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Abstract

Pairwise learning refers to learning tasks where the loss function depends on a
pair of instances. It instantiates many important machine learning tasks such as
bipartite ranking and metric learning. A popular approach to handle streaming
data in pairwise learning is an online gradient descent (OGD) algorithm, where
one needs to pair the current instance with a buffering set of previous instances
with a sufficiently large size and therefore suffers from a scalability issue. In this
paper, we propose simple stochastic and online gradient descent methods for pair-
wise learning. A notable difference from the existing studies is that we only pair
the current instance with the previous one in building a gradient direction, which
is efficient in both the storage and computational complexity. We develop novel
stability results, optimization, and generalization error bounds for both convex
and nonconvex as well as both smooth and nonsmooth problems. We introduce
novel techniques to decouple the dependency of models and the previous instance
in both the optimization and generalization analysis. Our study resolves an open
question on developing meaningful generalization bounds for OGD using a buffer-
ing set with a very small fixed size. We also extend our algorithms and stability
analysis to develop differentially private SGD algorithms for pairwise learning
which significantly improves the existing results.

1 Introduction

Many important learning tasks involve pairwise loss functions which are often referred to as pair-
wise learning. Such notable learning tasks include AUC maximization [14, 22, 28, 35, 43, 45],
metric learning [4, 24, 37, 38, 41], and a minimum error entropy principle [18]. For in-
stance, AUC maximization aims to rank positive instances above negative ones which involves
a loss f(w; (x, y), (x′, y′)) = (1 − w>(x − x′))+ I[y=1∧y′=−1] with x, x′ ∈ X ⊆ Rd and
y, y′ ∈ Y = {±1}. The aim of metric learning is to learn a distance function hw(x, x′) =
(x − x′)>w(x − x′) where w is positive semi-definite matrix in Rd×d. A typical pairwise loss
can be f(w; (x, y), (x′, y′)) = (1 + τ(y, y′)hw(x, x′))+ where τ(y, y′) = 1 if y = y′ and −1
otherwise. Given a training data S = {zi = (xi, yi) ∈ X × Y : i ∈ [n]} where [n] = {1, 2, . . . , n},
the ERM formulation for pairwise learning is defined as minw∈W

1
n(n−1)

∑n
i,j∈[n],i6=j f(w; zi, zj)

where W denotes the parameter space. This scheme has been well studied theoretically using al-
gorithmic stability [1] and U-statistics tools [10]. At the same time, there are considerable interests
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on developing and studying online gradient descent (OGD) or stochastic gradient descent (SGD)
algorithms for pairwise learning due to their scalability in practice.

The critical issue for designing such stochastic algorithms is to construct intersecting pairs of in-
stances for updating the model parameter upon receiving individual instances. For the offline (finite-
sum) setting where the prescribed training data S = {z1, . . . , zn} is available, one natural approach
is to, at each time t, randomly select a pair of instances (zit , zjt) from n(n− 1)/2 pairs and update
w based on the gradient of the local error f(wt−1; zit , zjt). The excess generalization and stability
was nicely established in [27]. One popular approach [22, 36, 42, 45] is to consider the online set-
ting where the data is continuously arriving. This approach pairs the current datum zt = (xt, yt),
which is received at time t, with all previous instances St−1 = {z1, . . . , zt−1} and then performs the
update based on the gradient of the local error f(wt−1;St−1) = 1

t−1
∑
z∈St−1

f(wt−1; zt, z). It re-
quires a high gradient complexityO(t) (i.e. the number of computing gradients) which is expensive
when t becomes large. To mitigate this potential limitation, [22, 35, 45] proposed to use a buffering
set Bt−1 ⊆ St−1 of size s and the local error f(wt−1;Bt−1) = 1

s

∑
z∈Bt−1

f(wt−1; zt, z) which
reduces the gradient complexity to O(s). The excess generalization bound O( 1√

s
+ 1√

n
) was es-

tablished in [22] using the online-to-batch conversion method [8] which is only meaningful for a
very large s. In particular, this bound tends to zero only when s = s(n) tends to infinity as n tends
to infinity. It was mentioned in [22] (see the discussion at the end of Section 7 there) as an open
question on how to get a meaningful bound for a fixed constant s.

In this paper, we show that optimal generalization bounds can be achieved for simple SGD and
OGD algorithms for pairwise learning where, at time t, the current instance zt is only paired with
the previous instance zt−1. This is equivalent to the First-In-First-Out (FIFO) buffering strategy
[22, 35] while keeping the size s of the buffering set Bt−1 to be s = 1, where, in this FIFO policy,
the data zt arriving at time t > 1 is included into the buffer by removing {z1, . . . , zt−2} from the
buffer. In particular, our main contributions are summarized as follows.

• We propose simple SGD and OGD algorithms for pairwise learning where the t-th update of the
model parameter is based on the interacting of the current instance and the previous one which
has a constant gradient complexity O(1).

• We establish the stability results of the proposed SGD algorithms for pairwise learning and
apply them to derive optimal excess generalization bounds O(1/

√
n) for the proposed simple

SGD algorithm for pairwise learning with both convex and nonconvex as well as both smooth
and nonsmooth losses in the offline (finite-sum) setting where the training data of size n is given.
We introduce novel techniques to decouple the dependency of the current SGD iterate with the
previous instance in both the generalization and optimization error analysis, which resolves the
open question in [22] on how to develop meaningful generalization bounds when the buffering
set of FIFO has a very small size.

• We further develop a localization version of our SGD algorithms under (ε, δ)-differential privacy
(DP) constraints, and apply the obtained stability results to derive an optimal utility (excess
generalization) bound Õ

(
1/
√
n+
√
d/nε

)
. In contrast to the existing work [21] which requires

the loss function to be smooth and an at least quadratic gradient complexity, our proposed DP
algorithms only need a linear gradient complexity Õ(n) for smooth convex losses to achieve the
optimal utility bound and can also be applied to non-smooth convex losses.

The paper is organized as follows. Section 2 reviews the related work and Section 3 describes the
proposed algorithms. In Section 4, we present excess generalization bounds, stability results, and
optimization errors of our algorithms. Section 5 is devoted to the differentially private SGD for
pairwise learning and its utility bounds. Section 6 provides experimental validation of theoretical
findings. The paper is concluded in Section 7. All the main proofs are postponed to the Appendix.

2 Motivating Examples and Related Work

In this section, we list examples of pairwise learning and discuss some related work.
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2.1 Motivating Examples

AUC maximization. Area under the ROC curve (AUC) of a prediction function hw is the prob-
ability that the function ranks a random positive example higher than a random negative example.
The empirical risk of AUC maximization is given by FS(w) = 1

n(n−1)
∑
i,j∈[n],i6=j `(hw(xi) −

hw(xj))I[yi=1]I[yj=−1], where the loss `(·) can be the least square loss `(t) = (1− t)2 or the hinge
loss `(t) = (1− t)+.
Minimum error entropy principle. Minimum error entropy (MEE) is a principle of information
theoretical learning [18–20], which has found applications in blind source separation, clustering,
feature selection and some other topics. The MEE principle aims to find a predictor h : X 7→ Y
that contains the most information of the response variable by minimizing the information entropy
of the variable E = Y − h(X). For a random variable E with probability density function pE , the
Rényi’s entropy of order 2 is defined as H(E) = − logE[pE ] = − log

∫
p2E(e)de. The probability

density function pE can be approximated by Parzen windowing p̂E(e) = 1
nγ

∑n
i=1G

( (e−ei)2
2γ2

)
,

where ei = yi − h(xi), γ > 0 is an MEE scaling parameter and G : R 7→ R+ is a win-
dowing function. The approximation of Rényi’s entropy is given by its empirical version Ĥ =

− log 1
n2γ

∑
i,j∈[n]G

( (ei−ej)2
2γ2

)
, The maximization of Ĥ then leads to a pairwise learning problem

since each loss function involves a pair of training examples [18].

2.2 Related Work

The work [22, 35, 36, 45] assumed the online learning setting in which a stream of i.i.d. data
{z1, z2, . . . , zt, . . .} is continuously arriving. Upon receiving zt at time t, it is paired with all pre-
vious instances and then the model parameter is updated based on the local error Ft(wt−1) =
1
t−1

∑t−1
j=1 f(wt−1; zt, zj). In particular, the work [35, 36] provided the first excess generalization

bound for online learning methods by obtaining online-to-batch conversion bounds [8] using cover-
ing numbers of function classes. Kar et al. [22] significantly improved the results using the so-called
symmetrization of expectations which reduce excess risk estimates to Rademacher complexities. To
further reduce the expensive gradient complexity O(t) at a large time t, the work [22, 36, 45] pro-
posed to use a buffering set Bt−1 with size s instead of all previous instances. It was shown that
such OGD algorithms have an excess generalization bound O( 1√

s
+ 1√

n
) for convex and Lipschitz-

continuous losses. In the offline learning setting where the training data S = {z1, z2, . . . , zn} of
size n is fixed, the work [40] considered the stochastic version of the algorithm in [22, 35] where, at
time t, a random instance zit with random index it ∈ {1, . . . , n} is paired with all previous instances
{zi1 , . . . , zit−1

}. They derived stability and generalization results of such algorithms in expectation.

Lei et al. [27] considered the offline learning setting and, at time t, the algorithm there randomly
picks a pair of instances (zit , zjt) from all

(
n
2

)
pairs of instances. An excess risk bound Õ

(
1/
√
n
)

with high probability was derived for convex, Lipschitz and strongly smooth losses. Here the no-
tation Õ(·) means O(·) up to some logarithmic terms. In the particular case of AUC maximization
with the least square loss, [43] considered the online learning setting and reformulated the problem
as a stochastic saddle point (min-max) problem which decouples the pairwise structure. From this
reformulation, efficient SGD-type algorithms [29, 41] have been developed.

Recently, differentially private pairwise learning has been studied where the construction of pairs
of instances follows [22, 35, 45] or all pairs are used at each iteration. In particular, Huai et al.
[21] considered both online and offline learning settings and the pairs of instances at time t follow
[22, 35, 45]. They provided a utility bound Õ(

√
d/(
√
nε)) for convex and smooth loss functions.

The study [40] also paired the current instance with all previous ones and showed that SGD with
output perturbation for pairwise learning has a utility bound Õ(

√
d/(
√
nε)) for nonsmooth convex

losses. The work [39] showed that private gradient descent using all possible pairs can achieve a
utility bound Õ(1/

√
n+
√
d/(nε)) for strongly smooth and convex losses.
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3 Proposed Algorithms for Pairwise Learning

In this section, we describe the proposed algorithms in two common learning settings for pairwise
learning: offline and online learning settings. Let ρ be a probability measure defined onZ := X×Y ,
where X is an input space and Y is an output space. In pairwise learning, the performance of w
is measured on a pair of instances (z, z′) by a nonnegative loss function f(w; z, z′). Denote by
[n] := {1, 2, . . . , n} for any n ∈ N.

