained by SGD would behave on testing examples. While there are
some interesting work on the generalization analysis of SGD for pointwise learning [9, 10, 28, 36, 39],
there is much less work on SGD for pairwise learning. A notable difference between pairwise learning
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and pointwise learning is that the objective function in pairwise learning involves O(n2) dependent
terms, which introduces a difficulty in handling this dependency. For example, one needs to decouple
this dependency to apply concentration inequalities established for independent data. Furthermore,
for algorithmic stability analysis, a perturbation of the training dataset by a single example can change
O(n) terms in the objective function, which is more challenging than stability analysis of pointwise
learning. To our best knowledge, the only work on generalization analysis of SGD for pairwise
learning are [40, 55, 59]. However, their analysis requires restrictive assumptions on convexity,
smoothness and Lipschitz continuity of loss functions. Furthermore, they fail to incorporate the
interpolation (low noise) assumption into their generalization guarantee.

In this paper, we initialize a systematic generalization analysis of SGD for pairwise learning under
general assumptions. Our contributions are listed as follows.

1. We develop a novel high-probability generalization bound for uniformly-stable algorithms, which
incorporates the variance information to improve the learning performance. We apply this result to
develop the first dimension-independent high-probability bound O(1/

√
n) (up to a log factor) for an

algorithm with O(n) gradient computations to solve nonsmooth learning problems.

2. We study the stability and generalization guarantee of SGD for pairwise learning with convex loss
functions, covering both smooth and nonsmooth problems. Our analysis suggests an early-stopping
strategy for getting excess population risk bounds of the order O(1/

√
n) and O(1/(nσ)) for convex

and σ-strongly convex problems, respectively. Under an interpolation or a low noise assumption, we
improve our excess risk bounds to O(1/n) by exploiting the smoothness assumption.

3. We provide the first generalization analysis of SGD for pairwise learning with nonconvex loss
functions. We establish a uniform convergence of empirical gradients to population gradients by
showing its connection to Rademacher chaos complexities. We then apply this uniform convergence
to develop high-probability generalization guarantees for general nonconvex pairwise learning. Under
a gradient dominance assumption, our stability analysis gives dimension-independent bounds.

The paper is organized as follows. We survey the related work in Section 2 and give the problem
formulation in Section 3. We study convex and nonconvex pairwise learning in Section 4 and Section
5, respectively. Conclusion is given in Section 6. In the appendix, we present all the proofs, specific
examples of pairwise learning and preliminary experimental results.

2 Related Work

We first review the related work on algorithmic stability. Algorithmic stability is an important
concept in statistical learning theory (SLT) with close connection to learnability [52, 54]. The modern
framework of stability analysis was established in a seminal paper [5], where the important uniform
stability was introduced. This stability measure was extended to study randomized algorithms
in [18] and motivates several concepts including argument stability [39, 43], Bayes stability [41]
and on-average stability [39, 54]. Algorithmic stability has shown its remarkable effectiveness in
deriving dimension-independent generalization bounds for various domains including stochastic
optimization [10, 28, 36, 47, 51], structured prediction [44], transfer learning [37] and differential
privacy [3, 48]. Recent progress shows a tradeoff between optimization and stability [11, 55], and its
applications to yield almost optimal high-probability generalization bounds [6, 22, 34].

We now review the related work on pairwise learning. There are two popular approaches to studying
the generalization performance of pairwise learning: the uniform convergence approach and the
algorithmic stability approach. The idea of uniform convergence is to control the uniform deviation
between training errors and testing errors over a hypothesis space. The complexity measures of
function spaces play an important role in this approach, including VC dimension, covering num-
bers [17, 58, 60] and Rademacher complexities [8, 32]. Furthermore, one needs to use concentration
inequalities to handle the associated U-statistics and U-processes [13, 16, 50]. Algorithmic sta-
bility of ranking [1] and metric learning [31, 57] was studied for strongly convex objectives [30].
High-probability bounds of the order O(ε log n+ 1/

√
n) were recently developed for ε-uniformly

stable pairwise learning algorithms [40]. A nice property of stability analysis is its ability to yield
dimension-independent bounds, while a square-root dependency on the dimension is inevitable
for uniform convergence analysis when considering general problems [21]. However, algorithmic
stability generally requires a convexity assumption which is not required for the uniform convergence
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approach. Other than the above two approaches, several researchers have studied the generalization
behavior of pairwise learning using the algorithmic robustness [4, 12] and integral operators [19, 27].

Before we move on, we add more discussions with a very related work on generalization analysis of
pairwise learning [13, 50]. The work [50] considers a very general problem setting for SGD with
K-sample U-statistic of degrees (d1, . . . , dK), which includes our algorithm as a special case with
K = 1 and d1 = 2. It shows the advantage of reducing variances using gradient estimates through
incomplete U-statistics over that through complete U-statistics based on subsamples. We sketch the
difference as follows. First, the generalization analysis in Papa et al. [50] requires smoothness and
strong convexity assumptions. As a comparison, we also consider nonsmooth problems (Section
4.2) and nonconvex problems (Section 5). Second, the work [50] studies generalization via the
uniform convergence approach and requires a complexity assumption. As a comparison, we also
study generalization via a fundamentally different algorithmic stability approach. The classical
work [13] focuses on the exact solution of empirical risk minimizer for pairwise learning from the
perspective of uniform convergence. As a comparison, we study the excess risk of SGD via both an
algorithmic stability approach and an uniform convergence approach, for which we also consider the
tradeoff between optimization and generalization.

3 Problem Formulation

3.1 Pairwise Learning and Stochastic Gradient Descent

Let ρ be a probability measure defined on Z = X × Y with an input space X and an output space
Y . Let S = {z1, . . . , zn} be drawn independently according to ρ, from which we aim to learn
a prediction function h : X 7→ R or h : X × X 7→ R. We consider parametric models where
the prediction function hw can be indexed by an element w ∈ W , where W is a d-dimensional
Hilbert space. We consider pairwise learning problems where the performance of a model hw on an
example pair (z, z′) can be measured by a nonnegative loss function f(w; z, z′). This is in contrast
to standard pointwise learning (e.g., classification and regression) where we can measure the quality
of a model via its behavior on an individual point. Two notable examples of pairwise learning
include ranking and supervised metric learning. For ranking, we build a function hw : X 7→ Y
to rank instances in a way consistent with the outputs, i.e., hw(x) < hw(x′) if y < y′ for two
example pairs z = (x, y), z′ = (x′, y′). Then we can formulate ranking as a pairwise learning
problem with f(w; z, z′) = ψ(sgn(y − y′)(hw(x)− hw(x′))), where sgn is the sign function and
ψ can be either the hinge loss ψ(t) = max{1− t, 0} or the logistic loss ψ(t) = log(1 + exp(−t)).
For supervised metric learning with Y = {−1,+1}, we find a distance function under which
examples with the same label are similar while examples with different labels are apart from each
other. A popular distance function takes the form hw(x, x′) = 〈w, (x − x′)(x − x′)>〉, where
w ∈ Rd×d is positive definite. We can formulate supervised metric learning as pairwise learning with
f(w; z, z′) = ψ(τ(y, y′)(1− hw(x, x′))), where τ(y, y′) = 1 if y = y′ and −1 otherwise.

The population risk of w in pairwise learning is F (w) = EZ,Z′ [f(w;Z,Z ′)], where EZ,Z′ denotes
the expectation with respect to (w.r.t.) Z,Z ′ ∼ ρ. The empirical risk of w is

FS(w) =
1

n(n− 1)

∑
i,j∈[n]:i6=j

f(w; zi, zj),

where [n] := {1, . . . , n}. Let w∗S = arg minw∈W FS(w) and w∗ = arg minw∈W F (w). For a
randomized algorithm A, we use A(S) to denote the output model produced by applying A to the
dataset S. We are interested in the excess risk F (A(S)) − F (w∗), which measures the relative
behavior of A(S) as compared to the best model. A standard approach to handle F (A(S))− F (w∗)
is to use the following error decomposition
ES,A

[
F (A(S))−F (w∗)

]
= ES,A

[
F (A(S))−FS(A(S))

]
+ES,A

[
FS(A(S))−FS(w∗)

]
, (3.1)

where the first term F (A(S)) − FS(A(S)) is called the generalization error and the second term
FS(A(S))− FS(w∗) is the optimization error. These two errors can be handled by tools in SLT and
optimization theory, respectively. We are interested in the specific SGD for pairwise learning.
Definition 1 (SGD for Pairwise Learning). Let w1 = 0 ∈ Rd and {ηt}t be a stepsize sequence. Let
∇f(wt; zit , zjt) denote the gradient of f w.r.t. the first argument. At the t-th iteration, we first draw
{(it, jt)} from the uniform distribution over all pairs {(i, j) : i, j ∈ [n], i 6= j} and then update

wt+1 = wt − ηt∇f(wt; zit , zjt). (3.2)
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Note our problem setting is totally different from some online learning setting where the streaming
examples are assumed to be drawn from the true probability measure ρ [15]. Indeed, we consider
the offline setting where the dataset is given beforehand and during the optimization process we
actually randomly draw an example from the empirical measure. This necessitates the consideration
of the generalization gap which is not touched in the online learning setting [15]. An advantage of
SGD is that its computational complexity to achieve an accuracy is independent of the number of
pairs, which is particularly attractive for pairwise learning (gradient descent requires O(n2) gradient
computations per iteration). We describe SGD(S, T, f, {ηt}) in Algorithm 1 of SGD with dataset S,
iteration number T , loss function f and stepsize {ηt}. Algorithm 1 was also studied in [40], which
however requires restrictive assumptions on convexity, smoothness and Lipschitz continuity. We
significantly extend their discussions by considering either nonconvex, nonsmooth or non-Lipschitz
loss. Moreover, our analysis can clarify the effect of interpolation on generalization.

Algorithm 1: SGD(S, T, f, {ηt})
Input: initial point w1 = 0, learning rates {ηt}t, and dataset S = {z1, . . . , zn}

1 for t = 1, 2, . . . , T do
2 draw (it, jt) uniformly over all pairs {(i, j) : i, j ∈ [n], i 6= j}
3 update wt+1 according to Eq. (3.2)
4 end

Below we introduce necessary definitions and assumptions. Let ‖ · ‖2 be the Euclidean norm and 〈·, ·〉
be the associated inner product. Let b = supz,z′∈Z f(0; z, z′) and b′ = supz,z′∈Z ‖∇f(0; z, z′)‖2.
We denote B � B̃ if there are absolute constants c1 and c2 such that c1B ≤ B̃ ≤ c2B. We collect
the notations of this paper in Table A.1.
Definition 2. Let g :W 7→ R, L,G > 0, σ ≥ 0.

1. We say g is L-smooth if ‖∇g(w)−∇g(w′)‖2 ≤ L‖w −w′‖2 for all w,w′ ∈ W .

2. We say g is G-Lipschitz continuous if |g(w)− g(w′)| ≤ G‖w −w′‖2 for all w,w′ ∈ W .

3. We say g is σ-strongly convex w.r.t. ‖·‖2 if g(w)−
(
g(w′)+〈w−w′,∇g(w′)〉

)
≥ σ‖w−w′‖22/2

for all w,w′ ∈ W . We say g is convex if g is σ-strongly convex with σ = 0.
Assumption 1 (Convexity). Assume for all z, z′ ∈ Z , the function w 7→ f(w; z, z′) is convex.
Assumption 2 (Boundedness of Gradients). Assume for all z, z′ and w ∈ W , ‖∇f(w; z, z′)‖2 ≤ G.
Assumption 3 (Smoothness). Assume for all z, z′, w 7→f(w; z, z′) is nonnegative and L-smooth.

3.2 Algorithmic Stability and Generalization

A fundamental concept in SLT is the algorithmic stability, which measures the sensitivity of an
algorithm w.r.t. the perturbation of the training dataset. Various stability measures have been
introduced in the literature, including uniform stability [5], hypothesis stability [5, 18], argument
stability [43] and on-average stability [54]. We focus on uniform stability and on-average stability
here. The following on-average loss stability was introduced in [40], while the on-average argument
stability was motivated by a similar concept in pointwise learning [39]. Let S = {z1, . . . , zn}, S′ =
{z′1, . . . , z′n} be independently drawn from ρ. We denote

Si =
{
z1, . . . , zi−1, z

′
i, zi+1, . . . , zn

}
, ∀i ∈ [n], (3.3)

Si,j =
{
z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′
j , zj+1, . . . , zn

}
, ∀i < j ∈ [n]. (3.4)

Definition 3 (Algorithmic Stability). Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be drawn
independently from ρ. For any i, j ∈ [n], denote Si as (3.3) and Si,j as (3.4).

1. We say a deterministic algorithmA : Zn 7→ W is ε-uniformly stable if for any datasets S, S̃ ∈ Zn
that differ by at most a single example we have supz,z̃∈Z

∣∣f(A(S); z, z̃)− f(A(S̃); z, z̃)
∣∣ ≤ ε.

2. We say a randomized algorithm A is on-average (loss) ε-stable if
1

n(n− 1)

∑
i,j∈[n]:i 6=j

ES,S′,A

[
f
(
A(Si,j); zi, zj

)
− f

(
A(S); zi, zj

)]
≤ ε.
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3. We say A is on-average argument ε-stable if ES,S̃,A
[
1
n

∑n
i=1 ‖A(S)−A(Si)‖22

]
≤ ε2.

The following theorem establishes the connection between on-average stability and generalization in
expectation for pairwise learning. Part (a) was due to [40], while Part (b) was motivated by a similar
result in pointwise learning [39]. The proof is given in Appendix B.

Theorem 1. (a) If A is on-average (loss) ε-stable, then E[F (A(S))− FS(A(S))] ≤ ε.