Algorithm 1 SGD for Pairwise Learning

1: Inputs: S={zi : i ∈ [n]} and step sizes {ηt}
2: Initialize: w0 ∈ W , let w−1 = w0 and ran-

domly select i0 ∈ [n]
3: for t = 1, 2, . . . , T do
4: Randomly select it ∈ [n]
5: wt=ΠW

(
wt−1−ηt∇f(wt−1; zit , zit−1)

)
6: Outputs: w̄T =

∑T
j=1 ηjwj−2/

∑T
j=1 ηj

Algorithm 2 OGD for Pairwise Learning

1: Inputs: learning rates {ηt}
2: Initialize: w0 ∈ W , let w−1 = w0 and re-

ceiving datum z0.
3: for t = 1, 2, . . . , T do
4: Receive a data point zt
5: wt = ΠW

(
wt−1−ηt∇f(wt−1; zt, zt−1)

)
6: Outputs: w̃T =

∑T
j=1 ηjwj−2/

∑T
j=1 ηj

Offline Learning (Finite-Sum) Setting. The first is the finite-sum setting where the training data
S = {zi = (xi, yi) ∈ Z : i ∈ [n]} are drawn independently according to ρ. In this context, one
aims to solve the following empirical risk minimization (ERM):

w∗S = argmin
w∈W

[
FS(w) :=

1

n(n− 1)

∑
i,j∈[n],i6=j

f(w; zi, zj)
]
. (1)

Our proposed algorithm to solve (1) is described in Algorithm 1. The notation ΠW(·) there denotes
the projection operator toW. In particular, at iteration t, it randomly selects one instance zit from
the uniform distribution over [n] and pairs it only with the previous instance zit−1

, and then do
the gradient descent based on ∇f(wt−1; zit , zit−1

). This is in contrast to the classical SGD for
pairwise learning in [22, 35, 45] where the present instance zit is paired with all previous instances
{zi1 , zi2 , . . . , zit−1

}. Note wt−1 depends on zit−1
and then∇f(wt−1; zit , zit−1

) is not an unbiased
estimate of ∇FS(wt−1). Therefore, the standard analysis of SGD does not apply. We introduce
novel techniques to handle this dependency in our analysis (see more details in Section 4).

Online Learning Setting. In the online learning setting where the data {z0, z1, z2, . . .} is assumed
i.i.d. from an unknown distribution ρ on Z , the number of iterations of an online algorithm is
identical to the size of available data. In the same spirit to Algorithm 1, the pseudo code is given
in Algorithm 2. Specifically, upon receiving a datum zt at the current time t, we pair it with zt−1
which was revealed at the previous time t − 1 and then perform gradient descent based on the
gradient ∇f(wt−1; zt, zt−1). It aims to minimize the population risk which is defined as F (w) =
EZ,Z′ [f(w;Z,Z ′)]. Here EZ,Z′ denotes the expectation with respect to (w.r.t.) Z,Z ′ ∼ ρ.
It is worth pointing out that online learning [17, 30, 31] in general does not require the i.i.d. as-
sumption on the data and study the regret bounds. In this paper, we mainly consider the statistical
performance, measured by excess generalization bounds, of the output w̃T of Algorithm 2 where
the streaming data {z0, z1, z2, . . .} is i.i.d. from the population distribution ρ.
Remark 1. As discussed above, OGD for pairwise learning was proposed and studied in [22, 35]
where the current instance zt is paired with a buffering set Bt ⊆ {z1, . . . , zt−1}. However, the
resultant excess generalization bound is in the form of O( 1√

s
+ 1√

n
) which indicated that the buffer

size s needs to be large enough in order to achieve good generalization. Their analysis does not
apply to our case since the buffering set Bt = {zt−1} with size s = 1 for Algorithm 2. As we
show soon in Section 4, we can prove that Algorithm 2, which pairs the current instance zt with the
previous instance zt−1, still enjoys optimal statistical performance O(1/

√
n).

Remark 2. The work [27] studied the stability and generalization of an SGD-type algorithm for
pairwise learning by randomly generating pairs of instances. Specifically, at time t, randomly gen-
erating a pair (zit , zjt) from a given set of training data S = {zi : i ∈ [n]} and the subsequent
update is given by wt = wt−1 − ηt∇f(wt−1; zit , zjt). In contrast, our algorithm, i.e. Algorithm
1, updates the model parameter based on the pair of the current random instance and the random
one generated at the previous time t − 1, i.e. (zit , zit−1

). Furthermore, our work here significantly
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differs from [27] in the following aspects. Firstly, the algorithm there by randomly selecting pairs
of instances does not work in the online learning setting while ours can seamlessly deal with the
streaming data as stated in Algorithm 2. Secondly, regarding the technical analysis, our algorithms
are more challenging to analyze than the algorithm in [27]. Indeed,∇f(wt−1; zit , zjt) is not an un-
biased estimate of ∇FS(wt−1) due to the independency between wt−1 and (it, jt). Therefore, the
optimization error analysis of the algorithm in [27] is the same as the SGD for pointwise learning. As
a comparison,∇f(wt−1; zit , zit−1

) is a biased estimate of∇FS(wt−1) due to the coupling between
wt−1 and it−1. We introduce novel techniques to handle this coupling for both the optimization and
generalization analyses. Thirdly, we will soon see below that we provide generalization results for
nonsmooth, nonconvex losses and also use Algorithm 1 to develop novel differentially private pair-
wise learning algorithms while [27] focused on the smooth convex losses in the non-private setting.

Remark 3. If we let ξt = (it, it−1) in Algorithm 1, then {ξt : t ∈ N} forms a Markov Chain as ξt
only depends on ξt−1 but not on {ξ1, . . . , ξt−2}. Hence, Algorithm 2 can be regarded as a Markov
Chain SGD which was studied in [34]. Despite this similarity, our results differ from [34] in two
important aspects. Firstly, we are mainly interested in stability and generalization of Algorithm 1
while [34] focused on the convergence analysis of the Markov Chain SGD. One cannot apply the
results in [34] to obtain excess generalization bounds for Algorithm 1 in terms of the population
risk as we will show soon in the next section. Secondly, directly applying Theorem 1 in [34] only
yields a convergence rate of O(1/t1−q) with some 1/2 < q < 1 in the convex setting. Our proof
for the convergence analysis of Algorithm 1 is much simpler and direct which can yield a faster
convergence rate O(1/

√
t) as shown in Section 4.3.

4 Generalization Analysis

The aim for the generalization analysis of Algorithm 1 and Algorithm 2 is the same, i.e. to analyze
the excess generalization error F (w) − F (w∗) of a model w measuring its relative behavior w.r.t.
the best model w∗ = arg minw∈W F (w).

For Algorithm 1 where the training data S with n datum is given beforehand, the excess general-
ization involves the generalization error and optimization error. Specifically, one has the following
error decomposition for w̄T

E
[
F (w̄T )

]
− F (w∗) = E

[
F (w̄T )− FS(w̄T )

]
+ E

[
FS(w̄T )− FS(w∗)

]
. (2)

Here, the expectation is taken w.r.t. the randomness of Algorithm 1, i.e., {it} and the randomness of
data S which is i.i.d. from ρ on Z. We refer to the first term E

[
F (w̄T )− FS(w̄T )

]
as the general-

ization error and E
[
FS(w̄T )−FS(w∗)

]
as the optimization error. We will use algorithmic stability

to handle its generalization error in Subsection 4.2 for smooth and nonsmooth losses. The estima-
tion of the optimization error is given in Subsection 4.3 for both convex and nonconvex losses. For
Algorithm 2, there is no generalization error as the data {z1, z2, . . . , zT } is arriving in a sequential
manner with T increasing all the time which does not involve the training data. The randomness of
Algorithm 2 is only from the i.i.d. data. Therefore, the optimization error in this setting is exactly
the excess generalization error F (w̃T )− F (w∗) which is estimated in Subsection 4.3.

4.1 Excess Generalization Error

In this subsection, we present excess generalization error bounds of Algorithm 1 in terms of the
sample size, iteration number and step size, which shows how to tune these parameters to get a
model with good generalization. Our analysis requires the following assumptions.

Assumption. Let f :W ×Z ×Z → R+ and let ‖ · ‖2 denote the Euclidean norm.

(A1) Assume, for any z, z′ and w ∈ W , that f(·; z, z′) isG-Lipschitz continuous, i.e. |f(w; z, z′)−
f(w′; z, z′)| ≤ G‖w −w′‖2.

(A2) Assume, for any z, z′ ∈ Z , the map w 7→ f(w; z, z′) is L-strongly smooth, i.e. f(w; z, z′)−
f(w′; z, z′)− 〈∇f(w′; z, z′),w −w′〉 ≤ L

2 ‖w −w′‖22.

(A3) Assume, for any z, z′ ∈ Z , f(·; z, z′) is α-strongly convex, i.e. f(w; z, z′) − f(w′; z, z′) −
〈∇f(w′; z, z′),w −w′〉 ≥ α

2 ‖w −w′‖22. The case of α = 0 is identical to convexity.
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(A4) Assume FS satisfies the Polyak-Łojasiewicz (PL) condition with parameter µ > 0, i.e., for
wS∈arg minw∈W FS(w), there holds 2µ

(
FS(w)−FS(wS)

)
≤‖∇FS(w)‖22 for all w ∈ W .

The PL condition (A4) means that the suboptimality in terms of function values can be bounded by
gradients [23]. Functions under the PL condition have found various applications including neural
networks, matrix factorization, generalized linear models and robust regression (see, e.g., [23]).
In particular, AUC maximization problem with the classifier given by a one hidden layer network
satisfies the PL condition as shown in [29].

We first study smooth and non-smooth problems for the convex case, and derive the excess gener-
alization bounds of the order O(1/

√
n) in both cases. We use the notation B � B̃ if there exist

constants c1, c2 > 0 such that c1B̃ ≤ B ≤ c2B̃. The proofs are given in Section C.

Theorem 1 (Nonsmooth Problems). Let w−1 = w0 and {wt : t ∈ [T ]} be produced by Algorithm
1 with ηt = η > 0. Let w̄T =

∑T
t=1 ηtwt−2/

∑T
t=1 ηt. Let (A1) and (A3) hold true with α = 0.

Then, we have

ES,A[F (w̄T )]− F (w∗) = O
(√

Tη +
Tη

n
+

1 + Tη2

Tη

)
. (3)

Furthermore, selecting T � n2 and η � T− 3
4 yields that ES,A[F (w̄T )]− F (w∗) = O(1/

√
n).

Theorem 2 (Smooth Problems). Let (A1), (A2) and (A3) hold true with α = 0. Let w−1 = w0 and
{wt : t ∈ [T ]} be produced by Algorithm 1 with ηt = η ≤ 2/L. Let w̄T =

∑T
t=1 ηtwt−2/

∑T
t=1 ηt.

Then, there holds

ES,A[F (w̄T )]− F (w∗) = O
(Tη
n

+
1 + Tη2

Tη

)
. (4)

Furthermore, choosing T � n and η � T− 1
2 implies that ES,A[F (w̄T )]− F (w∗) = O(1/

√
n).

Remark 4. Notice that the gradient complexity (i.e. the number of computing gradients) of Algo-
rithm 1 is identical to the number of iterations T. The above results show, to get excess generalization
boundsO(1/

√
n), that Algorithm 1 requires a gradient complexityO(n2) for nonsmooth problems,

and O(n) for smooth problems. This matches the existing generalization analysis for pointwise
learning [3, 16, 25]. In Appendix E, additional results are provided where we propose Algorithm 4
based on the iterative localization technique [12] in order to reduce the gradient complexity O(n2)
required in Theorem 1 to O(n) for nonsmooth problems.

Remark 5. As stated in the introduction, Algorithm 1 can be considered as a specific case of the
classic pairwise learning algorithm [22] with a FIFO buffering set Bt−1 of size s = 1. A key
difficulty in the generalization analysis is that wt−1 depends on Bt−1, which renders the stan-
dard martingale analysis not applicable. Kar et al. [22] proposed to remove this coupling effect
by considering supw

[
f(w;Bt−1) − FS(w)

]
, which is why they only derived the excess gener-

alization error bound O(1/
√
s). We introduce novel techniques to handle the coupling in both

generalization analysis and optimization error analysis. For the generalization analysis, our strat-
egy is to write the stability as a deterministic function of several indicator functions on whether
we select the different point in neighboring datasets, and then finally consider the randomness of
these indicator functions. This delay of considering expectation successfully decouples the cou-
pling between wt−1 and Bt−1. For the optimization error analysis, our novelty is to observe that
f(wt−1; zit , zit−1

) = f(wt−2; zit , zit−1
) +O(ηt−1), which removes the decoupling since wt−2 is

now independent of both it and it−1. Since the additional term O(ηt−1) here is a term of smaller
magnitude, the coupling effect is removed without incurring any additional cost.

Finally, we study nonconvex pairwise learning under the PL condition. The proof is in Section C.

Theorem 3. Let (A1), (A2) and (A4) hold true. Let α0, B > 0. Let w−1 =w0 and {wj : j ∈ [t]}
be produced by Algorithm 1 with ηj = 2/(µ(j + 1)). If Eij+1,ij+2

[
‖∇f(wj ; zij+1

, zij+2
)‖22
]
≤ α2

0

and supz,z′ f(wj ; z, z
′) ≤ B for any j, then

E
[
F (wT )]− F (w∗) = O

(T 2L
2L+µ

n

)
+O

(
1/(Tµ2)

)
.

Furthermore, choosing T � n
2L+µ
4L+µµ−

4L+2µ
4L+µ yields that E

[
F (wT )]− F (w∗) = n−

2L+µ
4L+µµ−

4L
4L+µ .
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Remark 6. As pointed out before, there is no generalization error for the OGD algorithm, i.e.
Algorithm 2 as the i.i.d. data is given in a streaming manner and the iteration number equals the
number of the available data (i.e. t = n). In this setting, the optimization error is identical to the
excess generalization error, which will be estimated in Subsection 4.3.

4.2 Stability and Generalization Errors

We study generalization errors by algorithmic stability, which measures the sensitivity of the output
of an algorithm w.r.t. the perturbation of the dataset. Below we give the definition of uniform
argument stability. We say S, S′ are neighboring datasets if they differ at most by a single example.
Definition 1. A (randomized) algorithm A for pairwise learning is called ε-uniformly argument
stable if for all neighboring datasets S, S′ ∈ Zn we have EA[‖A(S)−A(S′)‖2] ≤ ε.

It is clear ε-uniform argument stability impliesGε-uniform stability i.e., supz,z′ EA[f(A(S), z, z′)−
f(A(S′), z, z′)] ≤ Gε for Lipschitz losses [7]. The connection between the uniform stability for
pairwise learning and its generalization has been established in the literature [1, 33].
Lemma 1. If an algorithm A for pairwise learning is ε-uniformly stable for some ε > 0, then we
have |ES,A[FS(A(S))− F (A(S))]| ≤ 2ε.

We develop uniform argument stability bound of Algorithm 1 and apply it together with Lemma 1
to establish the following generalization bounds. Theorem 4 handles nonsmooth problems, while
Theorem 5 handles smooth problems. The detailed proofs for them can be found in Section A.
Theorem 4. Let w−1 = w0 and {wj : j ∈ [t]} be produced by Algorithm 1 with ηj = η. Let (A1)
and (A3) hold with α = 0. Then, Algorithm 1 is 2

√
eGη

(√
5t+ 2t

n

)
-uniformly argument stable and

ES,A[F (w̄t)− FS(w̄t)] ≤ 4
√
eG2η

(√
5t+

2t

n

)
.

Theorem 5. Let w−1 = w0 and {wj : j ∈ [t]} be produced by Algorithm 1 with ηj = η ≤ 2/L.
Let (A1), (A2) and (A3) hold true with α = 0. Then, Algorithm 1 is 4G

n

∑t
j=1 ηj-uniformly argument

stable and the generalization error satisfies ES,A[F (w̄t)− FS(w̄t)] ≤ 8G2

n

∑t
j=1 ηj .

For Algorithm 2, there is no generalization error as the data {z1, z2, . . . , zT } is assumed to arrive in
a sequential manner with T increasing all the time which does not involve the training data.

4.3 Optimization Error

In this subsection, we establish the convergence rate, i.e. optimization error, of Algorithm 1
for convex, nonconvex and strongly convex problems. We consider both bounds in expectation
and with high probability. Our analysis is based on the key observation f(wt−1; zit , zit−1

) =
f(wt−2; zit , zit−1

) +O(ηt−1). The proofs of results in this subsection are given in Section B.

Below we only present optimization error bounds for Algorithm 1 here in the offline (finite-sum)
setting where the training data of size n, denoted by S = {z1, . . . , zn}, is fixed, and the optimization
error is measured by FS(w̄t)−infw∈W FS(w).We emphasize that all our optimization error bounds
hold true for Algorithm 2 in the online learning setting with exactly the same analysis where the
streaming data {z1, . . . , zt, ...} is assumed to be i.i.d according to the population distribution ρ, and
the bounds for the optimization error in this case is given for the excess generalization error (excess
population risk), i.e. F (w̃t)− infw∈W F (w).

Theorem 6. Let w−1 = w0 and {wj : j ∈ [t]} be produced by Algorithm 1. Let (A1) and (A3)
hold true with α ≥ 0. Then, for any w independent of A we have the following convergence rates:

(a) Assume f is convex, i.e. α = 0. Then, we have

EA[FS(w̄t)]− FS(w) ≤
‖w0 −w‖22 +G2

∑t
j=1(2ηjηj−1 + η2j )

2
∑t
j=1 ηj

. (5)

(b) Let f be α-strongly convex with α > 0 and ηj = 2
α(j+1) . Then, there holds EA[FS(w̄t)] −

FS(w) = O
(
G2/(αt)

)
.
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Remark 7. The above convergence rates match those in the pointwise learning [5]. Furthermore,
if ηj = η, then Eq. (5) becomes EA[FS(w̄t)] − FS(w) = O(1/(tη) + η) and one can choose
η � 1/

√
t to get EA[FS(w̄t)]− FS(w) = O(1/

√
t). We can extend our convergence analysis to a

more general update as wt = ΠW
(
wt−1 − ηt

s

∑s
j=1∇f(wt−1; zit , zit−j )

)
for s ∈ N. Indeed, one

can use the observation f(wt−1; zit , zit−s) = f(wt−s−1; zit , zit−s) +O
(∑s

j=1 ηt−j
)

to derive the
convergence rate O(

√
s/
√
t).

Below we present high-probability bounds to understand the variation of the algorithm. We need
to take conditional expectation of f(w2j−2; zi2j , zi2j−1) w.r.t. (i2j , i2j−1) to get FS(w2j−2).
However, there is a coupling between (i2j , i2j−1) and (i2j−1, i2j−2). Therefore, one can not di-
rectly apply concentration inequalities for martingales to handle

∑t
j=1

(
f(w2j−2; zi2j , zi2j−1

) −
FS(w2j−2)

)
. We introduce a novel decoupling technique to handle this coupling. Note that the

high-probability bounds match the bounds in expectation up to a constant factor.

Theorem 7. Let w−1 = w0 and {wj : j ∈ [t]} be produced by Algorithm 1. Let (A1) and (A3)
hold true with α ≥ 0 and supw f(w; z, z′) ≤ B for some B > 0. Let δ ∈ (0, 1).

(a) Assume f is convex, i.e. α = 0 and let w̄t =
∑t
j=1 ηjwj−2/

∑t
j=1 ηj . Then, for any w ∈ W ,

with probability at least 1− δ the following inequality holds

FS(w̄t)−FS(w)≤ 1∑t
j=1 ηj

(
2B
(

2

t∑
j=1

η2j log(2/δ)
) 1

2

+
1

2
‖w1−w‖22+G2

t∑
j=1

(
ηj−1ηj+

η2j
2

))
.

(b) Assume f is α-strongly convex with α > 0 and ηj = 2
α(j+1) . Let w̄t =

∑t
j=1 jwj−2/

∑t
j=1 j.

Then, with probability at least 1− δ, we have FS(w̄t)− FS(w) = O
(
G2 log(1/δ)/(αt)

)
.

Finally, we study the convergence of Algorithm 1 associated with nonconvex functions. We first
consider general smooth problems. Since we cannot find a global minimum in this setting, we
measure the convergence rate in terms of gradient norms [15]. The following theorem establishes
the convergence rate O(1/

√
t) for minj=1,...,t EA[‖∇FS(wj)‖22].

Theorem 8. Let w−1 =w0 and {wj :j ∈ [t]} be produced by Algorithm 1 with ηj=η ≤ 1/(2
√
L).

Let (A2) hold true and Eij+1,ij+2

[
‖∇f(wj ; zij+1 , zij+2)‖22

]
≤ α2

0 for some α0 and any j. Then,

1

t

t∑
j=1

EA
[
‖∇FS(wj−2)

∥∥2
2

]
≤ FS(w0)

tη
+ 8Lηα2

0.

Furthermore, choosing η � 1/
√
t implies that 1

t

∑t
j=1 EA

[
‖∇FS(wj−2)

∥∥2
2

]
= O(1/

√
t).

We now turn to nonconvex problems under a PL condition. Theorem 9 gives convergence rates of
the order O(1/t), which match the existing results for standard SGD in pointwise learning [23].

Theorem 9. Assume (A2) and (A4) hold true and Eij+1,ij+2

[
‖∇f(wj ; zij+1

, zij+2
)‖22
]
≤ α2

0 for
some α0 and any j. Let w−1 = w0 and {wj : j ∈ [t]} be produced by Algorithm 1 with ηj =
2/(µ(j + 1)). Then

EA[FS(wt)− FS(wS)] ≤ 32Lα2
0

µ2

( 1

t+ 1
+

log(et)

µt(t+ 1)

)
.

5 Application: Differentially Private SGD for Pairwise Learning

We now use Algorithm 1 and our stability analysis (i.e. Theorem 5) to develop a differentially
private algorithm for pairwise learning. Let us start with the definition of differential privacy [11].

Definition 2. A (randomized) algorithmA is called (ε, δ)-differentially private (DP) if, for all neigh-
boring datasets S, S′ and for all events O in the output space of A, one has P[A(S) ∈ O] ≤
eεP[A(S′) ∈ O] + δ.
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Algorithm 3 Differentially Private Localized SGD for Pairwise Learning

1: Inputs: Dataset S = {zi : i ∈ [n]}, parameters ε, δ > 0, and learning rate η, initial point w0

2: Set K=dlog2 ne and divide S into K disjoint subsets {S1, · · · , SK} where |Sk|=nk=2−kn.
3: for k = 1 to K do
4: Set ηk = 4−kη
5: Compute w̄k by Algorithm 1 based on Sk and initiated at wk−1 for dnk log(4/δ)e steps.
6: Set wk = w̄k + uk where uk ∼ N (0, σ2

kId) with σk = 12Gηk log(4/δ)
√

2 log(2.5/δ)/ε.
7: Outputs: wK

Our proposed DP algorithm for pairwise learning is described in Algorithm 3 which is inspired by
the iterative localization technique [12] for pointwise learning. The privacy and utility guarantees
are given by the following theorem. Here D denotes the diameter ofW .
Theorem 10. Let (A1), (A2), and (A3) hold true with σ = 0. Let {wk : k ∈ [K]} be produced by
Algorithm 3 with η = D

G min{ log(4/δ)√
n

, ε

12 log(4/δ)
√

2d log(2.5/δ)
} ≤ 2

L . Then, Algorithm 3 satisfies

(ε, δ)-DP and, with gradient complexity O(n log(1/δ)), we have the utility bound that

E[F (wK)− F (w∗)] = O
(
GD

( 1√
n

+

√
d log

3
2 (1/δ)

εn

))
.