(b) If A is on-average argument ε-stable and Assumption 3 holds, then for any γ > 0 we have

E[F (A(S))− FS(A(S))] ≤ 2(L+ γ)ε2 + Lγ−1E[FS(A(S))].

Remark 1. We can choose γ �
√
E[FS(A(S))]/ε in Part (b) and get the bound E[F (A(S)) −

FS(A(S))] = O(ε2 + ε
√
E[FS(A(S))]). Therefore, if E[FS(A(S))] is small, Part (b) can imply

bounds better than O(ε). In particular, if E[FS(A(S))] = O(ε2) the bound in Part (b) becomes
O(ε2), which is much faster than O(ε) in Part (a).

Theorem 2 establishes the connection between uniform stability and generalization with high prob-
ability for pairwise learning. The proof is given in Section C, whose novelty is to use decoupling
techniques to address the coupling among O(n2) terms in the objective function of pairwise learning.

Theorem 2. Let A be an ε-uniformly stable and deterministic algorithm. Let B :=

supz,z′
∣∣ES [f(A(S); z, z′)]−f(w∗; z, z′)

∣∣ and σ2
0 := EZ,Z′,S

[(
f(A(S);Z,Z ′)−f(w∗;Z,Z ′)

)2]
.

For any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ

F (A(S))−FS(A(S))−F (w∗)+FS(w∗)≤98
√

2eε log n log(2e/δ)+
2B log(2/δ)

3bn/2c
+

√
2σ2

0 log(2/δ)

bn/2c
.

Remark 2. Note we only impose a bounded loss assumption on A(S), which can be achieved by
truncating the value of the output function. Theorem 2 was motivated by the recent work [34, 40]. For
pointwise learning, high-probability generalization bounds of the order O(ε log n) were developed
for ε-uniformly stable algorithms under a further Bernstein condition on the variance-expectation
relationship [34]. High-probability bounds O(ε log n+ 1/

√
n) were also developed for ε-uniformly

stable algorithms in pairwise learning [40]. We refine these results by developing generalization
bounds O(ε log n+

√
σ2
0/n), where σ2

0 is the variance of the excess loss at the output model. If this
variance is small, then our bounds can be much better than that in [40]. For example, if F is σ-strongly
convex, then one can show that this variance can be bounded by O(E[F (A(S))− F (w∗)]/σ), and
in this case the term

√
σ2
0/n in our bound would be o(n−

1
2 ) instead of O(n−

1
2 ) in [40]. As we will

show, Theorem 2 can imply almost optimal excess risk bounds for an algorithm with O(n) gradient
computations to solve nonsmooth problems (Theorem 8), for which the existing high-probability
analysis can only imply bounds of the order O(n−

1
4 ) [40].

4 Pairwise Learning with Convex Loss Functions

In this section, we study the generalization performance of SGD for pairwise learning with convex
loss functions. We consider convex/strongly-convex and smooth/nonsmooth problems.

4.1 Convex and Smooth Problems

We first consider stability and risk bounds for convex and smooth pairwise learning problems. The
proofs of results in this subsection can be found in Section E. Theorem 3 gives the bounds for
on-average argument stability of SGD. Note we do not require the loss functions to be Lipschitz
continuous. A nice property is that the upper bound involves the empirical risk of wj . Since we
are minimizing the empirical risk by SGD, it is reasonable to assume that FS(wj) would become
smaller and smaller along the learning process. It should be mentioned that a similar result was
derived for pointwise learning [39]. A key difference in the stability analysis for pairwise learning
is that a change of zi would influence 2(n− 1) pairs (zj , zi), (zi, zj) for j 6= i. We need to use the
U-structure of the empirical risk to prove this result.
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Theorem 3 (Stability bound). Let Assumptions 1, 3 hold. Let A be SGD (Algorithm 1)
with ηj ≤ 2/L. Then A with t iterations is on-average argument ε-stable with ε2 ≤
16L(1+2t/n)e

n

∑t
j=1 η

2
jE[FS(wj)].

Based on Theorem 3, we get error bounds for pairwise learning with convex and smooth functions.
Theorem 4 (Excess risk bound). Let Assumptions 1, 3 hold. Let {wt} be the sequence produced by
SGD (Algorithm 1) on a dataset of size n with ηt = η ≤ 2/L. Then for w̄T = 1

T

∑T
t=1 wt and any

γ ≥ 1 we have the following inequality for all w independent of A (can depend on S)

E[F (w̄T )− FS(w)] = O
((
η +

1

γ
+
γ(T + T 2/n)η2

n

)
E[FS(w)]

)
+O

(E[‖w‖22]

Tη
+
γη(1 + T/n)E[‖w‖22]

n

)
. (4.1)

A notable property of the above bound is that it holds for any w independent of A. If E[‖w∗S‖22] is
finite, we can choose w = w∗S in Eq. (4.1) and get a bound involving E[FS(w∗S)]. Furthermore,
if we are in an interpolation or overparameterized setting [45] then E[FS(w∗S)] = o(1/

√
n) and

the generalization will improve according to (4.1). Therefore, our stability analysis provides an
explanation on how interpolation/overparameterization can help in generalization. Note SGD has
an implicit bias to choose a model with a small norm and therefore it is reasonable to assume
E[‖w∗S‖22] <∞. We can also choose w = w∗ in Eq. (4.1) to get optimistic bounds in the sense of
involving F (w∗), which decay fast if F (w∗) is small [56, 60]. Indeed, the following corollary gives
the bound O(1/

√
n) in the general case and improves it to O(1/n) if F (w∗) = O(1/n). Note here

we use the assumption F (w∗) = O(1/n) just to show that we can get improved bound under low
noise conditions. The term F (w∗) should be independent of n.
Corollary 5. Let Assumptions in Theorem 4 hold.

(a) We can choose ηt = η � 1/
√
T and T � n to get E[F (w̄T )]− F (w∗) = O(1/

√
n).

(b) If F (w∗) = O(1/n), choosing ηt = η ≤ 2/L and T � n yields E[F (w̄T )]−F (w∗) = O(1/n).

Remark 3. Stability and excess risk bounds of the order O(1/
√
n) were studied for SGD applied

to pairwise learning [40, 55]. However, these discussions require the loss functions to be smooth,
Lipschitz continuous and convex. As a comparison, we remove the Lipschitz continuity assumption.
Furthermore, their discussion can only imply non-optimistic bounds of the order O(1/

√
n). As a

comparison, our discussions can fully exploit the property of F (w∗) to imply fast bounds O(1/n).

4.2 Convex and Nonsmooth Problems

We now turn to pairwise learning with convex and nonsmooth functions. Theorem 6 gives the
argument stability bounds based on which we develop excess risk bounds in Theorem 7. The proofs
of results in this subsection are given in Section F.
Theorem 6 (Stability bounds). Let Assumptions 1, 2 hold. Let S = {z1, . . . , zn} and S′ =
{z′1, . . . , z′n} be two datasets that differ by a single point. Let {wt}, {w′t} be the sequence pro-
duced by SGD (Algorithm 1) w.r.t. S and S′ with ηt = η, respectively. Then

E
[
‖wt+1 −w′t+1‖22

]
≤ 4G2et

(
1 + 4t/n2

)
η2. (4.2)

For any δ ∈ (0, 1) with probability at least 1− δ we have

‖wt+1 −w′t+1‖22 ≤ 4G2η2e
(
t+
(
2t/n+ log(1/δ) +

√
4tn−1 log(1/δ)

)2)
.

Theorem 7 (Excess risk bounds). Let Assumptions 1, 2 hold. Let {wt} be the sequence produced by
SGD with ηt = η � T− 3

4 . If T � n2, then E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

Remark 4. As compared to the stability bounds in the smooth case (Theorem 3), the stability bounds
in (4.2) are worse in the sense that we do not have a factor of 1/n in (4.2). Therefore, one needs
to choose very small stepsizes to let the right-hand side of (4.2) vanish to 0. Indeed, Theorem 7
suggests ηt � T−

3
4 , which are much smaller than the ηt � T−

1
2 in the smooth case. As a result, we
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require to run SGD with T � n2 to get the optimal excess risk bounds O(1/
√
n). Note we also give

high-probability bounds on the argument stability in Theorem 6. It should be mentioned that the
stability of a variant of SGD as wt+1 = wt − ηt

t−1
∑t−1
k=1∇f(wt; zit , zik) was recently studied for

pairwise learning with convex and nonsmooth loss functions [59]. Note this update requires O(t)
gradient computations at the t-th iteration, while (3.2) only requires a single gradient computation.

Algorithm 2: Iterative Localized Algorithm for Pairwise Learning

Input: initial point w0 = 0, parameter γ > 0, k = d 12 log2 ne
1 for i = 1, 2, . . . , k do
2 set Ti � ni = d n2i e, γi = γ

2i , ηt = γini
t+1 , t ∈ N,f̃(w; z, z′)=f(w; z, z′) + 1

γini
‖w−wi−1‖22

3 draw a sample Si of size ni independently from ρ

4 apply SGD(Si, Ti, f̃ , {ηt}) to minimize the following problem and get wi

F̃Si(w) :=
1

ni(ni − 1)

∑
z,z′∈Si:z 6=z′

f(w; z, z′) +
1

γini
‖w −wi−1‖22. (4.3)

5 end

Note SGD requires the undesirable O(n2) gradient computations to achieve the bound O(1/
√
n) for

nonsmooth problems. The following theorem shows one can also achieve the bound O(1/
√
n) with

O(n) gradient computations by considering Algorithm 2. Algorithm 2 is motivated from the iterative
localization approach established in pointwise learning [23], which was also used to develop efficient
differentially private algorithms [2, 35]. Note the choice γ � n− 1

2 ‖w∗‖2 depends on the unknown
‖w∗‖2. However, one can get the bound O(D/

√
n) by choosing γ � D/

√
n if ‖w∗‖2 ≤ D.

Theorem 8. Let Assumptions 1, 2 hold and δ ∈ (0, 1). Let wk be produced by Algorithm 2 and
assume supz,z′ |E[f(wi, z, z

′)]| ≤ B for some B > 0. If we choose γ � n−
1
2 ‖w∗‖2, then with

probability at least 1−δ we have F (wk)−F (w∗) = O(log(log n/δ)(log n)‖w∗‖2/
√
n). Moreover,

Algorithm 2 requires only O(n) gradient computations to achieve this excess risk bound.

Remark 5. Iterative localization approach was developed in [23, 35] to develop novel algorithms
withO(n) gradient computations andO(1/

√
n) excess risk bounds for nonsmooth pointwise learning

problems. We extend this technique to the pairwise learning setting. Furthermore, the excess risk
bounds in [23, 35] are stated in expectation. As a comparison, we use the novel high-probability
bounds for uniformly stable algorithms established in Theorem 2 to develop high-probability bounds
of the order (log2 n)/

√
n, which has not been developed even for pointwise learning (the best

high-probability excess risk bound for SGD with nonsmooth loss functions requires O(n2) gradient
computations [3]). Note that the sample size nk �

√
n in the k-th epoch, and therefore the high-

probability bounds in [40] can only yield bounds O(n
− 1

2

k ) = O(n−
1
4 ) for Algorithm 2. As a

comparison, Theorem 2 applied to the ERM of F̃Sk yields the bounds O(n−1k + γk) = O(n−
1
2 )

(ERM of F̃Sk is γk-uniformly stable and the last term of the bound in Theorem 2 is dominated). This
demonstrates the advantage of our new high-probability bounds in Theorem 2 for developing almost
optimal bounds with O(n) gradient computations. Another difference is that we apply iterative
localization framework with k = d 12 log2 ne instead of k′ = dlog2 ne epochs in [23, 35]. The
underlying reason is that the high-probability bounds for ERM of F̃Sk involve n−1k + γ−1k , while
the bounds in expectation only involve γ−1k [40]. Since nk′ � 1, our high-probability analysis only
implies vacuous bounds O(1) if we use k′ = dlog2 ne epochs.

4.3 Strongly Convex Problems

We now turn to strongly convex cases. Theorem 9 gives bounds for smooth problems, while Theorem
10 gives excess risk bounds for nonsmooth problems. Note Theorems 9 and 10 apply to any algorithm,
which give a general relationship between excess risks and optimization errors. One can plug the
optimization error bounds for any algorithm to immediately derive the corresponding excess risk
bounds. The proofs of results in this subsection are given in Section G.
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Theorem 9 (Strongly Convex and Smooth Problems). Let Assumption 3 hold. Assume for all S ∈ Zn,
FS is σ-strongly convex w.r.t. ‖ · ‖2. Let A be a randomized algorithm and σn ≥ 8L. Then

E[F (A(S))]− F (w∗) ≤ 128L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+

2L

σ
E
[
FS(A(S))− FS(w∗S)

]
.

Remark 6. The above bound involves two components. The first component O(1/(nσ)) depends
only on the landscape of the learning problem. The second component involves optimization errors. It
shows that optimization is always beneficial to improve generalization for strongly convex problems.
Furthermore, it also shows that one can stop the algorithm once we achieve the optimization error
boundsO(1/n) since further optimization would not improve essentially the generalization. Theorem
9 also implies bounds of the order o(1/(nσ)) if FS(w∗) is small.

Theorem 10 (Strongly Convex and Nonsmooth Problems). Assume f takes a structure as
f(w; z, z′) = `(w; z, z′) + r(w). Assume for all z, z′, the map w 7→ `(w; z, z′) is G-Lipschitz.
Assume for all S ∈ Zn, FS is σ-strongly convex w.r.t. ‖ · ‖2. For any algorithm A we have

E[F (A(S))]− F (w∗) ≤ 8G2

nσ
+G

√
2E
[
FS(A(S))− FS(w∗S)

]
σ

.

We present the specific applications of the above results to SGD in Corollary G.2 (Section G).

5 Pairwise Learning with Nonconvex Loss Functions

In this section, we consider excess risk bounds for pairwise learning in a nonconvex setting. In
this case, the excess population risk is not a reasonable measure since we cannot guarantee that the
algorithm can find a global minimizer. We therefore use the norm of gradients at A(S) to measure the
performance of A [26, 68]. In a general nonconvex setting, SGD requires to choose ηt = O(1/t) for
a meaningful stability bound [28], for which the optimization errors would decay logarithmically w.r.t
the number of iterations [26]. Then, stability analysis fails to trade-off the stability and optimization
for a model with good generalization performance in a general nonconvex problem. Therefore, we
turn to a different uniform convergence approach in a general nonconvex setting [38]. After that, we
study stability of SGD for nonconvex problems under a further PL condition.

5.1 Uniform Convergence of Gradients for Pairwise Learning

Our first result for nonconvex pairwise learning is a uniform convergence of gradients. Specifically,
we show that the uniform deviation between population gradients and empirical gradients over a space
can be bounded by the associated Rademacher chaos complexity. LetWR = {w ∈ W : ‖w‖2 ≤ R}
for R > 0. The proofs of results in this subsection are given in Section H.

Definition 4. Let F := {f : Z4 7→ R} be a function class and S = {zi}ni=1 ⊂ Z . Let {εi}
bn2 c
i=1

be independent Rademacher variables with Pr{εi = 1} = Pr{εi = −1} = 1/2. The empirical
Rademacher chaos complexity for F w.r.t. S is defined as

US(F) =
1

bn2 c
Eε
[

sup
f∈F

∑
1≤i<j≤bn2 c

εiεjf(zi, zi+bn2 c, zj , zj+b
n
2 c)
]
.

Theorem 11 (Uniform Convergence of Gradients). Let δ ∈ (0, 1), R > 0 and S = {z1, . . . , zn} be
drawn independently from ρ. If Assumption 3 holds, then with probability at least 1− δ we have

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥
2
≤

2
√

2(LR+ b′)
(
2 +

√
log(1/δ)

)
√
n

+ 4

√
US(FR)

n
,

where
FR =

{
(z1, z2, z3, z4) 7→ 〈∇f(w; z1, z2),∇f(w; z3, z4)〉 : w ∈ WR

}
.

We can apply the entropy integral to control the above Rademacher chaos complexity [16, 61], and
get the following result. Note d is the dimension of the spaceW .
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Corollary 12. Under Assumptions of Theorem 11, with probability at least 1− δ we have

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥
2
≤ 2
√

2(LR+ b′)√
n

(
2+
√

96e
(

log 2 + d log(3e)
)
+
√

log(1/δ)
)
.

The above uniform convergence rate involves a square-root dependency on d. We show that this
dependency can be avoided if we consider a special class of functions with a specific structure

f(w; z, z′) = ψ(〈w, φ(x, x′)〉, τ(y, y′)), (5.1)

where φ : X × X 7→ W is a feature map, ψ : R× R 7→ R is Lψ-smooth w.r.t. the first argument and
τ : Y × Y 7→ R. Loss functions of the structure (5.1) have wide applications in robust optimization
and generalized linear models [24, 46]. We assume κ = supx,x′∈X ‖φ(x, x′)‖2.

Corollary 13. Let δ ∈ (0, 1), R > 0 and S = {z1, . . . , zn} be examples drawn independently from
ρ. Suppose f :W ×Z2 7→ R takes the form (5.1) with ψ being Lψ-smooth w.r.t. the first argument.
Then the following inequality holds with probability at least 1− δ

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥
2
≤

4κ
(
2LψRκ+ b′

)
√
n

+

√
8
(
Lψκ2R+ b′

)2
log(1/δ)

n
.

Remark 7. Uniform convergence of gradients was studied for pointwise learning based on covering
numbers [46, 64] and Rademacher complexities [24]. We extend these results to the pairwise learning
setting. A key difference between pointwise learning and pairwise learning is that the empirical
gradients for pairwise learning can be no longer written as a summation of i.i.d. terms. Indeed, the
n(n− 1) terms in ∇FS(w) are correlated, which introduces difficulties in applying concentration
inequalities. We need to apply decoupling techniques in U-process to handle this correlation.

5.2 Smooth Problems

We now study the generalization performance of SGD for pairwise learning based on the uniform con-
vergence of gradients developed in the previous subsection. We first introduce necessary assumptions.
Since ηt is always small (a typical choice is ηt � 1/

√
T ), Eq. (5.2) is milder than a bounded gradient

assumption. Eq. (5.3) imposes a bounded variance assumption on stochastic gradients, which is a
standard assumption for the analysis of SGD [26, 36, 67].
Assumption 4. Assume the existence of G > 0 and σ1 > 0 such that

√
ηt‖∇f(wt; z, z

′)‖2 ≤ G,∀t ∈ N, z, z′ ∈ Z, (5.2)

Eit,jt
[
‖∇f(wt; zit , zjt)−∇FS(wt)‖22

]
≤ σ2

1 , ∀t ∈ N. (5.3)

Theorem 14 gives high-probability bounds on the norm of population gradients. Our basic idea is to
use the following error decomposition

‖∇F (wt)‖22 ≤ 2‖∇F (wt)−∇FS(wt)‖22 + 2‖∇FS(wt)‖22.
We refer to the first term on the right-hand side as the generalization error for nonconvex pairwise
learning, which can be bounded by the uniform convergence of gradients established in Theorem 11.
The second term is the optimization error and can be addressed by techniques in optimization theory.
The proof is given in Section I.
Theorem 14 (Smooth Problems). Let Assumptions 3 and 4 hold. Let {wt}t be the sequence produced
by (3.2) with ηt = η/

√
T and η ≤

√
T/(2L). Then for any δ ∈ (0, 1), we can choose T � nd−1 to

derive the following inequality with probability at least 1− δ

1

T

T∑
t=1

‖∇F (wt)‖22 = O
(
n−

1
2 log2(1/δ)

(
d+ log(1/δ)

) 1
2

)
. (5.4)

Furthermore, if f takes the specific structure (5.1) we can choose T � n to derive the following
inequality with probability at least 1− δ

1

T

T∑
t=1

‖∇F (wt)‖22 = O
(
n−

1
2 log

5
2 (1/δ)

)
. (5.5)
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Remark 8. It is clear that the bound in (5.4) is dimension-dependent, which is due to the use of the
uniform convergence approach. Eq. (5.5) further shows that this dependency on the dimension can be
avoided for problems of a specific structure. Note the optimization errors of SGD with T iterations
for nonconvex problems satisfy 1

T

∑T
t=1 ‖∇FS(wt)‖22 = O(T−

1
2 ) [26]. This is consistent with the

error bounds 1
T

∑T
t=1 ‖∇F (wt)‖22 = O

(
n−

1
2 log

5
2 (1/δ)

)
in (5.5) by noting T � n. Therefore, our

analysis shows that the extension from optimization to generalization comes for free.

5.3 Gradient Dominated Problems

We now study the stability and generalization of SGD for pairwise learning with gradient-dominated
objectives (or PL condition). PL condition is widely used in nonconvex learning [24, 33], and was
shown to hold true for deep (linear) and shallow neural networks [10]. Intuitively speaking, PL
condition means that the suboptimality measured by function values can be bounded by gradients.

Assumption 5 (Polyak-Lojasiewicz Condition). Denote F̂S = infw′∈W FS(w′). We assume FS
satisfies PL or gradient-dominated condition (in expectation) with parameter β > 0, i.e.,

ES
[
FS(w)− F̂S

]
≤ 1

2β
ES
[
‖∇FS(w)‖22

]
, ∀w ∈ W. (5.6)

Under the PL condition, we can get excess population risk bounds based on the stability analysis.
The proof of Theorem 15 is given in Section J.

Theorem 15 (Gradient Dominated Problems). Let Assumptions 2, 3, 5 hold. Assume |f(w; z, z′)| ≤
B for all w ∈ W, z, z′ ∈ Z . Let {wt}t be the sequence produced by (3.2) with ηt = 2t+1

2β(t+1)2 . Then

E
[
F (wT )

]
− F (w∗) = O

(T L
L+β

n

)
+O

(
1/(Tβ2)

)
. (5.7)

We can choose T � n
1+L/β
1+2L/β β−

2+2L/β
1+2L/β to get E

[
F (wT )

]
− F (w∗) = O

(
n−

1+L/β
1+2L/β β−

2L/β
1+2L/β

)
.

Remark 9. Note the above bounds depend on the condition number cond := L/β. If cond ≈ 1,
then we get E

[
F (wT )

]
− F (w∗) ≈ O

(
n−

2
3

)
. As cond increases, the bound increases to O(n−

1
2 ).

6 Conclusion

In this paper, we present a systematic study on the generalization performance for pairwise learning.
We develop novel high-probability bounds for uniformly stable algorithms, and apply them to develop
algorithms with optimal bounds with O(n) gradient computations for nonsmooth problems. We
conduct the stability analysis for various convex problems including smooth, nonsmooth and strongly
convex objectives, and get optimal excess population risk bounds of the order O(1/

√
n) for convex

problems and O(1/(nσ)) for σ-strongly convex problems, respectively. We conduct the uniform
convergence analysis for general nonconvex problems, which imply the bounds of the orderO(1/

√
n)

for population gradients. We further study the stability and generalization for nonconvex pairwise
learning with gradient dominated objectives. Our discussions can clarify the effect of interpolation
on generalization. In Section L we present preliminary experimental results to verify our stability
bounds.

It would be interesting to study the stability of SGD in a general nonconvex case for getting dimension-
independent bounds. It would also be very interesting to study other stochastic optimization methods
for pairwise learning, including variance reduction variants and momentum technique.
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A Table of Notations

We collect in Table A.1 the notations of performance measures used in this paper.

X input space Y output space Z sample space

S training dataset n sample size zi i-th training example

f(w; z, z′) loss function FS training risk F population risk

w∗S arg minw FS(w) w∗ arg minw F (w) A(S) output of algorithm A to S

L smoothness parameter G Lipschitz parameter σ strong convexity parameter

ηt step size T largest iteration number it randomly selected index

b supz,z′∈Z f(0; z, z′) b′ supz,z′∈Z ‖∇f(0; z, z′)‖2 ρ probability measure
Table A.1: Table of Notations.

B Proof of Theorem 1

In this section, we prove Theorem 1 on the connection between on-average stability and generalization
bounds, following the arguments in [15]. To this aim, we require the following lemma on the self-
bounding property of smooth loss functions.

Lemma B.1 ([20]). Assume for all z, z′, the function w 7→ f(w; z, z′) is nonnegative and L-smooth.
Then ‖∇f(w; z, z′)‖22 ≤ 2Lf(w; z, z′).

Proof of Theorem 1. Part (a) was established in [16]. We only consider Part (b). According to the
symmetry between zi, zj and z′i, z

′
j , we know

E[F (A(S))− FS(A(S))] =
1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
F (A(Si,j))− FS(A(S))

]
=

1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
f(A(Si,j); zi, zj)− f(A(S); zi, zj)

]
, (B.1)
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where we have used Ezi,zj
[
f(A(Si,j); zi, zj)

]
= F (A(Si,j)) since zi, zj are independent of A(Si,j).

By the L-smoothness of f , we know

f(A(Si,j); zi, zj)− f(A(S); zi, zj) ≤ 〈A(Si,j)−A(S),∇f(A(S); zi, zj)〉+
L

2
‖A(Si,j)−A(S)‖22

≤ ‖A(Si,j)−A(S)‖2‖∇f(A(S); zi, zj)‖2 +
L

2
‖A(Si,j)−A(S)‖22

≤ γ

2
‖A(Si,j)−A(S)‖22 +

1

2γ
‖∇f(A(S); zi, zj)‖22 +

L

2
‖A(Si,j)−A(S)‖22

≤ L+ γ

2
‖A(Si,j)−A(S)‖22 +

L

γ
f(A(S); zi, zj)

≤ (L+ γ)‖A(Si,j)−A(Si)‖22 + (L+ γ)‖A(Si)−A(S)‖22 +
L

γ
f(A(S); zi, zj),

where we have used Lemma B.1 in the last second inequality and the following inequality in the last
step

‖A(Si,j)−A(S)‖22 ≤ 2‖A(Si,j)−A(Si)‖22 + 2‖A(Si)−A(S)‖22.
Since E[‖A(Si,j)−A(Si)‖22] = E[‖A(Sj)−A(S)‖22], we know

E
[
f(A(Si,j); zi, zj)− f(A(S); zi, zj)

]
≤ (L+ γ)E[‖A(Si)−A(S)‖22

]
+ (L+ γ)E[‖A(Sj)−A(S)‖22

]
+
L

γ
E[f(A(S); zi, zj)].

We can plug the above inequality back into (B.1), and get

E[F (A(S))− FS(A(S))] ≤ 1

n(n− 1)

∑
i,j∈[n]:i6=j

(
2(L+ γ)E[‖A(Si)−A(S)‖22

]
+
L

γ
E[f(A(S); zi, zj)]

)

=
2(L+ γ)

n

n∑
i=1

E[‖A(Si)−A(S)‖22
]

+
L

γ
E[FS(A(S))].

The proof is complete.

C Proof of Theorem 2

In this section, we prove Theorem 2. To this aim, we first introduce some lemmas. The following
lemma provides moment bounds for a summation of weakly dependent and mean-zero random
functions with bounded increments under a change of any single coordinate [1, 10]. We denote by
S\{zi} the set {z1, . . . , zi−1, zi+1, . . . , zn}. The Lp-norm of a real-valued random variable Z is

denoted by ‖Z‖p :=
(
E[|Z|p]

) 1
p , p ≥ 1.