The main difference from the pointwise setting in [12] is that Algorithm 3 involves the coupling
dependency between {it, it−1} at time t in Algorithm 1 and {it−1, it−2} at time t−1, which renders
the direct application of the standard concentration inequalities infeasible. We propose a novel
decomposition to circumvent this hurdle (see more detailed proof for Theorem 10 in Appendix D).
Remark 8. The above bound matches the lower bound given in [2] for (ε, δ)-differentially private
pointwise learning up to a log(1/δ) term. Our utility bound improves over the previous work [21]
which has the bound O(

√
d log(1/δ) log(n/δ)/(

√
nε)). During the preparation of this work, we

notice a very recent paper [39] also studied the private version of pairwise algorithm by using the
localization technique. Their algorithm establishes the optimal rateO

(
1/
√
n+

√
d log(1/δ)/(εn)

)
which, however, needs an expensive gradient complexity O(n3 log(1/δ)). As a comparison, we
achieve nearly optimal utility bound with linear gradient complexity O(n log(1/δ)).
Remark 9. In Appendix F, we further remove the smoothness assumption (A2) required in The-
orem 10 and propose a private algorithm (stated as Algorithm 5 there) that achieves the optimal
rate O

((
1/
√
n +

√
d log(1/δ)/(εn)

))
with gradient complexity O(n2 log(1/δ)). Such bound im-

proves over the previous known results with nonsmooth losses [40] where the utility bound was
O(
√
d log(1/δ) log(n/δ)/(

√
nε)).

6 Experimental Validation

We now report some preliminary experiments on AUC maximization with f(w; (x, y), (x′, y′)) =
`(w>(x−x′))I[y=1∧y′=−1] where ` is a surrogate loss function, e.g., the hinge loss `(t) = (1−t)+.
The purpose of our first experiment is to compare our algorithm, i.e. Algorithm 1, against four
existing algorithms for pairwise learning in terms of generalization and CPU running time on several
datasets available from the LIBSVM website [9]. These algorithms are: 1) OLP [22] uses a buffer
Bt updated by a variant of Reservoir sampling with replacement where the buffer size is chosen
to be 200 in order to guarantee the maximum AUC score as indicated in [22]; 2) OAMgra [45] is
tailored for AUC maximization with the hinge loss which uses buffers by Reservoir sampling. The
buffer size is set to be 100 for both positive and negative buffers as suggested in that paper; 3)
SGDpair [27] randomly pick a pair from

(
n
2

)
pairs by uniform distribution; 4) SPAUC [26], where

AUC maximization problem with the least square loss was reformulated as stochastic saddle point
(min-max) problem. Note that SPAUC and OAMgra can only apply to AUC maximization problem
with the least square loss and hinge loss, respectively.

To validate the generalization ability, the surrogate loss for Algorithm 1, SGDpair and OLP is chosen
to be the hinge loss. Average AUC scores of different algorithms are listed in Table 1 where we
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Table 1: Average AUC score ± standard deviation across multiple datasets. Our best results are
highlighted in bold.

Algorithm diabetes german ijcnn1 letter mnist usps
Ours .831± .030 .793± .021 .934± .002 .810± .007 .932± .001 .926± .006

SGDpair [27] .830± .028 .794± .023 .934± .003 .811± .008 .932± .001 .925± .006
OLP [22] .825± .028 .787± .028 .916± .003 .808± .010 .927± .003 .917± .006

OAMgra [45] .828± .026 .785± .029 .930± .003 .806± .008 .898± .002 .916± .005
SPAUC [26] .828± .031 .799± .026 .932± .002 .809± .008 .927± .002 .923± .005

can see that our algorithm yields competitive generalization performance with OAM and OLP using a
large buffering set. Detailed experimental setup, data statistics and more results such as comparison
with OLP and OAM with the size of the buffering set s = 1 are listed in Appendix G.

Figure 1: CPU running time (log scale) versus the AUC score

To fairly compare the CPU running time, we apply the following uniform setting across all algo-
rithms: 1)W is an `2 ball with the same diameter; 2) the step sizes ηt = η which is tuned by cross
validation. We report the results in Figure 1 for the hinge loss. We can see that CPU running time for
our algorithm and SGDpair are similar while OLP and OAM needs more time to converge. The possible
reason behind this is that they have a high gradient complexity O(s) at each iteration while ours is
O(1). More results on comparison for the least square loss and for differentially private algorithms
are given in Appendix G.

7 Conclusion

In this paper, we propose simple stochastic and online gradient descent algorithms for pairwise
learning. The key idea is to build a gradient estimator by pairing the current instance with the pre-
vious instance, which enjoys favorable computation and storage complexity. We leverage the lens
of algorithmic stability to study its generalization and apply tools in optimization theory to study
its convergence rates for various problems including convex/nonconvex and smooth/nonsmooth set-
tings. We also use our algorithms and stability analysis to develop a new DP algorithm for pairwise
learning with differential privacy constraints which significantly improves the existing results. The
main difference from pointwise learning in the analysis is the coupling between models and previous
instances, which is handled by introducing novel decoupling techniques.

For future work, it would be interesting to see whether the analysis and results still hold true if the
current example zit in Algorithm 1 is paired with one arbitrary previous example (e.g., zi1 ). Other
future work would be a systematic extension of our algorithms using other acceleration schemes
such as momentum and variance reduction techniques.
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A Proofs of Generalization Error (Theorems 4 and 5)

In this section, we present the stability and generalization error bounds for SGD with convex loss
functions. We first prove Theorem 4 on smooth problems and then Theorem 5 on nonsmooth prob-
lems. Recall EA denotes the expectation w.r.t. the internal randomness of A. For SGD, this means
the expectation w.r.t. {ij}j∈[t].

Proof of Theorem 4. We first investigate the uniform stability of Algorithm 1. Let S′ =
{z1, . . . , zn−1, z′n}, where z′n is independently drawn from ρ, and {w′t} be produced by Algorithm
1 w.r.t. data S′. We consider two cases: i.e. the case of {it 6= n and it−1 6= n} and the case of
{it = n or it−1 = n}.
If it 6= n and it−1 6= n, then∥∥wt −w′t

∥∥2
2
≤
∥∥wt−1 − ηt∇f(wt−1; zit , zit−1

)−w′t−1 + ηt∇f(w′t−1; z′it , z
′
it−1

)
∥∥2
2

=
∥∥wt−1 − ηt∇f(wt−1; zit , zit−1

)−w′t−1 + ηt∇f(w′t−1; zit , zit−1
)
∥∥2
2

= ‖wt−1 −w′t−1‖22 + η2t
∥∥∇f(wt−1; zit , zit−1

)−∇f(w′t−1; zit , zit−1
)
∥∥2
2

− 2ηt〈wt−1 −w′t−1,∇f(wt−1; zit , zit−1
)−∇f(w′t−1; zit , zit−1

)〉

≤ ‖wt−1 −w′t−1‖22 + η2t
∥∥∇f(wt−1; zit , zit−1)−∇f(w′t−1; zit , zit−1)

∥∥2
2

≤ ‖wt−1 −w′t−1‖22 + 4η2tG
2,

where the last second inequality follows from the inequality 〈wt−1−w′t−1,∇f(wt−1; zit , zit−1)−
∇f(w′t−1; zit , zit−1)〉 ≥ 0 due to the convexity of f and the last inequality follows from the
Lipschitz continuity of f . If it = n or it−1 = n, it follows from the elementary inequality
(a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 and the Lipschitz condition that∥∥wt −w′t

∥∥2
2
≤ (1 + p)‖wt−1 −w′t−1‖22
+ (1 + 1/p)η2t

∥∥∇f(wt−1; zit , zit−1
)−∇f(w′t−1; z′it , z

′
it−1

)
∥∥2
2

≤ (1 + p)‖wt−1 −w′t−1‖22 + 4(1 + 1/p)η2tG
2.

We can combine the above two cases together and derive∥∥wt −w′t
∥∥2
2
≤
(
‖wt−1 −w′t−1‖22 + 4η2tG

2
)
I[it 6=n and it−1=n]

+
(
(1 + p)‖wt−1 −w′t−1‖22 + 4(1 + 1/p)η2tG

2
)
I[it=n or it−1=n]

≤
(
1 + pI[it=n or it−1=n]

)
‖wt−1 −w′t−1‖22 + 4η2tG

2
(
1 + I[it=n or it−1=n]/p

)
=
(
1 + p

)I[it=n or it−1=n]‖wt−1 −w′t−1‖22 + 4η2tG
2
(
1 + I[it=n or it−1=n]/p

)
,

where I[·] is the indicator function. We can apply the above inequality recursively and get

∥∥wt −w′t
∥∥2
2
≤ 4G2

t∑
k=1

η2k
(
1 + I[ik=n or ik−1=n]/p

) t∏
j=k+1

(
1 + p

)I[ij=n or ij−1=n]

≤ 4G2
t∏

j=1

(
1 + p

)I[ij=n or ij−1=n]

t∑
k=1

η2k
(
1 + I[ik=n or ik−1=n]/p

)
= 4G2η2

(
1 + p

)∑t
j=1 I[ij=n or ij−1=n]

(
t+

t∑
k=1

I[ik=n or ik−1=n]/p
)
,

where the last inequality follows from ηj = η.

Now, we choose p = 1/
(∑t

j=1 I[ij=n or ij−1=n]

)
and use the inequality (1 + x)1/x ≤ e to derive

the following inequality

∥∥wt −w′t
∥∥2
2
≤ 4eG2η2

(
t+

( t∑
k=1

I[ik=n or ik−1=n]

)2)
.

13



By the inequality I[ik=n or ik−1=n] ≤ I[ik=n] + I[ik−1=n] and (a+ b)2 ≤ 2(a2 + b2) we know

EA
[( t∑

k=1

I[ik=n or ik−1=n]

)2] ≤ 2EA
[( t∑

k=1

I[ik=n
)2]

+ 2EA
[( t∑

k=1

I[ik−1=n

)2]
= 4E

[( t∑
k=1

I[ik=n]
)2] ≤ 4t+ 4

∑
j,k∈[t]:j 6=k

E
[
I[ij=n]I[ik=n]

]
= 4t+ 4

∑
j,k∈[t]:j 6=k

1

n2
≤ 4t+ 4t2/n2.

We can combine the above two inequalities together and derive

EA[‖wt −w′t‖22] ≤ 4eG2η2
(

5t+
4t2

n2

)
and by the convexity of ‖ · ‖22 it follows

EA[‖w̄t − w̄′t‖22] ≤ 1

t

t∑
j=1

EA[‖wj −w′j‖22] ≤ 4eG2η2
(

5t+
4t2

n2

)
.

This establishes the uniform stability of Algorithm 1. Furthermore, for any z, z′, we have

EA[f(w̄t, z, z
′)− f(w̄′t, z, z

′)] ≤GEA[‖w̄t − w̄′t‖2] = GEA
[√
‖w̄t − w̄′t‖22

]
≤G
√
EA[‖w̄t − w̄′t‖22] ≤ 2

√
eG2η

(√
5t+

2t

n

)
where the first inequality we used the G-Lipschitz continuity of f and the second inequality we
used the Jensen’s inequality. Therefore, Algorithm 1 is 2

√
eG2η

(√
5t + 2t

n

)
-uniformly stable. By

Lemma 1 it follows
EA[F (w̄t)− FS(w̄t)] ≤ 4

√
eG2η

(√
5t+

2t

n

)
,

which gives us the desired result.