Lemma C.1 ([1]). Let S = {z1, . . . , zn} be a set of independent random variables each taking
values in Z and M ≥ 0. Let h1, . . . , hn be some functions hi : Zn 7→ R such that the following
holds for any i ∈ [n]

1.
∣∣ES\{zi}[hi(S)]

∣∣ ≤M almost surely (a.s.),

2. Ezi
[
hi(S)

]
= 0 a.s.,

3. for any j ∈ [n] with j 6= i, and z′′j ∈ Z∣∣hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∣∣ ≤ β. (C.1)

Then, for any p ≥ 2 ∥∥∥ n∑
i=1

hi(S)
∥∥∥
p
≤ 12

√
2pnβdlog2 ne+ 4M

√
pn.

The bounds on moments of random variables can be used to establish concentration inequalities, as
shown in the following lemma [1, 10].
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Lemma C.2. Let a, b ∈ R+ and δ ∈ (0, 1/e). Let Z be a random variable with ‖Z‖p ≤
√
pa+ pb

for any p ≥ 2. Then with probability at least 1− δ

|Z| ≤ e
(
a
√

log(e/δ) + b log(e/δ)
)
.

The following lemma relates F (A(S) − FS(A(S)) − E[F (A(S))] to ES′
[
f(A(S′); zi, zj)

]
. A

notable property is that A(S′) is independent of S and therefore can be considered as a fixed point,
which simplifies the application of concentration inequalities. Lemma C.3 is motivated by a recent
work in pointwise learning [10].
Lemma C.3. Let A be an ε-uniformly stable deterministic algorithm. Let S = {z1, . . . , zn}, S′ =
{z′1, . . . , z′n} be independent datasets. Then for any p ≥ 2 there holds∥∥∥F (A(S)−FS(A(S))−E[F (A(S))]+

1

n(n− 1)

∑
i 6=j

ES′
[
f(A(S′); zi, zj)

]∥∥∥
p
≤ 4ε+96

√
2pεdlog2 n/2e.

Proof. Let p ≥ 2 be any number. It was shown that [16]∣∣∣EZ,Z̃[f(A(S);Z, Z̃)
]
− 1

n(n− 1)

∑
i6=j

f(A(S); zi, zj)−
1

n(n− 1)

∑
i 6=j

gi,j(S)
∣∣∣ ≤ 4ε, (C.2)

where we introduce

gi,j(S) = Ez′i,z′j
[
EZ,Z̃

[
f(A(Si,j);Z, Z̃)

]
− f(A(Si,j); zi, zj)

]
, ∀i, j ∈ [n]

and Si,j is defined in Eq. (3.4). For any i 6= j ∈ [n], define

hi,j(S) := gi,j(S)− ES\{zi∪zj}gi,j(S),

from which and (C.2) we get the following inequality for any p ≥ 1∥∥∥F (A(S)− FS(A(S))− 1

n(n− 1)

∑
i 6=j

ES\{zi∪zj}gi,j(S)
∥∥∥
p
≤ 4ε+

1

n(n− 1)

∥∥∥∑
i 6=j

hi,j(S)
∥∥∥
p
.

(C.3)
We have the following representation of U-statistic [3]

1

n(n− 1)

∑
i 6=j

hi,j(S) =
1

n!

∑
π

1

bn2 c

bn2 c∑
i=1

hπ(i),π(i+bn2 c)(S),

where the sum is taken over all permutations π of {1, . . . , n}. It then follows from Jensen’s inequality
that

1

n(n− 1)

∥∥∑
i 6=j

hi,j(S)
∥∥
p
≤ 1

n!

∑
π

1

bn2 c

∥∥∥ bn2 c∑
i=1

hπ(i),π(i+bn2 c)(S)
∥∥∥
p

=
1

bn2 c

∥∥∥ bn2 c∑
i=1

hi,i+bn2 c(S)
∥∥∥
p
,

(C.4)
where the last identity is due to the symmetry of permutations (note ‖ · ‖p involves an expectation). It
is clear that

ES\{zi∪zi+bn
2
c}hi,i+bn2 c(S) = ES\{zi∪zi+bn

2
c}

[
gi,i+bn2 c(S)− ES\{zi∪zi+bn

2
c}gi,i+bn2 c(S)

]
= 0,

(C.5)
where ES\{zi∪zi+bn

2
c} denotes the expectation w.r.t. S\{zi ∪ zi+bn2 c}. Furthermore, there holds

Ezi∪zi+bn
2
c [gi,i+bn2 c(S)]

= Ezi∪zi+bn
2
cEz′i,z′i+bn

2
c

[
EZ,Z̃

[
f(A(Si,i+bn2 c);Z, Z̃)

]
− f(A(Si,i+bn2 c); zi, zi+b

n
2 c)
]

= 0.

(C.6)

For any k ∈ [bn2 c] with k 6= i and z′′k , z
′′
k+bn2 c

∈ Z , it is clear from the uniform stability of A that∣∣∣Ez′i,z′i+bn
2
c
EZ,Z̃

[
f(A(Si,i+bn2 c);Z, Z̃)

]
− Ez′i,z′i+bn

2
c
EZ,Z̃

[
f(A(S

(k,k+bn2 c)
i,i+bn2 c

);Z, Z̃)
]∣∣∣ ≤ 2ε,

3



where S(k,k+bn2 c)
i,i+bn2 c

is the set derived by replacing the k-th element of Si,i+bn2 c with z′′k and k+ bn2 c-th
element with z′′k+bn2 c

. In a similar way, one can show∣∣∣Ez′i,z′i+bn
2
c

[
f(A(Si,i+bn2 c); zi, zi+b

n
2 c)
]
− Ez′i,z′i+bn

2
c
[f(A(S

(k,k+bn2 c)
i,i+bn2 c

); zi, zi+bn2 c)
]∣∣∣ ≤ 2ε.

We can combine the above two inequalities together and get∣∣∣gi,i+bn2 c(S)− gi,i+bn2 c(S
(k,k+bn2 c))

∣∣∣ ≤ 4ε,

where S(k,k+bn2 c) is the set derived by replacing the k-th element of S with z′′k and k + bn2 c-th
element with z′′k+bn2 c

Similarly, one can show∣∣∣ES\{zi∪zi+bn
2
c}
[
gi,i+bn2 c(S)

]
− ES\{zi∪zi+bn

2
c}
[
gi,i+bn2 c(S

(k,k+bn2 c))
]∣∣∣ ≤ 4ε.

We can combine the above two inequalities together and get∣∣∣hi,i+bn2 c(S)− hi,i+bn2 c(S
(k,k+bn2 c))

∣∣∣ ≤ 8ε. (C.7)

According to (C.5), (C.6) and (C.7), we know that the conditions of Lemma C.1 hold with M =
0, n = bn2 c, β = 8ε, zi = zi ∪ zi+bn2 c and hi(S) = hi,i+bn2 c(S). Therefore, one can apply Lemma
C.1 to show that

1

bn2 c

∥∥∥ bn2 c∑
i=1

hi,i+bn2 c(S)
∥∥∥
p
≤ 96

√
2pεdlog2 n/2e.

We can plug the above inequality and (C.4) back into (C.3) and get the following inequality for any
p ≥ 2∥∥∥F (A(S)− FS(A(S))− 1

n(n− 1)

∑
i 6=j

ES\{zi∪zj}gi,j(S)
∥∥∥
p
≤ 4ε+ 96

√
2pεdlog2 n/2e. (C.8)

Furthermore, the symmetry between S and S′ implies (note ES′ [A(S′); zi, zj ] =
ES\{zi∪zj}Ez′i,z′j [f(A(Si,j); zi, zj)])

ES\{zi∪zj}[gi,j(S)] = ES\{zi∪zj}Ez′i,z′j
[
EZ,Z̃

[
f(A(Si,j);Z, Z̃)

]
− f(A(Si,j); zi, zj)

]
= E[F (A(S))]− ES′

[
f(A(S′); zi, zj)

]
.

The stated bound then follows by combining the above two inequalities together. The proof is
complete.

We require a Bernstein inequality for U-Statistic [3] (inequality A.1 on page 868) to prove Theorem
2.

Lemma C.4 (Bernstein inequality for U-Statistic). Let Z1, . . . , Zn be independent variables taking
values in Z and q : Z × Z 7→ R. Let B = supz,z̃ |q(z, z̃)| and σ2

0 be the variance of q(Z, Z̃). Then
for any δ ∈ (0, 1) with probability at least 1− δ∣∣∣ 1

n(n− 1)

∑
i,j∈[n]:i 6=j

q(Zi, Zj)− EZ,Z̃ [q(Z, Z̃)]
∣∣∣ ≤ 2B log(1/δ)

3bn/2c
+

√
2σ2

0 log(1/δ)

bn/2c
. (C.9)

Proof of Theorem 2. Let S = {z1, . . . , zn}, S′ = {z′1, . . . , z′n} be independent datasets. We have
the following error decomposition

F (A(S))− FS(A(S))− F (w∗) + FS(w∗) = ξ+

ES [F (A(S))]− F (w∗)− 1

n(n− 1)

∑
i6=j

ES′
[
f(A(S′); zi, zj)

]
+ FS(w∗),
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where

ξ = F (A(S)− FS(A(S))− ES [F (A(S))] +
1

n(n− 1)

∑
i6=j

ES′
[
f(A(S′); zi, zj)

]
.

Due to the symmetry between S and S′ we further get

F (A(S))−FS(A(S))−F (w∗)+FS(w∗) = ξ+ES′ [F (A(S′))]−F (w∗)−ES′ [FS(A(S′))]+FS(w∗)

and therefore

F (A(S))−FS(A(S))−F (w∗)+FS(w∗) = ξ+ES′
[
F (A(S′))−F (w∗)−FS(A(S′))+FS(w∗)

]
.

(C.10)
Note A(S′) is independent of S and can be considered as a fixed model if we only consider the
randomness induced from S. We now apply a concentration inequality to study the behavior of
ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)]. For any z, z′, define

q(z, z′) = ES′ [f(A(S′); z, z′)]− f(w∗; z, z′).

Then it is clear

ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)

]
= EZ,Z′ [q(Z,Z ′)]−

1

n(n− 1)

∑
i 6=j

q(zi, zj).

The variance of q can be bounded by

EZ,Z′ [q2(Z,Z ′)] ≤ EZ,Z′ES′
[(
f(A(S′);Z,Z ′)− f(w∗;Z,Z ′)

)2]
= EZ,Z′,S

[(
f(A(S);Z,Z ′)− f(w∗;Z,Z ′)

)2]
,

where we have used the symmetry between S and S′ as well as the Jensen’s inequality. We can apply
Lemma C.4 with the above q to show the following inequality with probability at least 1− δ/2

ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)

]
≤ 2B log(2/δ)

3bn/2c
+

√
2σ2

0 log(2/δ)

bn/2c
.

Furthermore, Lemma C.3 implies that ‖ξ‖p ≤ 2pε
(
1 + 48

√
2dlog2 n/2e

)
for any p ≥ 2, from which

and Lemma C.2 we derive the following inequality with probability at least 1− δ/2

ξ ≤ 2eε
(
1 + 48

√
2dlog2 n/2e

)
log(2e/δ).

We can combine the above two inequalities and Eq. (C.10) together and derive the stated inequality
with probability at least 1− δ. The proof is complete.

D Optimization Errors

The following lemma provides the optimization error bounds of SGD for convex, strongly convex and
nonconvex problems. The optimization error analysis of SGD (Algorithm 1) for pairwise learning
is the same as that for pointwise learning. The underlying reason is that both algorithms build
an unbiased estimator (stochastic gradient) of the true gradient, and perform the update along the
negative direction of the stochastic gradient. Part (a) is standard, see, e.g., [17]. Part (b) was given in
[15]. Part (c) can be found in [7, 12]. Part (d) was given in [14]. Part (e) can be found in [9].

Lemma D.1. Let {wt}t be produced by (3.2) and w ∈ W be independent of SGD.

(a) Let w(1)
t =

(∑t
j=1 ηjwj

)
/
∑t
j=1 ηj . If FS is convex and Assumption 2 holds, then for all t ∈ N

EA[FS(w
(1)
t )]− FS(w) ≤

G2
∑t
j=1 η

2
j + ‖w‖22

2
∑t
j=1 ηj

. (D.1)
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(b) Let Assumptions 1, 3 hold. If ηt ≤ 1/(2L) and is nonincreasing, then for all t ∈ N

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ (1/2 + Lη1)‖w‖22 + 2L

t∑
j=1

η2
jFS(w) (D.2)

and
t∑

j=1

η2
jEA[FS(wj)] ≤ η1‖w‖22 + 2

t∑
j=1

η2
jEA[FS(w)]. (D.3)

(c) Let FS be σ-strongly convex and ηt = 2/(σ(t+ 1)). Let w̄′t =
(∑t

j=1 jwj

)
/
∑t
j=1 j. If either

Assumption 3 or Assumption 2 holds, then

EA[FS(w̄′t)]− FS(w) = O
(
1/(tσ) + ‖w‖22/t2

)
. (D.4)

If Assumption 3 holds, then with probability at least 1− δ

FS(w̄′t)− FS(w) = O
(

log(1/δ)/(tσ)
)
. (D.5)

(d) Let Assumptions 3, 4 hold and ηj ≤ 1/(2L). For any δ ∈ (0, 1), the following inequality holds
with probability at least 1− δ

t∑
j=1

ηj‖∇FS(wj)‖22 = O
( t∑
j=1

η2
j + log(1/δ)

)
. (D.6)

Furthermore, the following inequality holds with probability at least 1− δ simultaneously for all
t = 1, . . . , T

‖wt+1‖2 = O
((

1 +

T∑
k=1

η2
k

) 1
2
(

1 +

t∑
k=1

ηk

) 1
2

log(1/δ)
)
. (D.7)

(e) Let Assumptions 3, 5 hold. If ηt = 2t+1
2β(t+1)2 , then

EA[FS(wt)]− inf
w

[FS(w)] = O
(
1/(tβ2)

)
. (D.8)

E Proofs on Smooth and Convex Problems

In this section, we present the proof related to stability and generalization for pairwise learning
with convex and smooth loss functions. The following lemma shows the gradient map w 7→
w − η∇f(w; z, z′) is nonexpansive, which is very useful to study the stability bounds.

Lemma E.1 ([6]). Assume for all z ∈ Z , the function w 7→ f(w; z, z′) is convex and L-smooth.
Then for all η ≤ 2/L and z, z′ ∈ Z there holds

‖w − η∇f(w; z, z′)−w′ + η∇f(w′; z, z′)‖2 ≤ ‖w −w′‖2.

Based on Lemma E.1, we can prove Theorem 3 on stability bounds.

Proof of Theorem 3. For any i ∈ [n], define Si as (3.3). Let {wt}, {w(i)
t } be produced by SGD

(Algorithm 1) w.r.t. S and Si , respectively. For any S and i ∈ [n], we denote

LS,i(w) =
∑

j∈[n]:j 6=i

(
f(w; zi, zj)+f(w; zj , zi)

)
, LSi,i(w) =

∑
j∈[n]:j 6=i

(
f(w; z′i, zj)+f(w; zj , z

′
i)
)
.

(E.1)
If it 6= i and jt 6= i, it follows from (3.2) that

‖wt+1 −w
(i)
t+1‖22 =

∥∥wt −w
(i)
t − ηt∇f(wt; zit , zjt) + ηt∇f(w

(i)
t ; zit , zjt)

∥∥2

2
≤ ‖wt −w

(i)
t ‖22,

6



where we have used Lemma E.1 in the last inequality. If it = i, it follows from (3.2) that

‖wt+1 −w
(i)
t+1‖22 =

∥∥wt −w
(i)
t − ηt∇f(wt; zi, zjt) + ηt∇f(w

(i)
t ; z′i, zjt)

∥∥2

2

≤ (1 + p)‖wt −w
(i)
t ‖22 + (1 + 1/p)η2

t ‖∇f(wt; zi, zjt)−∇f(w
(i)
t ; z′i, zjt)‖22

≤ (1 + p)‖wt −w
(i)
t ‖22 + 2(1 + 1/p)η2

t

(
‖∇f(wt; zi, zjt)‖22 + ‖∇f(w

(i)
t ; z′i, zjt)‖22

)
≤ (1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zi, zjt) + f(w

(i)
t ; z′i, zjt)

)
,

where we have used the elementary inequality

(a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2, ∀p > 0

and the self-bounding property (Lemma B.1). If jt = i, we can similarly show that

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zit , zi) + f(w

(i)
t ; zit , z

′
i)
)
.

Note the event it 6= i and jt 6= i happens with the probability (n−1)(n−2)
n(n−1) , and it = i, jt = j for

i 6= j happens with probability 1/(n(n− 1)). We can combine the above three cases together and
derive

Ekt [‖wt+1−w(i)
t+1‖22] ≤ (n− 1)(n− 2)

n(n− 1)
‖wt −w

(i)
t ‖22

+
1

n(n− 1)

∑
j∈[n]:j 6=i

(
(1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zi, zj) + f(w

(i)
t ; z′i, zj)

))
+

1

n(n− 1)

∑
j∈[n]:j 6=i

(
(1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zj , zi) + f(w

(i)
t ; zj , z

′
i)
))

=
(
1 + 2p/n

)
‖wt −w

(i)
t ‖22 +

4L(1 + 1/p)η2
t

n(n− 1)

(
LS,i(wt) + LSi,i(w

(i)
t )
)
,

where Ekt means the conditional expectation w.r.t. kt := (it, jt). It then follows that

1

n

n∑
i=1

Ekt [‖wt+1−w(i)
t+1‖22] ≤ 1

n

(
1+

2p

n

) n∑
i=1

‖wt−w(i)
t ‖22+

4L(1 + 1/p)η2
t

n2(n− 1)

n∑
i=1

(
LS,i(wt)+LSi,i(w

(i)
t )
)
.

We can take expectation over both sides and get

1

n

n∑
i=1

E[‖wt+1−w(i)
t+1‖22] ≤ 1

n

(
1+

2p

n

) n∑
i=1

E[‖wt−w(i)
t ‖22]+

8L(1 + 1/p)η2
t

n2(n− 1)

n∑
i=1

E
[
LS,i(wt)

]
,

where we have used the following identity due to the symmetry between zi and z′i

E[LSi,i(w
(i)
t )] = E

[
LS,i(wt)

]
.

According to the definition of LS,i we know
n∑
i=1

LS,i(w) =

n∑
i=1

∑
j∈[n]:j 6=i

(
f(w; zi, zj) + f(w; zj , zi)

)
= 2n(n− 1)FS(w).

We can combine the above two equations together and get

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 1

n

(
1 +

2p

n

) n∑
i=1

E[‖wt −w
(i)
t ‖22] +

16L(1 + 1/p)η2
t

n
E
[
FS(wt)

]
.

We can apply the above inequality recursively and get

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 16L(1 + 1/p)

n

t∑
j=1

(
1 +

2p

n

)t−j
η2
jE[FS(wj)].
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We can choose p = n/(2t) in the above inequality and note

(1 +
2p

n

)t−j
≤ (1 + 1/t)t ≤ e.

It then follows that

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 16L(1 + 2t/n)e

n

t∑
j=1

η2
jE[FS(wj)].

The proof is complete.

We now use the above stability bounds to prove generalization bounds in Theorem 4.

Proof of Theorem 4. We can plug the on-average argument stability bounds in Theorem 3 into
Theorem 1 with A(S) = wt and get

E[F (wt)] ≤
32L(L+ γ)(1 + 2t/n)e

n

t−1∑
j=1

η2
jE[FS(wj)] +

(
1 + L/γ

)
E[FS(wt)].

Multiplying both sides by ηt and taking a summation then gives

T∑
t=1

ηtE[F (wt)] ≤
(
1+L/γ

) T∑
t=1

ηtE[FS(wt)]+
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

ηt

t−1∑
j=1

η2
jE[FS(wj)].

It then follows that

T∑
t=1

ηtE[F (wt)− FS(w)] ≤
(
1 + L/γ

) T∑
t=1

ηtE[FS(wt)− FS(w)]+

L/γ

T∑
t=1

ηtE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

ηt

t−1∑
j=1

η2
jE[FS(wj)].

According to (D.3) and ηt = η, the above inequality implies further

T∑
t=1

ηE[F (wt)− FS(w)] ≤
(
1 + L/γ

) T∑
t=1

ηE[FS(wt)− FS(w)]+

L/γTηE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

η
(
ηE[‖w‖22] + 2tη2E[FS(w)]

)
.

We can plug (D.2) into the above inequality and get

T∑
t=1

ηE[F (wt)− FS(w)] ≤
(
1 + L/γ

)(
(1/2 + Lη)E[‖w‖22] + 2L

T∑
t=1

η2E[FS(w)]
)

+

L/γTηE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

η
(
ηE[‖w‖22] + 2tη2E[FS(w)]

)
.

It then follows from the Jensen’s inequality that

E[F (w̄T )]− E[FS(w)] = O
((
Tη
)−1(E[‖w‖22] + Tη2E[FS(w)]

))
+

E[FS(w)]

γ
+

O
(γ(1 + T/n)

n

(
ηE[‖w‖22] + Tη2E[FS(w)]

))
.

The stated bound then follows directly. The proof is complete.

Finally, we present the proof of Corollary 5.
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Proof of Corollary 5. We choose w = w∗ in Theorem 4 and get

E[F (w̄T )−FS(w∗)] = O
((
η+

1

γ
+
γ(T + T 2/n)η2

n

)
E[FS(w∗)]

)
+O

( 1

Tη
+
γη(1 + T/n)

n

)
.

(E.2)
Note E[FS(w∗)] = F (w∗).

We first prove Part (a). Since η � 1/
√
T and T � n, the inequality (E.2) becomes

E[F (w̄T )]− F (w∗) = O
(
T−

1
2 +

1

γ
+
γ

T
+
γ(1 + T/n)

n
√
T

)
.

We can choose γ =
√
n to get that E[F (w̄T )]− F (w∗) = O(1/

√
n).

We now turn to Part (b). In this case, the inequality (E.2) becomes

E[F (w̄T )]− F (w∗) = O
( 1

n
+

1

nγ
+
γ

n

)
.

We can choose γ = 1 to get E[F (w̄T )]− F (w∗) = O(1/n). The proof is complete.

F Proofs on Convex and Nonsmooth Problems

In this section, we present the proof related to stability and generalization for pairwise learning with
convex and nonsmooth loss functions. We first prove stability (Theorem 6) and excess risk bounds
(Theorem 7) for Algorithm 1. Then we move to excess risk bounds for Algorithm 2 (Theorem 8).

F.1 Proofs of Theorem 6 and Theorem 7

We need to introduce a concentration inequality [19] which is useful for developing high-probability
bounds.
Lemma F.1 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values
in {0, 1}. Let X =

∑t
j=1Xj and µ = E[X]. Then for any δ̃ > 0 with probability at least

1− exp
(
− µδ̃2/(2 + δ̃)

)
we have X ≤ (1 + δ̃)µ. Furthermore, for any δ ∈ (0, 1) with probability

at least 1− δ we have
X ≤ µ+ log(1/δ) +

√
2µ log(1/δ).

Proof of Theorem 6. Suppose S and S′ differ by the first example. If it 6= 1 and jt 6= 1, then

‖wt+1 −w′t+1‖22 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥2

2

=
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; zit , zjt)

∥∥2

2

= ‖wt −w′t‖22 − 〈wt −w′t, ηt∇f(wt; zit , zjt)− ηt∇f(w′t; zit , zjt)〉+ 4η2
tG

2

≤ ‖wt −w′t‖22 + 4η2
tG

2,

where we have used the fact 〈wt−w′t,∇f(wt; zit , zjt)−∇f(w′t; zit , zjt)〉 ≥ 0 due to the convexity
of f . Otherwise,

‖wt+1 −w′t+1‖22 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥2

2

≤ (1 + p)‖wt −w′t‖22 + (1 + 1/p)η2
t

∥∥∇f(wt; zit , zjt)−∇f(w′t; z
′
it , z

′
jt)
∥∥2

2

≤ (1 + p)‖wt −w′t‖22 + 4(1 + 1/p)η2
tG

2,

where we have used Assumption 2. Combining the above two cases, we derive

‖wt+1 −w′t+1‖22 ≤
(
1 + pI[it=1 or jt=1]

)
‖wt −w′t‖22 + 4G2η2

t

(
1 + p−1I[it=1 or jt=1]

)
(F.1)

=
(
1 + p

)I[it=1 or jt=1]‖wt −w′t‖22 + 4G2η2
t

(
1 + p−1I[it=1 or jt=1]

)
, (F.2)

where I[·] denotes the indicator function. Taking expectations over both sides of (F.1), we get

E
[
‖wt+1 −w′t+1‖22

]
≤
(
1 + 2p/n

)
E[‖wt −w′t‖22] + 4G2η2

t

(
1 + 2/(pn)

)
,

9



where we have used E[I[it=1 or jt=1]] ≤ 2/n. We apply the above inequality recursively and get

E
[
‖wt+1−w′t+1‖22

]
≤ 4G2

(
1+2/(pn)

) t∑
j=1

η2
j

(
1+2p/n

)t−j ≤ 4G2
(
1+2/(pn)

)
η2t
(
1+2p/n

)t
.

We can choose p = n/(2t) and use the standard inequality (1 + 1/t)t ≤ e to get

E
[
‖wt+1 −w′t+1‖22

]
≤ 4G2et

(
1 + 4t/n2

)
η2.

This proves the stability bound in expectation. We now turn to high-probability bounds. It follows
from (F.2) that

‖wt+1 −w′t+1‖22 ≤ 4G2
t∑

k=1

η2
k

(
1 + p−1I[ik=1 or jk=1]

) t∏
k′=k+1

(1 + p)I[ik′=1 or j
k′=1]

≤ 4G2η2
t∏

k=1

(1 + p)I[ik=1 or jk=1]

t∑
k=1

(
1 + p−1I[ik=1 or jk=1]

)
= 4G2η2(1 + p)

∑t
k=1 I[ik=1 or jk=1]

(
t+ p−1

t∑
k=1

I[ik=1 or jk=1]

)
.

We can apply Lemma F.1 with Xk = I[ik=1 or jk=1], µ ≤ 2t/n to get the following inequality with
probability at least 1− δ

t∑
k=1

I[ik=1 or jk=1] ≤ 2t/n+ log(1/δ) +
√

4tn−1 log(1/δ).

Therefore, with probability at least 1− δ there holds

‖wt+1 −w′t+1‖22 ≤

4G2η2(1 + p)2t/n+log(1/δ)+
√

4tn−1 log(1/δ)
(
t+ p−1

(
2t/n+ log(1/δ) +

√
4tn−1 log(1/δ)

))
.

We can choose
p =

1

2t/n+ log(1/δ) +
√

4tn−1 log(1/δ)

in the above inequality and derive the following inequality with probability at least 1−δ ((1+1/x)x ≤
e)

‖wt+1 −w′t+1‖22 ≤ 4G2η2e
(
t+
(
2t/n+ log(1/δ) +

√
4tn−1 log(1/δ)

)2)
.

The proof is complete.

We can use the above stability bounds to develop excess risk bounds in Theorem 7 for SGD with
nonsmooth problems.

Proof of Theorem 7. Let {wt}, {w′t} be defined in Theorem 6. According to (4.2) and Jensen’s
inequality, we know

E[‖wt+1 −w′t+1‖2] ≤ 2G
√

2et
(
1 + 2

√
t/n
)
η.

It then follows that SGD with t-iterations for nonsmooth problems is on-average loss ε-stable with

ε ≤ 4G2
√

2et
(
1 + 2

√
t/n
)
η.