To prove Theorem 5 we require the following lemma on the nonexpansiveness of gradient map
w 7→ w − η∇f(w; z, z′).
Lemma 2 (Hardt et al. 16). Assume for all z ∈ Z , the function w 7→ f(w; z, z′) is convex and
L-smooth. Then for all η ≤ 2/L and z, z′ ∈ Z there holds

‖w − η∇f(w; z, z′)−w′ + η∇f(w′; z, z′)‖2 ≤ ‖w −w′‖2.

Proof of Theorem 5. Let S′ = {z1, . . . , zn−1, z′n}, where z′n is independently drawn from ρ. Let
{w′t} be produced by Algorithm 1 w.r.t. S′. We consider two cases. If it 6= n and it−1 6= n, then it
follows from Lemma 2 that∥∥wt −w′t

∥∥
2
≤
∥∥wt−1 − ηt∇f(wt−1; zit , zit−1)−w′t−1 + ηt∇f(w′t−1; z′it , z

′
it−1

)
∥∥
2

=
∥∥wt−1 − ηt∇f(wt−1; zit , zit−1)−w′t−1 + ηt∇f(w′t−1; zit , zit−1)

∥∥
2

≤ ‖wt−1 −w′t−1‖2.

Otherwise, we know∥∥wt −w′t
∥∥
2
≤ ‖wt−1 −w′t−1‖2 + ηt

∥∥∇f(wt−1; zit , zit−1
)−∇f(w′t−1; z′it , z

′
it−1

)
∥∥
2

≤ ‖wt−1 −w′t−1‖2 + 2ηtG.

We can combine the above two cases together and derive the following inequality∥∥wt −w′t
∥∥
2
≤ ‖wt−1 −w′t−1‖2I[it 6=n and it−1 6=n] +

(
‖wt−1 −w′t−1‖2 + 2ηtG

)
I[it=n or it−1=n]

= ‖wt−1 −w′t−1‖2 + 2ηtGI[it=n or it−1=n].
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We can apply the above inequality recursively and get

∥∥wt −w′t
∥∥
2
≤ 2G

t∑
j=1

ηjI[ij=n or ij−1=n] ≤ 2G

t∑
j=1

ηj
(
I[ij=n] + I[ij−1=n]).

Taking expectations over both sides gives EA
[
‖wt − w′t

∥∥
2

]
≤ 4G

n

∑t
j=1 ηj . It then follows from

the convexity of ‖ · ‖2 that

EA
[
‖w̄t − w̄′t

∥∥
2

]
≤ 4G

n

t∑
j=1

ηj .

This establishes the uniform argument stability of Algorithm 1. Furthermore, it follows the Lipschitz
condition that

sup
z,z′

EA
[
f(w̄t; z, z

′)− f(w̄′t; z, z
′)
]
≤ 4G2

n

t∑
j=1

ηj .

The desired result then follows from Lemma 1. The proof for Theorem 5 is completed.

Finally, we consider the generalization analysis for nonconvex problems under the PL condition. To
prove Theorem 3, we first introduce a lemma motivated by the arguments in [16].

Lemma 3. Let S = {zi}i∈[n] and S′ = {z′i}i∈[n] be neighboring datasets differing by a single
example. Let {wt}t and {w′t}t be produced by Algorithm 1 w.r.t. S and S′, respectively. Let
Assumption (A1) hold and supz,z′ f(wi, z, z

′) ≤ B. Let 4t = ‖wt − w′t‖2. Then for every
z, z′ ∈ Z and every t0 ∈ [n], there holds

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
≤ GE

[
4T |4t0 = 0

]
+
Bt0
n
.

Proof. Without loss of generality, we assume that S and S′ differ by the last example. Let E denote
the event4t0 = 0. Then we have

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= E

[
|f(wT ; z, z′)− f(w′T ; z, z′)||E

]
Pr{E}

+ E
[
|f(wT ; z, z′)− f(w′T ; z, z′)||Ec

]
Pr{Ec},

where Ec denotes the complement of E . Furthermore, we know

Pr{Ec} ≤
t0∑
t=1

Pr{it = n} =
t0
n
.

We can combine the above two inequalities and the Lipschitz continuity of f to derive the stated
bound, which completes the proof.

B Proofs of Optimization Error (Theorems 6-9)

In this section, we prove optimization error bounds for SGD. We first consider convex cases, and
prove convergence rates in expectation (Theorem 6) and with high probability (Theorem 7). Then,
we establish convergence rates for SGD with nonconvex loss functions (Theorem 8 and Theorem 9).
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Proof of Theorem 6. Consider j ≥ 1. Note that f(·; z, z′) is α-strongly convex and G-Lipschitz
continuous, we have

‖wj −w‖22 ≤ ‖wj−1 − ηj∇f(wj−1; zij , zij−1
)−w‖22

= ‖wj−1 −w‖22 − 2ηj〈∇f(wj−1; zij , zij−1
),wj−1 −w〉+ η2j ‖∇f(wj−1; zij , zij−1

)‖22
≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−1; zij , zij−1

)− f(w; zij , zij−1
)] +G2η2j

= (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1
)− f(w; zij , zij−1

)]

+ 2ηj [f(wj−2; zij , zij−1
)− f(wj−1; zij , zij−1

)] +G2η2j

≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

+ 2ηjG‖wj−1 −wj−2‖2 +G2η2j

≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

+ 2G2ηjηj−1 +G2η2j , (B.1)

where the last inequality used the fact that ‖wj −wj−1‖2 = ηj‖∇f(wj ; zij , zij−1
)‖2 ≤ Gηj .

For the convex case, i.e. α = 0, we know from (B.1) that
t∑

j=1

ηj [f(wj−2; zij , zij−1
)− f(w; zij , zij−1

)]

≤ 1

2

t∑
j=1

[‖wj−1 −w‖22 − ‖wj −w‖22] +
G2

2

t∑
j=1

(2ηj−1ηj + η2j )

≤ 1

2
‖w0 −w‖22 +

G2

2

t∑
j=1

(2ηj−1ηj + η2j ). (B.2)

Taking the expectation on both sides of the above inequality and observing that f(·; z, z′) is convex,
we get the desired estimation (5).

For the strongly-convex case, i.e. α > 0, we obtain from (B.1) that

f(wj−2; zij , zij−1
)−f(w; zij , zij−1

) ≤
η−1j − α

2
‖wj−1−w‖22−

η−1j
2
‖wj−w‖22+G2ηj−1+

G2ηj
2

.

Now, we choose ηj = 2
α(j+1) for any j, which implies that

j[f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

≤ j(j − 1)α

4
‖wj−1 −w‖22 −

j(j + 1)α

4
‖wj −w‖22 +

2G2

α
+

G2j

α(j + 1)

≤ α

4
[j(j − 1)‖wj−1 −w‖22 − j(j + 1)‖wj −w‖22] +

3G2

α
.

Taking the summation over j implies that
t∑

j=1

j[f(wj−2; zij , zij−1
)− f(w; zij , zij−1

)]

≤ 3G2t

α
+
α

4

t∑
j=1

[j(j − 1)‖wj−1 −w‖22 − j(j + 1)‖wj −w‖22]

≤ 3G2t

α
+
α

4
[0− t(t+ 1)‖wt −w‖22] ≤ 3G2t

α
. (B.3)

Dividing both sides of the above inequality by
∑t
j=1 j yields the desired estimation in part (b).

To prove high-probability bounds, we require the following lemma on concentration inequalities of
martingales [6, 44].
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Lemma 4. Let z̃1, . . . , z̃n be a sequence of random variables such that z̃k may depend on
the previous variables z̃1, . . . , z̃k−1 for all k = 1, . . . , n. Consider a sequence of functionals
ξk(z̃1, . . . , z̃k), k = 1, . . . , n. Let α2

n =
∑n
k=1 Ez̃k

[(
ξk − Ez̃k [ξk]

)2]
be the conditional variance.

(1) Assume |ξk − Ez̃k [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ
n∑
k=1

Ez̃k [ξk]−
n∑
k=1

ξk ≤
(

2

n∑
k=1

b2k log
1

δ

) 1
2

. (B.4)

(2) Assume that ξk−Ez̃k [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability at least
1− δ we have

n∑
k=1

Ez̃k [ξk]−
n∑
k=1

ξk ≤
ρα2

n

b
+
b log 1

δ

ρ
. (B.5)

Proof of Theorem 7. For simplicity, we assume t is an even number. We first consider the convex
case. Let

ξj = η2j
(
f(w2j−2; zi2j , zi2j−1

)− f(w; zi2j , zi2j−1
)
)
, j ∈ [t/2].

It is obvious that |ξj − Ei2j ,i2j−1
[ξj ]| ≤ 2Bη2j . Let z̃j = (i2j , i2j−1). It is clear that z̃j , j ∈ [t/2]

are i.i.d. random variables. Therefore, one can apply Part (a) of Lemma 4 to derive the following
inequality with probability at least 1− δ/2

t/2∑
j=1

Ez̃j [ξj ]−
t/2∑
j=1

ξj ≤ 2B
(

2

t/2∑
j=1

η22j log(2/δ)
) 1

2

.

It is clear that Ez̃j [ξj ] = η2j
(
FS(w2j−2)−FS(w)

)
. Therefore, the following inequality holds with

probability at least 1− δ/2

t/2∑
j=1

η2j
(
FS(w2j−2)−FS(w)−f(w2j−2; zi2j , zi2j−1

)+f(w; zi2j , zi2j−1
)
)
≤ 2B

(
2

t/2∑
j=1

η22j log(2/δ)
) 1

2

.

In a similar way, one can derive the following inequality with probability at least 1− δ/2

t/2∑
j=1

η2j−1
(
FS(w2j−3)− FS(w)− f(w2j−3; zi2j−1 , zi2j−2)

+ f(w; zi2j−1 , zi2j−2)
)
≤ 2B

(
2

t/2∑
j=1

η22j−1 log(2/δ)
) 1

2

.

We can combine the above two inequalities together and derive the following inequality with prob-
ability 1− δ

t∑
j=1

ηj
(
FS(wj−2)−FS(w)−f(wj−2; zij , zij−1

)+f(w; zij , zij−1
)
)
≤ 2B

(
2

t∑
j=1

η2j log(2/δ)
) 1

2

.

We can combine the above inequality and Eq. (B.2) to derive the following inequality with proba-
bility at least 1− δ
t∑

j=1

ηj
(
FS(wj−2)−FS(w)

)
≤ 2B

(
2

t∑
j=1

η2j log(2/δ)
) 1

2

+
1

2
‖w0−w‖22 +G2

t∑
j=1

(
ηj−1ηj +

η2j
2

)
.

The stated bound then follows from the convexity of FS .

We now turn to the strongly convex case. Let

ξj = 2j(f(w2j−2; zi2j , zi2j−1
)− f(wS ; zi2j , zi2j−1

)), j ∈ [t/2].
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It is clear that |ξj − Ei2j ,i2j−1 [ξj ]| ≤ 4jB ≤ 2tB for j ∈ [t/2]. Furthermore, the conditional
variance satisfies

Ez̃j
[(
ξj − Ez̃j [ξj ]

)2] ≤ Ez̃j [ξ2j ] ≤ 4j2G2‖w2j−2 −wS‖22
≤ 8α−1j2G2

(
FS(w2j−2)− FS(wS)

)
,

where the first inequality follows from f is G-Lipschitz continuous, and the second inequality used
the fact ∇FS(wS) = 0 and f is α-strongly convex.