This together with the relationship between on-average stability and generalization shows

E[F (wt)− FS(wt)] ≤ 4G2
√

2et
(
1 + 2

√
t/n
)
η.

We can take an average of the above inequalities to get

1

n

T∑
t=1

E[F (wt)− FS(wt)] ≤ 4G2
√

2eT
(
1 + 2

√
T/n

)
η.
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It then follows from (D.1) that

E[F (w̄T )]− F (w∗) = E[F (w̄T )− FS(w̄T )] + E
[
FS(w̄T )− FS(w∗)

]
≤ 4G2

√
2eT

(
1 + 2

√
T/n

)
η +

G2Tη2 + ‖w∗‖22
2Tη

,

where we have used the Jensen’s inequality and (D.1). The stated bound then follows from the choice
T � n2 and η = T−

3
4 . The proof is complete.

F.2 Proof of Theorem 8

We now turn to Theorem 8 on excess risk bounds of Algorithm 2 based on the iterative localization
technique [5, 11]. We need to introduce some definitions. For any i, let

ŵi = arg min
w

F̃Si(w). (F.3)

Note wi is derived by applying SGD with ηt = γini/(t+ 1) to minimize F̃Si(w), with the iterates
weighted according to Part (c) of Lemma D.1. We need the following lemmas.

Lemma F.2. Let Assumptions 1, 2 hold. For any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ/(2k): ‖ŵi −wi‖2 = O

(√
niγi log

1
2 (2k/δ)

)
.

Proof. It is clear that F̃Si is λi := 2/(γini)-strongly convex. According to (D.5), the following
inequality holds with probability at least 1− δ/(2k)

F̃Si(wi)− F̃Si(ŵi) = O(log(2k/δ)/(Tiλi)) = O(log(2k/δ)/(niλi)).

It then follows from the definition of ŵi and the strong convexity that

λi
2
‖ŵi −wi‖22 ≤ F̃Si(wi)− F̃Si(ŵi) = O

(
log(2k/δ)/(niλi)

)
(F.4)

and therefore
‖ŵi −wi‖22 = O

(
log(2k/δ)/(niλ

2
i )
)

= O
(
niγ

2
i log(2k/δ)

)
.

The proof is complete.

The following lemma establishes the uniform stability of pairwise learning with strongly convex
objectives.

Lemma F.3 ([16]). Suppose f : W × Z × Z 7→ R takes a structure f = ` + r, where ` :
W×Z ×Z 7→ R and r :W 7→ R. Assume for all z, z′, we have ‖∇`(w; z, z′)‖2 ≤ G. Suppose FS
is σ-strongly convex and define A as A(S) = arg minw∈W FS(w). Then A is 8G2

nσ -uniformly stable.

The following lemma establishes the excess risk bounds for the empirical risk minimizer defined in
(F.3).

Lemma F.4. Let Assumptions 1, 2 hold. Let ŵi be defined in (F.3). With probability at least
1− δ/(2k) the following inequality holds for any w ∈ W

F (ŵi)− F (w) = O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)

+
1

γini
‖w −wi−1‖22.

Proof. For any i, define

F̃i(w) = EZ,Z′
[
f(w;Z,Z ′)

]
+

1

γini
‖w −wi−1‖22

and w∗i = arg minw F̃i(w). Denote by A′i the deterministic algorithm outputting the minimizer
of F̃Si . Since F̃Si is λi = 2/(γini)-strongly convex and f is Lipschitz continuous, it follows
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from Lemma F.3 that A′i is 4G2γi-uniformly stable. Furthermore, we have the following bound on
variances

EZ,Z′,Si
[(
f(A′i(Si);Z,Z

′)− f(w∗i ;Z,Z
′)
)2] ≤ G2ESi

[
‖A′i(Si)−w∗i ‖22

]
≤ 2G2

λi
ESi
[
F̃i(A

′
i(Si))− F̃i(w∗i )

]
= G2γiniESi

[
F̃i(A

′
i(Si))− F̃i(w∗i )

]
.

It follows from the definition of ŵi and Theorem 2 (A = A′i, F = F̃i) that with probability at least
1− δ/(2k)

F̃i(ŵi)− F̃i(w∗i ) ≤ F̃i(ŵi)− F̃Si(ŵi)− F̃i(w∗i ) + F̃Si(w
∗
i ) =

O
(
γi log ni log(k/δ) + n−1

i log(k/δ) + n
− 1

2
i

(
γini log(k/δ)ESi

[
F̃i(A

′
i(Si))− F̃i(w∗i )

]) 1
2

)
.

(F.5)

On the other hand, the uniform stability of A′i and Part (a) of Theorem 1 implies that

ESi
[
F̃i(ŵi)− F̃Si(ŵi)

]
= O(γi).

It then follows that (note ESi [F̃Si(w∗i )] = F̃i(w
∗
i ) since w∗i is independent of Si)

ESi
[
F̃i(ŵi)− F̃i(w∗i )

]
= ESi

[
F̃i(ŵi)− F̃Si(w∗i )

]
≤ ESi

[
F̃i(ŵi)− F̃Si(ŵi)

]
= O(γi).

We can plug the above inequality back into (F.5) and get the following inequality with probability at
least 1− δ/(2k)

F̃i(ŵi)− F̃i(w) ≤ F̃i(ŵi)− F̃i(w∗i ) = O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)
.

Then the following inequality holds with probability at least 1− δ/(2k)

F (ŵi)− F (w) = F̃i(ŵi)− F̃i(w)− 1

γini
‖ŵi −wi−1‖22 +

1

γini
‖w −wi−1‖22

= O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)
− 1

γini
‖ŵi −wi−1‖22 +

1

γini
‖w −wi−1‖22.

The stated bound then follows directly. The proof is complete.

Based on the above lemmas, we are now ready to prove Theorem 8.

Proof of Theorem 8. Let ŵi be defined by (F.3). Let ŵ0 = w∗. We have the following error
decomposition

F (wk)− F (w∗) =

k∑
i=1

(
F (ŵi)− F (ŵi−1)

)
+ F (wk)− F (ŵk). (F.6)

According to Lemma F.2, we know the following inequality with probability at least 1− δ/(2k)

F (wk)− F (ŵk) ≤ G‖wk − ŵk‖2 = O(
√
nkγk log

1
2 (2k/δ)). (F.7)

Furthermore, we can apply Lemma F.4 with w = ŵi−1 for different i to get the following inequality
with probability 1− δ
k∑
i=1

(
F (ŵi)− F (ŵi−1)

)
=

k∑
i=1

(
O(γi log ni log(k/δ) + n−1

i log(k/δ)) +
‖ŵi−1 −wi−1‖22

γini

)
= O(γ1 log n1 + n−1

1 ) log(k/δ) +
‖ŵ0 −w0‖22

γ1n1
+

k∑
i=2

(
O(γi log ni + n−1

i ) log(k/δ) +
‖ŵi−1 −wi−1‖22

γini

)
= O(γ1 log n1 + n−1

1 ) log(k/δ) +
‖w∗‖22
γ1n1

+

k∑
i=2

O
(
γi log ni + n−1

i +
ni−1γ

2
i−1

γini

)
log(k/δ),
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where we have used Lemma F.2 in the last step. We can combine the above three inequalities together
and get the following inequality with probability at least 1− δ

F (wk)− F (w∗) = O(
√
nkγk log1/2(k/δ))

+O(γ1 log n1 + n−1
1 ) log(k/δ) +

‖w∗‖22
γ1n1

+

k∑
i=2

O
(
γi log ni + n−1

i +
ni−1γ

2
i−1

γini

)
log(k/δ)

= O
(√

nγ2−k−k/2 + γ log n+
1

γn
‖w∗‖22 +

k∑
i=2

(
2−iγ log n+ 2in−1 +

21−in22(1−i)γ2

2−iγ2−in

))
log(k/δ)

= O
(√

nγn−
3
4 + γ log n+

1

γn
‖w∗‖22 + n−

1
2 + γ

)
log(log n/δ),

where we have used 2k �
√
n and

k =
1

2
dlog2 ne, γi = γ/2i, ni = dn/2ie.

We can take γ � n−
1
2 ‖w∗‖2 to get F (wk) − F (w∗) = O(log(log n/δ) log n‖w∗‖/

√
n) with

probability at least 1− δ.

Furthermore, it is clear that the total number of gradient computations is of the order of

k∑
i=1

Ti �
k∑
i=1

n/2i � n.

The proof is complete.

G Proofs on Strongly Convex Problems

In this section, we present the proofs related to excess risk bounds for pairwise learning with strongly
convex objectives (Theorem 9 and Theorem 10). We first prove generalization bounds for smooth
problems. To this aim, we introduce a lemma.

Lemma G.1 ([16]). Assume for all S ∈ Zn, FS is σ-strongly convex w.r.t. ‖ · ‖. Let A(S) =
arg minw∈W FS(w) and Assumption 3 hold. If σn ≥ 8L, then

E
[
F (A(S))

]
− FS(A(S)) ≤

(1024L2

n2σ2
+

64L

nσ

)
E
[
FS(A(S))

]
. (G.1)

Proof of Theorem 9. According to (G.1), we know the following generalization bound for ERM
applied to strongly convex and smooth problems

E[F (w∗S)− FS(w∗S)] ≤ 64L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
. (G.2)

The L-smoothness of f implies the L-smoothness of F , which implies

F (A(S))− F (w∗S) ≤ 〈A(S)−w∗S ,∇F (w∗S)〉+
L

2
‖A(S)−w∗S‖22

≤ ‖A(S)−w∗S‖2‖∇F (w∗S)‖2 +
L

2
‖A(S)−w∗S‖22

≤ 1

2L
‖∇F (w∗S)‖22 + L‖A(S)−w∗S‖22,

where we have used the Cauchy-Schwartz inequality in the last step. According to Lemma B.1 and
the inequality FS(w∗S) ≤ FS(w∗), we know

E
[
‖∇F (w∗S)‖22

]
= E

[
‖∇F (w∗S)−∇F (w∗)‖22

]
≤ 2LE[F (w∗S)− F (w∗)] = 2LE[F (w∗S)− FS(w∗)]

≤ 2LE[F (w∗S)− FS(w∗S)] ≤ 128L2
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
,
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where we have used (G.2). Furthermore, the σ-strong convexity of FS implies

‖A(S)−w∗S‖22 ≤
2

σ

(
FS(A(S))− FS(w∗S)

)
.

We can combine the above three inequalities together and derive

E[F (A(S))− F (w∗S)] ≤ 64L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+

2L

σ
E
[
FS(A(S))− FS(w∗S)

]
.

We can combine the above inequality and (G.2) together and get

E[F (A(S))− FS(w∗S)] = E[F (A(S))− F (w∗S)] + E[F (w∗S)− FS(w∗S)] (G.3)

≤ 128L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+

2L

σ
E
[
FS(A(S))− FS(w∗S)

]
.

The stated bound then follows since

E[FS(w∗S)] ≤ E[FS(w∗)] = F (w∗). (G.4)

The proof is complete.

We now turn to Theorem 10 on nonsmooth problems.

Proof of Theorem 10. According to Lemma F.3 and Part (a) of Theorem 1, we know the following
generalization bound for ERM applied to strongly convex and Lipschitz continuous problems

E[F (w∗S)− FS(w∗S)] ≤ 8G2

nσ
.

The Lipschitz continuity of f implies the Lipschitz continuity of F . Therefore, it follows from the
strong convexity of FS that

F (A(S))− F (w∗S) ≤ G‖A(S)−w∗S‖2 ≤ G

√
2
(
FS(A(S))− FS(w∗S)

)
σ

.

We can combine the above two inequalities together and use (G.3) to derive

E[F (A(S))− FS(w∗S)] ≤ 8G2

nσ
+G

√
2E
[
FS(A(S)− FS(w∗S))

]
σ

.

The stated bound then follows from (G.4). The proof is complete.

We now consider the application to the specific SGD. It shows how we should early-stop the algorithm
to get the optimal bound O(1/(nσ)). Part (a) and Part (b) are for smooth and nonsmooth cases,
respectively.

Corollary G.2 (SGD). Let {wt} be the sequence produced by SGD with ηt = 2/(σ(t+ 1)). Let FS
be σ-strongly convex and w̄′t =

(∑t
j=1 jwj

)
/
∑t
j=1 j.

(a) If Assumption 3 holds and σn ≥ 8L, then

E[F (w̄′T )− F (w∗)] = O
(E[FS(w∗S)

]
nσ

+ 1/(Tσ2) + E[‖w∗S‖22]/(T 2σ)
)
. (G.5)

In particular, one can choose T � n/σ to get the excess population risk bound O(1/(nσ)).

(b) If Assumption 2 holds, then

E[F (A(S))− FS(w∗S)] =
8G2

nσ
+O

(√1/(Tσ) + E[‖w∗S‖22]/T 2

σ

)
. (G.6)

In particular, one can choose T � n2 to get the excess population risk bound O(1/(nσ)).
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Proof. According to Eq. (D.4), we know
EA[FS(w̄′T )]− FS(w∗S) = O

(
1/(Tσ) + ‖w∗S‖22/T 2

)
. (G.7)

We first prove Part (a). We can plug the above optimization error bounds into Theorem 9 and derive

E[F (w̄′T )− F (w∗)] = 128L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+O

(
1/(Tσ2) + E[‖w∗S‖22]/(T 2σ)

)
.

This gives (G.5).

We now consider Part (b). We plug (G.7) into Theorem 10 and derive

E[F (A(S))− FS(w∗S)] ≤ 8G2

nσ
+O

(√1/(Tσ) + E[‖w∗S‖22]/T 2

σ

)
.

This gives (G.6). The proof is complete.

H Proofs on Uniform Convergence of Gradients for Pairwise Learning

In this section, we present the proofs on the uniform convergence of gradients (Theorem 11, Corollary
12 and Corollary 13).

H.1 Proof of Theorem 11

To prove Theorem 11, we first introduce a useful lemma called the McDiarmid’s inequality [19] for
handling the concentration of functions with bounded increments.
Lemma H.1. Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be independent random variables taking values
in a set Z , and assume that g : Zn 7→ R satisfies

sup
z1,...,zn,z̄i∈Z

|g(z1, · · · , zn)− g(· · · , zi−1, z̄i, zi+1, · · · )| ≤ ci (H.1)

for i = 1, . . . , n. Then, for any 0 < δ < 1, with probability at least 1− δ we have

g(Z1, . . . , Zn) ≤ E
[
g(Z1, . . . , Zn)

]
+
(1

2

n∑
i=1

c2i log(1/δ)
) 1

2

.

The following lemma gives a high-probability bound on the uniform deviation between population
gradients and empirical gradients.
Lemma H.2. Let δ ∈ (0, 1) and S = {z1, . . . , zn} be examples drawn independently from ρ.
Suppose Assumption 3 holds. Then with probability at least 1− δ we have

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤ 2

bn2 c
ESEε sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

+

√
8
(
LR+ b′

)2
log(1/δ)

n
,

where εi are independent Rademacher variables.

Proof. By the L-Lipschitz continuity of∇f , the following inequality holds for all w ∈ WR

‖∇f(w; zi, zj)‖2 ≤ ‖∇f(0; zi, zj)‖2 + L‖w‖2 ≤ LR+ b′. (H.2)
Let S′ = {z′1, . . . , z′n} be independent examples drawn independently from ρ and Si =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. Then, we have∣∣∣ sup

w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
− sup

w∈WR

∥∥∇F (w)−∇FSi(w)
∥∥

2

∣∣∣
≤ sup

w∈WR

∣∣∣∥∥∇F (w)−∇FS(w)
∥∥

2
−
∥∥∇F (w)−∇FSi(w)

∥∥
2

∣∣∣ ≤ sup
w∈WR

∥∥∇FS(w)−∇FSi(w)
∥∥

2

=
1

n(n− 1)
sup

w∈WR

∥∥∥ ∑
j∈[n]:j 6=i

(
∇f(w; zi, zj) + f(w; zj , zi)−∇f(w; z′i, zj)−∇f(w; zj , z

′
i)
)∥∥∥

≤ 4(n− 1)

n(n− 1)

(
LR+ b′

)
=

4(LR+ b′)

n
,
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where we have used (H.2) for all w ∈ WR. Therefore, (H.1) holds with
g(z1, . . . , zn) := sup

w∈WR

[
‖∇F (w)−∇FS(w)‖2

]
and ci = 4(LR+ b′)/n. We can apply Lemma H.1 to derive the following inequality with probability
1− δ

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤ ES

[
sup

w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2

]
+

√
8
(
LR+ b′

)2
log(1/δ)

n
.

(H.3)
For any w ∈ WR, define qw : Z × Z 7→ R as

qw(z, z′) = EZ,Z′
[
∇f(w;Z,Z ′)

]
−∇f(w; z, z′).

Then it is clear that

∇F (w)−∇FS(w) =
1

n(n− 1)

∑
i,j∈[n]:i6=j

qw(zi, zj).

Analogous to Eq. (C.4), we have

ES
[

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2

]
≤ ES

[
sup

w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

qw
(
zi, zi+bn2 c

)∥∥∥
2

]
.

By the standard symmetrization trick, we get

ES
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

(
EZ,Z′

[
∇f(w;Z,Z ′)

]
−∇f(w; zi, zi+bn2 c)

)∥∥∥
2

]

= ES
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

ES′
[
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
]∥∥∥

2

]

≤ ES,S′
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

(
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
)∥∥∥

2

]

=
1

bn2 c
ES,S′,ε

[
sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi
(
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
)∥∥∥

2

]

≤ 2

bn2 c
ESEε sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2
.

We can plug the above two inequalities back into (H.3) to derive the stated inequality with probability
1− δ. The proof is complete.

We now use Lemma H.2 to prove Theorem 11.

Proof of Theorem 11. According to Jensen’s inequality, we know(
Eε sup

w∈WR

[∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

])2

≤ Eε
[

sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥2

2

]

= Eε
[

sup
w∈WR

〈 bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c),

n∑
i=1

εi∇f(w; zi, zi+bn2 c)
〉]

≤ sup
w∈WR

bn2 c∑
i=1

〈
∇f(w; zi, zi+bn2 c),∇f(w; zi, zi+bn2 c)

〉
+ 2Eε

[
sup

w∈WR

∑
1≤i<j≤bn2 c

εiεj
〈
∇f(w; zi, zi+bn2 c),∇f(w; zj , zj+bn2 c)

〉]
≤ bn

2
c(LR+ b′)2 + nUS(FR), (H.4)
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where we have used (H.2) and the definition of Rademacher chaos complexities. It then follows that

Eε sup
w∈WR

[∥∥∥ n∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

]
≤
√
bn

2
c(LR+ b′) +

√
nUS(FR).

We can plug the above bound into Lemma H.2 to derive the stated bound with high probability.

H.2 Proof of Corollary 12

To prove Corollary 12, it suffices to estimate the involved Rademacher chaos complexity [13, 21].
We handle this term by applying the entropy integral (Lemma H.3) in terms of covering numbers.
Definition 1 (Covering number). Let (G, d) be a metric space and set F ⊆ G. For any ε > 0, a set
F4 ⊂ F is called an ε-cover of F if for every f ∈ F we can find an element g ∈ F4 satisfying
d(f, g) ≤ ε. The covering number N (ε,F , d) is the cardinality of the minimal ε-cover of F :

N (ε,F , d) := min
{
|F4| : F4 is an ε-cover of F

}
.

Lemma H.3 ([21]). Let F : Z̃ × Z̃ 7→ R be a function class with supf∈F dS(f, 0) ≤ D and
S = {z̃1, . . . , z̃n} ⊂ Z̃ , where dS is a pseudometric on F defined as follows

dS(f, g) :=
( 1

n2

∑
1≤i<j≤n

|f(z̃i, z̃j)− g(z̃i, z̃j)|2
)1/2

. (H.5)

Then
1

n
Eε
[

sup
f∈F

∑
1≤i<j≤n

εiεjf(z̃i, z̃j)
]
≤ 24e

∫ D

0

log
(
N (r,F , dS) + 1

)
dr.

Proof of Corollary 12. For any i ∈ [bn2 c], we define z̃i = (zi, zi+bn2 c) and f̃(w; z̃i) =

f(w; zi, zi+bn2 c). Then the Rademacher chaos complexity Un(FR) can be written as

US̃(FR) =
1

bn2 c
Eε
[

sup
w∈WR

∑
1≤i<j≤bn2 c

εiεj
〈
∇f̃(w; z̃i),∇f̃(w; z̃j)

〉]
, (H.6)

where S̃ = {z̃1, . . . , z̃bn2 c}. We define a metric dS̃ over FR by

dS̃(w,w′) =
( 1

bn2 c2
∑

1≤i<j≤bn2 c

∣∣〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉
∣∣2)1/2

.

For any w and w′ inWR, there holds

bn
2
c2d2

S̃
(w,w′) =

∑
1≤i<j≤bn2 c

∣∣〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉
∣∣2

≤ 2
∑

1≤i<j≤bn2 c

〈
∇f̃(w; z̃i)−∇f̃(w′; z̃i),∇f̃(w; z̃j)

〉2
+ 2

∑
1≤i<j≤bn2 c

〈
∇f̃(w′; z̃i),∇f̃(w; z̃j)−∇f̃(w′; z̃j)

〉2
≤ 2

∑
1≤i<j≤bn2 c

∥∥∇f̃(w; z̃i)−∇f̃(w′; z̃i)
∥∥2

2

∥∥∇f̃(w; z̃j)
∥∥2

2
+ 2

∑
1≤i<j≤bn2 c

∥∥∇f̃(w′; z̃i)‖22‖∇f̃(w; z̃j)−∇f̃(w′; z̃j)
∥∥2

2

≤ 2L2
∑

1≤i<j≤bn2 c

[∥∥∇f̃(w; z̃j)
∥∥2

2
+ ‖∇f̃(w′; z̃i)‖22

]
‖w −w′‖22

≤ L2(LR+ b′)2n(n− 1)‖w −w′‖22, (H.7)

where we have used the elementary inequality (a1 + a2)2 ≤ 2(a2
1 + a2

2) and the decomposition

〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉 =

〈∇f̃(w; z̃i)−∇f̃(w′; z̃i),∇f̃(w; z̃j)〉+ 〈∇f̃(w′; z̃i),∇f̃(w; z̃j)−∇f̃(w′; z̃j)〉
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in the first inequality, the L-smoothness of f in the third inequality and (H.2) in the last inequality. It
then follows that

logN (r,FR, dS̃) ≤ logN
(
r/
(
2L(LR+ b′)

)
,WR, d2

)
≤ d log

(
6LR(LR+ b′)r−1

)
,

where we have used the classical result logN (r,WR, d2) ≤ d log(3R/r) [18] and d2 is the metric
overWR defined by d2(w, w̃) = ‖w−w̃‖2. Furthermore, (H.7) also implies dS̃(w, 0) ≤ 2LR(LR+
b′) for w ∈ WR. We can now apply Lemma H.3 to show that

US̃(FR) ≤ 24e

∫ 2(LR+b′)LR

0

log
(
1 +N (r,FR, dS̃)

)
dr

≤ 24e

∫ 2(LR+b′)LR

0

(
log 2 + d log

(
6LR(LR+ b′)r−1

))
dr

≤ 48e(LR+ b′)LR
(

log 2 + d log(3e)
)
,

where we have used∫ 2(LR+b′)LR

0

log
(

6LR(LR+ b′)r−1
)

dr = 2LR(LR+ b′)

∫ 1

0

log(3/r)dr = 2LR(LR+ b′) log(3e).

The stated bound then follows by plugging the above bound on Rademacher chaos complexities into
Theorem 11. The proof is complete.

H.3 Proof of Corollary 13

Our scheme to prove Corollary 13 is to directly control the term
∥∥∥∑bn2 ci=1 εi∇f(w; zi, zi+bn2 c)

∥∥∥
2

in
Lemma H.2. In more details, we show this term is related to two Gaussian processes which are more
easy to handle. Our analysis requires the following classical lemma on comparison between two
Gaussian processes (Slepian’s lemma).

Lemma H.4. Let {Xθ : θ ∈ Θ} and {Yθ : θ ∈ Θ} be two mean-zero separable Gaussian processes
indexed by the same set Θ and suppose that

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2], ∀θ, θ̄ ∈ Θ. (H.8)

Then E[supθ∈Θ Xθ] ≤ E[supθ∈Θ Yθ].

Lemma H.5. Suppose f :W ×Z2 7→ R takes the form (5.1). Then

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zj)
∥∥∥

2
≤
√

2
(
2LψRκ+ b′

)( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Proof. By the structure of f , we know

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

= Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εiψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
φ(xi, xi+bn2 c)

∥∥∥
2

= Eε sup
w∈WR,v∈W1

〈 bn2 c∑
i=1

εiψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
φ(xi, xi+bn2 c),v

〉

≤ Eg sup
w∈WR,v∈W1

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉, (H.9)
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where ψ′ denotes the derivative of ψ w.r.t. the first argument, g1, . . . , gn are independent N(0, 1)
random variables. Note the last step follows from the following inequality on Rademacher and
Gaussian complexities

Eε sup
f

bn2 c∑
i=1

εif(zi) ≤ Eg sup
f

bn2 c∑
i=1

gif(zi).

Define two mean-zero separable Gaussian processes indexed byWR ×W1

Xw,v =

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉

Yw,v =
√

2κ

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
+
√

2
(
b′ + LψRκ

) bn2 c∑
i=1

g̃i〈φ(xi, xi+bn2 c),v〉,

where g̃1, . . . , g̃n are independent N(0, 1) random variables. For any w,w′ ∈ WR and v,v′ ∈ W1,
it follows from the independence among gi and Eg2

i = 1,∀i = 1, . . . , n that

Eg
[(
Xw,v − Xw′,v′

)2]
=

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉

− ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v

′〉
)2

≤ 2

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
− ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2(
〈φ(xi, xi+bn2 c),v〉

)2
+ 2

bn2 c∑
i=1

(
ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)2

≤ 2κ2

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
− ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2

+ 2
(
b′ + LψRκ

)2 bn2 c∑
i=1

(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)2

= Eg
[(
Yw,v −Yw′,v′

)2]
,

where we have used (a+ b)2 ≤ 2a2 + 2b2, the decomposition

ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉−ψ

′(〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)
)
〈φ(xi, xi+bn2 c),v

′〉

=
(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
−ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))
〈φ(xi, xi+bn2 c),v〉

+ ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)

and the following inequality due to the Lψ-smoothness of φ∣∣ψ′(〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)
)∣∣ ≤ b′ + Lψ|〈w′, φ(xi, xi+bn2 c)〉 − 0| ≤ b′ + LψRκ.

Therefore, we can apply Lemma H.4 to show

Eg sup
w∈WR,v∈W1

Xw,v ≤ Eg sup
w∈WR,v∈W1

Yw,v

≤
√

2κEg sup
w∈WR

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
+
√

2
(
b′ + LψRκ

)
Eg sup

v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉

≤
√

2LψκEg sup
w∈WR

bn2 c∑
i=1

gi〈w, φ(xi, xi+bn2 c)〉+
√

2
(
b′ + LψRκ

)
Eg sup

v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉,
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where we have used the Lψ-Lipschitz continuity of ψ′ and the contraction lemma of Gaussian
complexities in the last step. Furthermore, it follows from the Jensen’s inequality that

Eg sup
w∈WR

bn2 c∑
i=1

gi〈w, φ(xi, xi+bn2 c)〉 = Eg sup
w∈WR

〈
w,

bn2 c∑
i=1

giφ(xi, xi+bn2 c)
〉

≤ REg
∥∥∥ bn2 c∑
i=1

giφ(xi, xi+bn2 c)
∥∥∥

2
≤ R

√√√√Eg
[〈 bn2 c∑

i=1

giφ(xi, xi+bn2 c),

bn2 c∑
i=1

giφ(xi, xi+bn2 c)
〉]

= R
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

In a similar way, we can show

Eg sup
v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉 ≤
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Therefore,

Eg sup
w∈WR,v∈W1

Xw,v ≤
(
2LψRκ+ b′

)√
2
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Plugging the above inequality into (H.9) then gives the stated bound. The proof is complete.