Note z̃j are independent random variables and

Ez̃j [ξj ] = 2j
(
FS(w2j−2)− FS(wS)

)
.

Therefore, we can apply Part (b) of Lemma 4 to derive the following inequality with probability at
least 1− δ/2

2

t/2∑
j=1

j
(
FS(w2j−2)− FS(wS)− f(w2j−2; zi2j , zi2j−1

) + f(wS ; zi2j , zi2j−1
)
)

≤
8G2ρ

∑t/2
j=1 j

2
(
FS(w2j−2)− FS(wS)

)
2tBα

+
2tB log(2/δ)

ρ
.

In a similar way, one can derive the following inequality with probability at least 1− δ/2

t/2∑
j=1

(2j − 1)
(
FS(w2j−3)− FS(wS)− f(w2j−3; zi2j−1

, zi2j−2
) + f(wS ; zi2j−1

, zi2j−2
)
)

≤
2G2ρ

∑t/2
j=1(2j − 1)2

(
FS(w2j−3)− FS(wS)

)
2tBα

+
2tB log(2/δ)

ρ
.

We can combine the above two inequalities together and derive the following inequality with prob-
ability at least 1− δ

t∑
j=1

j
(
FS(wj−2)− FS(wS)− f(wj−2; zij , zij−1) + f(wS ; zij , zij−1)

)

≤
2G2ρ

∑t
j=1 j

2
(
FS(wj−2)− FS(wS)

)
2tBα

+
2tB log(2/δ)

ρ
.

We can combine the above inequality and Eq. (B.3) together and derive the following inequality
with probability 1− δ
t∑

j=1

j
(
FS(wj−2)− FS(wS)

)
≤ 3G2t

α
+
G2ρ

∑t
j=1 j

(
FS(wj−2)− FS(wS)

)
Bα

+
2tB log(2/δ)

ρ
.

Now, we take ρ = min
{

1, Bα/(2G2)
}

and get the following inequality with probability at least
1− δ
t∑

j=1

j
(
FS(wj−2)−FS(wS)

)
≤ 3G2t

α
+

1

2

t∑
j=1

j
(
FS(wj−2)−FS(wS)

)
+2t log(2/δ) max

{
B, 2G2/α

}
and therefore

t∑
j=1

j
(
FS(wj−2)− FS(wS)

)
≤ 14G2t log(2/δ)

α
+ 4Bt log(2/δ).

The stated bound then follows from the convexity of FS . The proof is completed.

We now turn to nonconvex problems.
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Proof of Theorem 8. It is clear that FS is L-smooth and therefore

FS(wj) ≤ FS(wj−1) + 〈wj −wj−1,∇FS(wj−1)〉+
L

2
‖wj −wj−1‖22

= FS(wj−1)− ηj〈∇f(wj−1; zij , zij−1),∇FS(wj−1)〉+
Lη2j

2
‖∇f(wj−1; zij , zij−1)‖22

Taking expectations over both sides gives

EA[FS(wj)] ≤ EA[FS(wj−1)]− ηjEA
[
〈∇f(wj−1; zij , zij−1

),∇FS(wj−1)〉
]
+

Lη2j
2

EA
[
‖∇f(wj−1; zij , zij−1)‖22

]
. (B.6)

According to the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we know

EA
[
‖∇f(wj−1; zij , zij−1

)‖22
]

≤ 2EA
[
‖∇f(wj−1; zij , zij−1

)−∇f(wj−2; zij , zij−1
)‖22
]

+ 2EA
[
‖∇f(wj−2; zij , zij−1

)‖22
]

≤ 2LEA
[
‖wj−1 −wj−2‖22

]
+ 2α2

0 = 2Lη2j−1EA
[
‖∇f(wj−2; zij−1

, zij−2
)‖22
]

+ 2α2
0

≤ 1

2
EA
[
‖∇f(wj−2; zij−1 , zij−2)‖22

]
+ 2α2

0,

where we have used the L-smoothness, the assumption Eij ,ij−1

[
‖∇f(wj−2; zij , zij−1

)‖22
]
≤ α2

0

and 4Lη2j−1 ≤ 1. It is clear that EA
[
‖∇f(w0; zi1 , zi0)‖22

]
≤ α2

0. It is easy to use an induction and
the above inequality to show that

EA
[
‖∇f(wj−1; zij , zij−1

)‖22
]
≤ 4α2

0, ∀j. (B.7)

Furthermore, the smoothness assumption implies that〈
∇f(wj−1; zij , zij−1),∇FS(wj−1)

〉
=
〈
∇f(wj−2; zij , zij−1

),∇FS(wj−1)
〉

+
〈
∇f(wj−1; zij , zij−1

)−∇f(wj−2; zij , zij−1
),∇FS(wj−1)

〉
=
〈
∇f(wj−2; zij , zij−1

),∇FS(wj−2)
〉

+
〈
∇f(wj−2; zij , zij−1

),∇FS(wj−1)−∇FS(wj−2)
〉
+

+
〈
∇f(wj−1; zij , zij−1)−∇f(wj−2; zij , zij−1),∇FS(wj−1)

〉
≥
〈
∇f(wj−2; zij , zij−1

),∇FS(wj−2)
〉
− L‖wj−1 −wj−2‖2

(
‖∇f(wj−2; zij , zij−1

)‖2 + ‖∇FS(wj−1)‖2
)
.

According to Schwartz inequality, the variance assumption and Eq. (B.7), we know

EA
[
‖wj−1 −wj−2‖2

(
‖∇f(wj−2; zij , zij−1

)‖2 + ‖∇FS(wj−1)‖2
)]

≤ 1

2ηj−1
EA
[
‖wj−1 −wj−2‖22

]
+ ηj−1EA

[
‖∇f(wj−2; zij , zij−1

)‖22 + ‖∇FS(wj−1)‖22
]

=
ηj−1

2
EA
[
‖∇f(wj−2; zij−1 , zij−2)‖22

]
+ ηj−1EA

[
‖∇f(wj−2; zij , zij−1)‖22 + ‖∇FS(wj−1)‖22

]
≤ 2α2

0ηj−1 + 2α2
0ηj−1.

We can combine the above two inequalities together and get

EA
[〈
∇f(wj−1; zij , zij−1),∇FS(wj−1)

〉]
≥ EA

[〈
∇f(wj−2; zij , zij−1),∇FS(wj−2)

〉]
−4Lα2

0ηj−1.

We can combine (B.6), (B.7) and the above inequality, and get

EA[FS(wj)] ≤ EA[FS(wj−1)]− ηjEA
[〈
∇f(wj−2; zij , zij−1

),∇FS(wj−2)
〉]

+ 4Lα2
0ηjηj−1 + 2Lη2jα

2
0

≤ EA[FS(wj−1)]− ηjEA
[
‖∇FS(wj−2)‖22

]
+ 4Lα2

0

(
ηjηj−1 + η2j

)
,

where the last inequality holds since wj−2 is independent of ij and ij−1. The above inequality can
be reformulated as

ηjEA
[
‖∇FS(wj−2)

∥∥2
2

]
≤ EA[FS(wj−1)]− EA[FS(wj)] + 4Lα2

0

(
ηjηj−1 + η2j

)
. (B.8)

We can take a summation of the above inequality and get
t∑

j=1

ηjEA
[
‖∇FS(wj−2)‖22

]
≤ FS(w0) + 4Lα2

0

t∑
j=1

(
ηjηj−1 + η2j

)
.
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Since ηj = η, we further get

t∑
j=1

EA
[
‖∇FS(wj−2)‖22

]
≤ η−1FS(w0) + 8Lα2

0tη.

The proof is completed.

Proof of Theorem 9. According to the elementary inequality 1
2 (a+ b)2 ≤ a2 + b2 we know

EA
[
‖∇FS(wj−2)

∥∥2
2

]
≥ −EA

[
‖∇FS(wj−2)−∇FS(wj−1)‖22

]
+ 2−1EA

[
‖∇FS(wj−1)‖22

]
≥ −LEA

[
‖wj−2 −wj−1‖22

]
+ 2−1EA

[
‖∇FS(wj−1)‖22

]
= −Lη2j−1EA

[
‖∇f(wj−2; zij−1 , zij−2)‖22

]
+ 2−1EA

[
‖∇FS(wj−1)‖22

]
≥ −4Lη2j−1α

2
0 + 2−1EA

[
‖∇FS(wj−1)‖22

]
,

where we have used (B.7). This together with (B.8) gives

2−1ηjEA
[
‖∇FS(wj−1)

∥∥2
2

]
≤ 4Lηjη

2
j−1α

2
0+EA[FS(wj−1)]−EA[FS(wj)]+4Lα2

0

(
ηjηj−1+η2j

)
.

It then follows from the PL condition that

µηjEA
[
FS(wj−1)−FS(wS)

]
≤ EA[FS(wj−1)]−EA[FS(wj)] + 4Lα2

0

(
ηjηj−1 + η2j + ηjη

2
j−1
)
.

We can reformulate the above inequality as

EA[FS(wj)− FS(wS)] ≤ (1− µηj)EA[FS(wj−1)− FS(wS)] + 4Lα2
0

(
ηjηj−1 + η2j + ηjη

2
j−1
)
.

Now, taking ηj = 2/(µ(j + 1)), we get

EA[FS(wj)− FS(wS)] ≤ j − 1

j + 1
EA[FS(wj−1)− FS(wS)] +

4Lα2
0

µ2

( 8

j(j + 1)
+

8

j2(j + 1)µ

)
.

We can multiple both sides by j(j + 1) and get

j(j + 1)EA[FS(wj)− FS(wS)] ≤ (j − 1)jEA[FS(wj−1)− FS(wS)] +
4Lα2

0

µ2

(
8 + 8j−1µ−1

)
.

Taking a summation of the above inequality gives

t(t+ 1)EA[FS(wt)− FS(wS)] ≤ 32Lα2
0

µ2

t∑
j=1

(
1 + j−1µ−1

)
.

The stated bound then follows. The proof is completed.

C Proofs of Excess Generalization Error (Theorems 1-3)

In this section, we prove Theorem 1, Theorem 2 and Theorem 3 on excess generalization error
bounds.

Proof of Theorem 1. According to Theorem 4, we know

ES,A[F (w̄T )− FS(w̄T )] = O
(√

Tη +
Tη

n

)
.

Furthermore, according to Part (a) of Theorem 6 with w = w∗, we know

ES,A[FS(w̄T )− FS(w∗)] = O
(1 + Tη2

Tη

)
. (C.1)

We can plug the above generalization error bound and optimization error bound back into the error
decomposition (2), and get (3). Taking T � n2 and η � T−

3
4 in Eq. (3), we immediately get

ES,A[F (w̄T )]− F (w∗) = O(1/
√
n). The desired result is proved.
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Proof of Theorem 2. According to Theorem 5, we know

ES,A[F (w̄T )− FS(w̄T )] = O
(Tη
n

)
.

We can plug the above generalization error bound and the optimization error bound (C.1) back into
the error decomposition (2), and get (4). Taking T � n2 and η � T−

3
4 in Eq. (4), we immediately

get ES,A[F (w̄T )]− F (w∗) = O(1/
√
n). The proof is completed.

Proof of Theorem 3. Let S′ = {z1, . . . , zn−1, z′n}, where z′n is independently drawn from ρ. Let
{w′t} be produced by Algorithm 1 w.r.t. S′. If it 6= n and it−1 6= n, then

‖wt −w′t‖2 ≤
∥∥wt−1 − ηt∇f(wt−1; zit , zit−1)−w′t−1 − ηt∇f(w′t−1; zit , zit−1)

∥∥
2

≤ ‖wt−1 −w′t−1‖2 + ηt‖∇f(wt−1; zit , zit−1)−∇f(w′t−1; zit , zit−1)‖2
≤ (1 + Lηt)‖wt−1 −w′t−1‖2,

where in the last inequality we used the smoothness of f .