We now apply Lemma H.5 to prove Corollary 13.

Proof of Corollary 13. By Lemma H.5 and the definition of κ, we know

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zj)
∥∥∥

2
≤
√
nκ
(
2LψRκ+ b′

)
. (H.10)

According to the Lψ-smoothness of ψ, the function f is (Lψκ
2)-smooth∥∥∇f(w; z, z′)−∇f(w̃; z, z′)

∥∥
2

=
∣∣ψ′(〈w, φ(x, x′)〉, τ(y, y′))− ψ′(〈w̃, φ(x, x′)〉, τ(y, y′))

∣∣‖φ(x, x′)‖2
≤ Lψ|〈w − w̃, φ(x, x′)〉|‖φ(x, x′)‖2 ≤ Lψκ2‖w − w̃‖2.

Therefore, Lemma H.2 holds with L = Lψκ
2. We can plug (H.10) into Lemma H.2 and get the

stated bound. The proof is complete.

I Proofs on Nonconvex Problems

In this section, we apply the uniform convergence of gradients to prove Theorem 14.

Proof of Theorem 14. By the elementary inequality (a+ b)2 ≤ 2(a2 + b2) and (D.6), we derive the
following inequality with probability 1− δ/3

T∑
t=1

ηt‖∇F (wt)‖22 =

T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt) +∇FS(wt)

∥∥2

2

≤ 2

T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt)

∥∥2

2
+ 2

T∑
t=1

ηt
∥∥∇FS(wt)

∥∥2

2

≤ 2

T∑
t=1

ηt max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

( T∑
t=1

η2
t + log(1/δ)

)
.
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It then follows that

1

T

T∑
t=1

‖∇F (wt)‖22 ≤ 2 max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O(1)

( T∑
t=1

ηt

)−1( T∑
t=1

η2
t + log(1/δ)

)
= 2 max

t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

(
T−

1
2 log(1/δ)

)
. (I.1)

According to (D.7), with probability 1 − δ/3 we have the following inequality uniformly for all
t = 1, . . . , T

‖wt‖2 ≤ RT := O
(
T

1
4 log(1/δ)

)
. (I.2)

According to Corollary 12, the following inequality holds with probability 1 − δ/3 (we assume
RT ≥ 1)

sup
w∈WRT

‖∇F (w)−∇FS(w)‖2 = O
(
RT
√
d+ log(1/δ)n−

1
2

)
. (I.3)

Combining (I.1), (I.2) and (I.3) together, with probability 1− δ we derive the following inequality

1

T

T∑
t=1

‖∇F (wt)‖22 = 2 max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

(
T−

1
2 log(1/δ)

)
= O

(
R2
T

(
d+ log(1/δ)

)
n−1

)
+O

(
T−

1
2 log(1/δ)

)
= O

(√
T log2(1/δ)

(
d+ log(1/δ)

)
n−1

)
+O

(
T−

1
2 log(1/δ)

)
.

Therefore, we can choose T � nd−1 to derive the following inequality with probability 1− δ

1

T

T∑
t=1

‖∇F (wt)‖22 = O
(
n−

1
2 log2(1/δ)

(
d+ log(1/δ)

) 1
2

)
.

This gives the bound (5.4).

The proof of (5.5) is the same except using the uniform convergence of gradients established in
Corollary 13 instead of Corollary 12. We omit the proof for simplicity. The proof is complete.

J Proofs on Gradient Dominated Problems

In this section, we prove Theorem 15 on excess risk bounds for learning with gradient dominated
problems. The following lemma is a simple extension of a similar result in [6].
Lemma J.1. Assume for all z, z′, the function w 7→ f(w; z, z′) is nonnegative and G-Lipschitz.
Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be two datasets that differ by the first point. Let
{wt}, {w′t} be the sequence produced by SGD (Algorithm 1) w.r.t. S and S′, respectively. Then for
every z, z′ ∈ Z and every t0 ∈ [n] we have

E
[
|f(wT ; z, z′)−f(w′T ; z, z′)|

]
≤ 2Bt0

n
sup

w;z,z′
f(w; z, z′)+GE

[
‖wT−w′T ‖|1 6∈ It0(A)

]
Pr{1 6∈ It0(A)},

where It(A) := {i1, j1, . . . , it, jt} is the set of indices selected by A in the first t iterations.

Proof. According to the law of total expectation, we know

E
[
|f(wT ; z, z′)−f(w′T ; z, z′)|

]
= E

[
|f(wT ; z, z′)−f(w′T ; z, z′)||1 ∈ It0(A)

]
Pr{1 ∈ It0(A)}

+ E
[
|f(wT ; z, z′)− f(w′T ; z, z′)||1 6∈ It0(A)

]
Pr{1 6∈ It0(A)}.

According to the update rule, we know

Pr{1 ∈ It0(A)} ≤
t0∑
t=1

Pr{it = 1 or jt = 1} =

t0∑
t=1

2(n− 1)

n(n− 1)
=

2t0
n
.

The stated bound then follows from the Lipschitz continuity of f . The proof is complete.
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We follow the arguments in [6] to prove Theorem 15.

Proof of Theorem 15. We first give the stability bounds. Suppose S and S′ differ by the first example.
If it 6= 1 and jt 6= 1, then

‖wt+1 −w′t+1‖2 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥

2

≤
∥∥wt −w′t

∥∥
2

+
∥∥ηt∇f(wt; zit , zjt)− ηt∇f(w′t; zit , zjt)

∥∥
2

≤
(
1 + Lηt

)∥∥wt −w′t
∥∥

2
.

Otherwise, we have
‖wt+1 −w′t+1‖2 ≤ ‖wt −w′t‖2 + 2Gηt.

It then follows that
E(it,jt)

[
‖wt+1 −w′t+1‖2

]
≤
(
1 + Lηt

)∥∥wt −w′t
∥∥

2
Pr{it 6= 1 and jt 6= 1}+

(
‖wt −w′t‖2 + 2Gηt

)
Pr{it = 1 or jt = 1}

=
(n− 2)

(
1 + Lηt

)
n

∥∥wt −w′t
∥∥

2
+

2

n

(
‖wt −w′t‖2 + 2Gηt

)
. (J.1)

Let4t = E[‖wt −w′t‖|1 6∈ It0(A)], where It0(A) is defined in Lemma J.1. Then it follows from
(J.1) that

4t+1 ≤
(n− 2)

(
1 + Lηt

)
n

4t +
2

n

(
4t + 2Gηt

)
≤
(
1 + L(1− 2/n)ηt

)
4t +

4Gηt
n

≤ exp
(
L(1− 2/n)ηt

)
4t +

4Gηt
n

.

Since4t0+1 = 0, we can apply the above inequality repeatedly and get

4T ≤
T∑

t=t0+1

T∏
k=t+1

exp
(
L(1− 2/n)ηk

)4Gηt
n
≤

T∑
t=t0+1

T∏
k=t+1

exp
(
Lc(1− 2/n)/k

)4Gc

nt

≤
T∑

t=t0+1

exp
(
Lc(1− 2/n)

T∑
k=t+1

1

k

)4Gc

nt
≤

T∑
t=t0+1

exp
(
Lc(1− 2/n) log(T/t)

)4Gc

nt

≤
T∑

t=t0+1

(T
t

)Lc(1−2/n) 4Gc

nt
=

4Gc

n
TLc(1−2/n)

T∑
t=t0+1

t−Lc(1−2/n)−1

≤ 4Gc

n
TLc(1−2/n)

∫ T

t0

x−Lc(1−2/n)−1dx ≤ 1

Lc(1− 2/n)

4Gc

n

(T
t0

)Lc(1−2/n)

,

where we have used
ηt =

2t+ 1

2β(t+ 1)2
≤ c/t, c := 1/β.

We can combine the above bound and Lemma J.1 together, and get

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= O

( t0
n

+
G2

nL

(T
t0

)Lc)
.

We can choose t0 � T
Lc
Lc+1 and get the following stability bounds

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= O

(T Lc
Lc+1

n

)
.

We can plug the above stability bounds into Part (a) of Theorem 1, and get the following generalization
bounds

E
[
F (wT )− FS(wT )

]
= O

(T L/β
L/β+1

n

)
.

Furthermore, according to (D.8) we have the following optimization error bounds
EA[FS(wT )]− inf

w
[FS(w)] = O

(
1/(Tβ2)

)
.

We can plug the above generalization and optimization error bounds into (3.1), and get (5.7). The
proof is complete.
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K Examples of Pairwise Learning

In this section, we give some specific examples of pairwise learning: metric learning, ranking and
AUC maximization. We denote (t)+ := max(t, 0) and x> the transpose of x ∈ Rd. Let sign(t)
denote the sign of t ∈ R.

Supervised metric learning. In supervised metric learning, we assume Y = {±1} and aim to
find a distance metric such that examples in the same class are similar while examples in different
classes are apart from each other under this metric. A typical choice is the Mahalanobis metric
of the form hw(xi, xj) = 〈w, (xi − xj)(xi − xj)>〉,w ∈ Sd×d, where Sd×d denotes the set of
positive semi-definite matrices in Rd×d. A common loss function in metric learning for w on
z = (x, y), z′ = (x′, y′) takes the form [8]

f(w; z, z′) = g(yy′(1− hw(x, x′))),

where g : R → R+ is a convex function for which some typical choices include the hinge loss
g(t) = (1− t)+ and the logistic loss g(t) = log(1 + exp(−t)).

Ranking. For ranking problems, the output reflects the ordering between instances, i.e., the instance
x is considered to be better than x′ if y > y′. Our task is to predict the ordering between the objects
based on observations by constructing ranking rules hw : X × X → R, and predict y > y′ if
hw(x, x′) > 0 [3]. A common pairwise loss function used in ranking problems takes the form

f(w; z, z′) = g(sign(y − y′)hw(x, x′)),

where g : R → R+ is a convex function for which some typical choices are the exponential loss
g(t) = exp(−t), the logistic loss g(t) = log(1 + exp(−t)) and the hinge loss g(t) = (1− t)+ [3].

AUC maximization. AUC is a widely used metric for measuring the performance of machine learning
algorithms in imbalanced classification. If Y = {±1}, the AUC score of a model hw : X 7→ Y
measures its probability of giving a larger value to a positive instance than to a negative instance. The
problem of AUC maximization can be formulated as a pairwise learning problem with the following
loss function [4, 22]

f(w; z, z′) = g(w>(x− x′))I[y=1,y′=−1], (K.1)
where g : R → R+ is a convex function for which some typical choices are the least square loss
g(t) = (1− t)2, the logistic loss g(t) = log(1 + exp(−t)) and the hinge loss g(t) = (1− t)+.

L Experimental Results

In this section, we present some experimental results to support our theory on the stability bounds. We
consider AUC maximization with the loss function of the form of (K.1). We consider several datasets
available at the LIBSVM site [2], whose information is summarized in Table L.1. We transform
datasets with multiple class labels into datasets with binary class labels by grouping the first half of
class labels into positive labels, and grouping the remaining class labels into negative labels. We
randomly choose 80 percents of each dataset as the training set S, from which we perturb a single
example in S to create a neighboring dataset S′. We apply SGD (3.2) with the same parameters to S
and S′, and get two sequence of iterates {wt} and {w′t}. We then calculate the Euclidean distance
4t = ‖wt −w′t‖2 at each iteration to verify the stability of SGD. We consider step sizes of the form
ηt = η/

√
T with η ∈ {0.05, 0.25, 1, 4}, and report 4t as a function of the number of passes (the

iteration number t divided by the sample size n). We repeat the experiments 100 times and report the
average as well as the standard deviation. Since we develop stability bounds for both smooth and
nonsmooth loss functions, we consider two representative loss functions: the smooth logistic loss
(i.e., Eq. (K.1) with g(t) = log(1 + exp(−t))) and the nonsmooth hinge loss (i.e., Eq. (K.1) with
g(t) = (1− t)+).

In Figure L.1, we report the Euclidean distance4t for AUC maximization with the hinge loss and
the 4 stepsize sequences, while in Figure L.2, we report4t for AUC maximization with the logistic
loss. It is clear that4t is an increasing function of both t and η, which is consistent with our stability
bounds in Theorem 3 and Theorem 6. It is also clear that the Euclidean distances for the logistic
loss are significantly smaller than those for the hinge loss if we consider the same stepsize sequence,
which is also consistent with Remark 4 on the comparison of stability bounds for SGD with smooth
and nonsmooth problems.
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Table L.1: Description of the datasets used in the experiments.

datasets # inst # feat datasets # inst # feat datasets # inst # feat datasets # inst # feat
a3a 3185 122 acoustic 78823 50 cifar10 50000 3072 gisette 7000 5000

madelon 2600 500 mnist 60000 780 usps 7291 256 webspam_u 350000 254

(a) a3a (b) acoustic (c) cifar10 (d) gisette

(e) madelon (f) mnist (g) usps (h) webspam_u
Figure L.1: Euclidean distance4t as a function of the number of passes for the hinge loss.

(a) a3a (b) acoustic (c) cifar10 (d) gisette

(e) madelon (f) mnist (g) usps (h) webspam_u
Figure L.2: Euclidean distance4t as a function of the number of passes for the logistic loss.
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