Otherwise, it follows from the Lipschitz condition that ‖wt − w′t‖2 ≤ ‖wt−1 − w′t−1‖2 + 2Gηt.
Consequently, it follows that

‖wt −w′t‖2 ≤ (1 + Lηt)‖wt−1 −w′t−1‖2I[it 6=n and it−1 6=n]

+
(
‖wt−1 −w′t−1‖2 + 2Gηt

)
I[it=n or it−1=n]

≤ (1 + Lηt)‖wt−1 −w′t−1‖2 + 2GηtI[it=n or it−1=n].

We can apply the above inequality recursively and get

4t ≤ 2G

t∑
k=t0+1

ηkI[ik=n or ik−1=n]

t∏
k′=k+1

(1 + Lηk′) +4t0
t∏

k=t0+1

(1 + Lηk).

Since4t0 = 0 implies it0 6= n, we have

E[4t|4t0 = 0] ≤ 2G

t∑
k=t0+1

ηkE
[
I[ik=n or ik−1=n]|4t0 = 0

] t∏
k′=k+1

(1 + Lηk′)

= 2G

t∑
k=t0+2

ηkE
[
I[ik=n or ik−1=n]|4t0 = 0

] t∏
k′=k+1

(1 + Lηk′)

= 2G

t∑
k=t0+2

ηkE
[
I[ik=n or ik−1=n]

] t∏
k′=k+1

(1 + Lηk′),

where we have used the independency between4t0 and it for t > t0. It then follows that

E[4t|4t0 = 0] ≤ 2G

t∑
k=t0+2

ηkE
[
I[ik=n] + I[ik−1=n]

] t∏
k′=k+1

(1 + Lηk′)

≤ 4G

n

t∑
k=t0+2

ηk

t∏
k′=k+1

exp(Lηk′) ≤
8G

µn

t∑
k=t0+2

1

k + 1
exp

(
2Lµ−1

t∑
k′=k+1

1

k′ + 1

)

≤ 8G

µn

t∑
k=t0+2

1

k + 1
exp

(
2Lµ−1 log(t/k)

)
=

8G

µn

t∑
k=t0+2

1

k + 1

( t
k

)2Lµ−1

≤ 8Gt2Lµ
−1

µn

t∑
k=t0+2

k−1−2Lµ
−1

≤ 8G

µn(2Lµ−1)

( t
t0

)2Lµ−1

.

Here we use 1 + x ≤ exp(x) and ηj = 2
µ(j+1) . We can plug the above inequality back into Lemma

3 and derive

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
≤ 4G2

nL

(T
t0

)2Lµ−1

+
Bt0
n
.
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We can choose t0 � T
2L

2L+µ and get the following generalization error bounds

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= O

(T 2L
2L+µ

n

)
.

Lemma 1 then implies E
[
F (wT )− FS(wT )

]
= O

(
T

2L
2L+µ

n

)
. Furthermore, according to Theorem

9 we have the following optimization error bounds

EA[FS(wT )]− inf
w

[FS(w)] = O
(
1/(Tµ2)

)
.

The desired result follows by combining the above two inequalities together and using the fact
E[infw[FS(w)] ≤ E[FS(w∗)] = F (w∗).

D Proof of Privacy and Utility Guarantees of Algorithm 3 (Theorem 10)

In this section, we present the proof of Theorem 10 on the privacy guarantee and excess generaliza-
tion bound of Algorithm 3.

To this end, we need the definition of `2-sensitivity in terms of high probability and some lemmas.
The `2-sensitivity definition given below corresponds to the high probability version of uniform
argument stability stated in Definition 1.
Definition 3. For any γ ∈ (0, 1), a (randomized) algorithm A has `2-sensitivity of ∆ with proba-
bility at least 1− γ if for any neighboring datasets S, S′ ∈ Zn, one has ‖A(S)−A(S′)‖2 ≤ ∆.

The next lemma demonstrates that Gaussian mechanism ensures the privacy of an algorithm with
high probability `2-sensitivity.
Lemma 5. Let A : Zn → Rd be a randomized algorithm with `2-sensitivity of ∆ with prob-
ability at least 1 − δ/2. Then the Gaussian mechanism M(S) = A(S) + u where u ∼
N (0, (2∆2 log(2.5/δ)/ε2)Id) satisfies (ε, δ)-DP.

Proof. Let S and S′ be two neighboring datasets. DenoteE as the set whenA satisfies `2-sensitivity
of ∆, i.e. E = {‖A(S)−A(S′)‖2 ≤ ∆}. Then we know P[E] ≥ 1−δ/2. In favor ofE, by classical
results for Gaussian mechanism, we knowM satisfies (ε, δ/2)-DP with σ = ∆

√
2 log(2.5/δ)/ε.

Therefore, for any ε > 0 and any event O in the output space ofM, we have

P[M(S) ∈ O] =P[M(S) ∈ O|E]P[E] + P[M(S) ∈ O|Ec]P[Ec]

≤
(
eεP[M(S′) ∈ O|E] +

δ

2

)
P[E] +

δ

2

≤eεP[M(S′) ∈ O ∩ E] +
δ

2
+
δ

2
≤eεP[M(S′) ∈ O] + δ

where the first inequality is becauseM satisfies (ε, δ/2)-DP when E occurs and P[Ec] ≤ δ/2, the
second and third inequalities are by basic properties of probability. The proof is completed.

We need the following Chernoff’s bound for a summation of independent Bernoulli random vari-
ables [40].
Lemma 6 (Chernoff bound for Bernoulli vector). LetX1, . . . , Xt be independent random variables
taking values in {0, 1}. Let X =

∑t
j=1Xj and µ = E[X]. Then for any γ̃ > 0, with probability at

least 1− exp
(
− µγ̃2/(2 + γ̃)

)
we have X ≤ (1 + γ̃)µ.

In order to prove the privacy guarantee and excess generalization bound for Algorithm 3, we also
need the following high probability `2-sensitivity of the output of Algorithm 1.
Lemma 7. Let {w̄t} and {w̄′t} be produced by Algorithm 1 based on the neighboring datasets S
and S′, respectively. If f is convex and L-smooth and ηt = η ≤ 2/L, then with probability at least
1− γ we have

‖w̄t − w̄′t
∥∥
2
≤ 4Gη

( t
n

+ log(2/γ) +

√
t log(2/γ)

n

)
.
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Proof. Without loss of generality, we assume the different example between S and S′ is the n-th
item. By the proof of Theorem 5, we know

∥∥wt −w′t
∥∥
2
≤ 2G

t∑
j=1

ηjI[ij=n or ij−1=n] ≤ 2G

t∑
j=1

ηj
(
I[ij=n] + I[ij−1=n]).

Applying Lemma 6, with probability at least 1− γ there holds

t∑
j=1

(I[ij=n] + I[ij−1=n]) ≤
2t

n
+ 2 log(2/γ) + 2

√
t log(2/γ)

n
.

It then follows from the convexity of ‖ · ‖2 that

‖w̄t − w̄′t
∥∥
2
≤ 4Gη

( t
n

+ log(2/γ) +

√
t log(2/γ)

n

)
,

which implies the desired result.

With the above preparations, we are now ready to prove Theorem 10.

Proof of Theorem 10. We first consider the privacy guarantee of Algorithm 3. Since we run Algo-
rithm 1 for dnk log(4/δ)e steps for each k, by Lemma 7, we know with probability 1− δ/2

‖w̄k − w̄′k
∥∥
2
≤ 12Gηk log(4/δ).

Therefore, by Lemma 5, each iteration k of Algorithm 3 is (ε, δ)-DP. Since the partition of the
dataset S is disjoint, and each iteration k of Algorithm 3 we only use one subset, thus the whole
process satisfies (ε, δ)-DP.

Next we investigate the utility bound of Algorithm 3. Let w̄0 = w∗ and u0 = w0 −w∗, then

E[F (wK)− F (w∗)] =

K∑
k=1

E[F (w̄k)− F (w̄k−1)] + E[F (wK)− F (w̄K)] (D.1)

Denote FSk be the empirical objective based on sample Sk. For the first term on the RHS of (D.1),
we have

E[F (w̄k)− F (w̄k−1)]

= E[F (w̄k)− FSk(w̄k)] + E[FSk(w̄k)− FSk(w̄k−1)] + E[FSk(w̄k−1)− F (w̄k−1)]

= E[F (w̄k)− FSk(w̄k)] + E[FSk(w̄k)− FSk(w̄k−1)]

≤ 8G2 log(4/δ)ηk +
(E[‖uk−1‖22]

2ηknk
+

3G2ηk
2

)
≤ E[‖uk−1‖22]

2ηknk
+ 18 log(4/δ)G2ηk,

where the second identity is because w̄k−1 is independent of Sk and the inequality follows from
Theorem 6 Part (a) and Theorem 5. Recall that by definition η ≤ Dε

12G log(4/δ)
√

2d log(2.5/δ)
, so that

for all k ≥ 0,

E[‖uk‖22] = dσ2
k = d

(4−kGη

ε

)2
≤ 16−kD2.

Plugging the above estimate into (D.1) it follows

E[F (wK)− F (w∗)] ≤
K∑
k=1

8 · 16−kD2

4−k2−kηn
+ 18 log(4/δ)4−kG2η + 4−KGD

≤
K∑
k=1

2−k
(8D2

ηn
+ 18 log(4/δ)G2η

)
+
GD

n2

=O
(
GD

( 1√
n

+

√
d log

3
2 (1/δ)

εn

))
,
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where in the second inequality used K = dlog2 ne, and the last inequality is due to η =
D
G min{ log(4/δ)√

n
, ε

12 log(4/δ)
√

2d log(2.5/δ)
}. The desired excess generalization error bound is proved.

Finally, we investigate the gradient complexity argument. Since we run Algorithm 1 for nk at
iteration k. Therefore, the total gradient complexity is O

(∑K
k=1 nk

)
= O(n log(1/δ)). The proof

is completed.

E Additional Results: Localization-Based Algorithm to Improve Theorem 1

In this section, we provide additional results on how to reduce the gradient complexity O(n2) re-
quired in Theorem 1 to O(n) for nonsmooth problems. This improvement is attained by Algorithm
4 which is motivated by the iterative localization technique [12].

Algorithm 4 Localized SGD for Pairwise Learning

1: Inputs: Dataset S = {zi : i = 1, . . . , n}, parameter ζ, initial point w0

2: Set K = dlog2 ne and divide S into K disjoint subsets {S1, · · · , SK} such that |Sk| = nk =
2−kn

3: for k = 1 to K do
4: Set ζk = 2−kζ
5: Compute w̄k ∈ W by Algorithm 1 with step sizes ηj = ζknk

j+1 , j ∈ [Tk] and Tk � nk
iterations based on the objective Fk where

Fk(w;Sk) =
1

nk(nk − 1)

∑
z,z′∈Sk:z 6=z′

f(w; z, z′) +
1

ζknk
‖w − w̄k−1‖22

6: Outputs: w̄K

The next theorem shows that the empirical risk minimization can imply models with good excess
generalization error by Algorithm 4.
Theorem E.1. Let (A1) and (A3) hold true with α = 0 and let D be the diameter of W . Let
{w̄k : k ∈ [K]} be produced by Algorithm 4 with ζ = D

G
√
n

. Then we have the following excess
generalization error bounds

E[F (w̄K)− F (w∗)] = O
(GD√

n

)
with gradient complexity O(n).

We provide two technical lemmas before we present the proof of Theorem E.1.
Lemma 8. Let (A1) and (A3) hold true with α = 0 and let ŵk = arg minw Fk(w;Sk), then

E[‖w̄k − ŵk‖22] = O
(
G2ζ2knk

)
.

Proof. Note that Fk is αk = 2
ζknk

-strongly convex, by the convergence of Algorithm 1 in Theorem
6 Part (b), we know that

αk
2
E[‖w̄k − ŵk‖22] ≤ E[Fk(w̄k;Sk)− Fk(ŵk;Sk)] = O

( G2

αknk

)
which implies

E[‖w̄k − ŵk‖22] = O
(
G2ζ2knk

)
.

The proof is completed.

Lemma 9. Let (A1) and (A3) hold true with α = 0. For any w ∈ W , we know that

E[F (ŵk)− F (w)] ≤ E[‖w̄k−1 −w‖22]

ζknk
+ 2G2ζk.
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Proof. Let r(w; z, z′) = f(w, z, z′) + 1
ζknk
‖w − w̄k−1‖22, R(w) = Ez,z′ [r(w; z, z′)] and w∗R =

arg minw∈W R(w). By the proof of Theorem 6 in Shalev-Shwartz et al. [32] , one has that

E[F (ŵk) +
1

ζknk
‖ŵk − w̄k−1‖22 − F (w)− 1

ζknk
‖w − w̄k−1‖22]

= E[R(ŵk)−R(w)] ≤ E[R(ŵk)−R(w∗R)] ≤ 2G2ζk,

which implies that

E[F (ŵk)− F (w)] ≤2G2ζk −
1

ζknk
E[‖ŵk − w̄k−1‖22] +

1

ζknk
E[‖w − w̄k−1‖22]

≤2G2ζk +
1

ζknk
E[‖w − w̄k−1‖22].

The proof is completed.

Proof of Theorem E.1. Let ŵ0 = w∗, we have

E[F (w̄K)]− F (w∗) =

K∑
k=1

E[F (ŵk)− F (ŵk−1)] + E[F (w̄K)− F (ŵK)]. (E.1)

For the first term we have
K∑
k=1

E[F (ŵk)− F (ŵk−1)] ≤
K∑
k=1

(E[‖w̄k−1 − ŵk−1‖22]

ζknk
+ 2G2ζk

)
=O

(D2

ζn
+

K∑
k=2

G2ζk +

K∑
k=1

2−kG2ζ
)

=O
(D2

ζn
+G2ζ

)
(E.2)

where the first inequality is by Lemma 9, the second inequality is by Lemma 8 and ζ = D
G
√
n

. For
the second term we have

E[F (w̄K)− F (ŵK)] ≤GE[‖w̄K − ŵK‖2] ≤ G
√

E[‖w̄K − ŵK‖22] = O
(
G2ζK

√
nK
)

=O
(

2−2KG2ζ
√
n
)

= O
(
G2ζ

)
(E.3)

where the first inequality is by G-Lipschitz continuity of F , the second inequality is by Jensen’s
inequality, the first identity is by Lemma 8 and the second identity is by nk = 2−kn.

Now putting (E.2) and (E.3) back to (E.1) and using ζ = D
G
√
n

, we derive

E[F (w̄K)]− F (w∗) = O
(GD√

n

)
.

Finally we investigate the gradient complexity. Since Fk is 2
ζknk

-strongly convex, by Theorem
6 Part (b), we need to choose Tk � nk so that Lemma 8 holds. Therefore, in total, we require
O
(∑K

k=1 nk

)
= O(n) gradient complexity, which yields the desired result.

F Additional Results: Differentially Private SGD for Pairwise Learning
with Non-Smooth Losses

In this section, we propose a differentially private algorithm based on iterative localization [12] for
nonsmooth pairwise learning problems. The algorithm is presented as follows.

We are now ready to present the privacy guarantee and utility bound of Algorithm 5 in the following
theorem. The proof differs from the iterative localization algorithm in pointwise learning [12] since
we employ our high probability convergence results for non-smooth losses in pairwise learning.
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Algorithm 5 Differentially Private Localized SGD for Pairwise Learning

1: Inputs: Dataset S = {zi : i ∈ [n]}, parameters ε, δ, and ζ, initial points w0

2: Set K=dlog2 ne and divide S into K disjoint subsets {S1, · · · , SK} where |Sk|=nk=2−kn.
3: for k = 1 to K do
4: Set ζk = 4−kζ
5: Compute w̄k ∈ W by Algorithm 1 with step sizes ηj = ζknk

j+1 on objective Fk such that with
prob 1− δ,

Fk(w̄k;Sk)− min
w∈W

Fk(w;Sk) ≤ G2ζk/nk

where Fk(w;Sk) = 1
nk(nk−1)

∑
z,z′∈Sk:z 6=z′ f(w; z, z′) + 1

ζknk
‖w −wk−1‖22

6: Set wk = w̄k + uk where uk ∼ N (0, α2
kId) with σk = 4Gζk

√
log(2.5/δ)/ε.

7: Outputs: wK

Theorem F.1. Let (A1) and (A3) hold true with α = 0 and let D be the diameter of W . Let
{wk : k ∈ [K]} be produced by Algorithm 5 with ζ = D

G min{ 4√
n
, ε

4
√
d log(1/δ)

}. Then Algorithm

5 satisfies (ε, δ)-DP. Furthermore we have the following excess generalization error bounds

E[F (wK)− F (w∗)] = O
(
GD

( 1√
n

+

√
d log(1/δ)

εn

))
with no more than O(n2 log(1/δ)) stochastic gradient computations.

Proof of Theorem F.1. We first consider the privacy guarantee of Algorithm 5. For any neigh-
boring datasets S = {S1, . . . , SK} and S′ = {S′1, . . . , S′K} differing by one example, where S′
follows the same partition as S, and Si ∩ Sj = ∅ if i 6= j. Let ŵk = arg minw Fk(w;Sk) and
ŵ′k = arg minw Fk(w;S′k). We first investigate the `2-sensitivity of ŵk. Since Fk is αk = 2

ζknk
-

strongly convex, by Theorem 6 in Shalev-Shwartz et al. [32] we have

‖ŵk − ŵ′k‖2 ≤
4G

αknk
= 2Gζk,

where w̄′k is the return from Line 5 in Algorithm 5 based on Fk(w;S′k). By the strong convexity of
Fk again, we have with probability at least 1− δ

αk
2
‖w̄k − ŵk‖22 ≤ Fk(w̄k;Sk)− Fk(ŵk;Sk) ≤ G2ζk

nk

which implies ‖w̄k − ŵk‖2 ≤ Gζk. This further implies w̄k has `2-sensitivity of 4Gζk with
probability 1 − δ. Therefore, by Lemma 5, each iteration k of Algorithm 5 is (ε, δ)-DP. Since the
partition of the dataset S is disjoint, and each iteration k of Algorithm 5 we only use one subset,
thus the whole process will still be (ε, δ)-DP.

Next we investigate the utility bound of Algorithm 5. Firstly, for any fixed w,

E[F (w̄k)− F (w)] =E[F (ŵk)− F (w)] + E[F (w̄k)− F (ŵk)]

≤E[‖wk−1 −w‖22]

ζknk
+ 3G2ζk

where we used Lemma 9 and ‖w̄k − ŵk‖2 ≤ Gζk. Denote w̄0 = w∗ and u0 = w0 −w∗, we have

E[F (wK)− F (w∗)] =

K∑
k=1

E[F (w̄k)− F (w̄k−1)] + E[F (wK)− F (w̄K)]

≤
K∑
k=1

(E[‖uk−1‖22]

ζknk
+ 3G2ζk

)
+GE[‖uK‖2]. (F.1)

Recall that by definition ζ ≤ Dε

4G
√
d log(2.5/δ)

, so that for all k ≥ 0, there holds

E[‖uk‖22] = dσ2
k = d

(4−kGζ

ε

)2
≤ 16−kD2.
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Plugging the above estimate into (F.1) it follows

E[F (wK)− F (w∗)] ≤
K∑
k=1

2−k
(8D2

ζn
+ 3G2ζ

)
+ 4−KGD

≤
K∑
k=1

2−kGD
( 8

n
max

{√
n,

√
d log(1/δ)

ε

}
+

1

2
√
n

)
+
GD

n2

≤9GD
( 1√

n
+

√
d log(1/δ)

nε

)
+
GD

n2
.

This yields the desired utility bound.

Finally, we investigate the gradient complexity argument. Since Fk is 2
ζknk

-strongly convex. We
know from Theorem 7 Part (b), after Tk � n2k log(1/δ) iterations, we have with probability 1− δ

Fk(w̄k;Sk)−min
w

Fk(w;Sk) = O
(G2ζknk log(1/δ)

n2k log(1/δ)

)
= O

(G2ζk
nk

)
which satisfies the requirement at Line 5 of Algorithm 5. Therefore, in total the gradient complexity
is of the form O

(∑K
k=1 n

2
k log(1/δ)

)
= O

(
n2 log(1/δ)

)
. The proof is completed.

G Additional Experiments

In this section, we provide the experimental details and additional experiments to support our the-
oretical findings. The datasets we used are from LIBSVM website [9]. The statistics of the data is
included in Table G.1. For data with multiple classes, we convert the first half of class numbers to
be the positive class and the second half of class numbers to be the negative class.

Table G.1: Data Statistics. n is the number of samples and d is the number of features.

diabtes german ijcnn1 letter mnist usps
n 768 1,000 49,990 15,000 60,000 7,291
d 8 24 22 161 780 256

Table G.2: Average AUC score ± standard deviation across multiple datasets. Our best results are
highlighted in bold.

Algorithm diabetes german ijcnn1 letter mnist usps
Our .831± .030 .793± .021 .934± .002 .810± .007 .932± .001 .926± .006

SGDpair [27] .830± .028 .794± .023 .934± .003 .811± .008 .932± .001 .925± .006
OLP [22] .825± .028 .787± .028 .916± .003 .808± .010 .927± .003 .917± .006

OAMgra [45] .828± .026 .785± .029 .930± .003 .806± .008 .898± .002 .916± .005
OLP-RS1 .736± .074 .630± .065 .668± .026 .683± .033 .749± .045 .737± .056
OAM-RS1 .737± .069 .640± .058 .677± .014 .675± .050 .685± .042 .691± .059
SPAUC [26] .828± .031 .799± .026 .932± .002 .809± .008 .927± .002 .923± .005

For each dataset, we have used 80% of the data for training and the remaining 20% for testing.
The results are based on 25 runs of random shuffling. The generalization performance is reported
using the average AUC score and standard deviation on the test data. To determine proper hyper
parameters, we conduct 5-fold cross validation on the training sets: 1) for Algorithm 1 and SGDpair,
we select step sizes ηt = η ∈ 10[−3:3] andW diameter D ∈ 10[−3:3]; 2) for OLP we select step sizes
ηt = η/

√
t where η ∈ 10[−3:3] andW diameter D ∈ 10[−3:3]; 3) for OAMgra we select learning rate

parameter C ∈ 10[−3:3]; 4) for SPAUC we select step sizes ηt = η/
√
t where η ∈ 10[−3:3].

Firstly, Table G.2 summarizes the generalization performance of different algorithms which contains
more comparison results than Table 1. In particular, two additional results are added for comparison,
i.e. OLP-RS1 and OAM-RS1 which denote the OLP [22] and OAMgra [45] with Reservoir sampling and
the buffering set size s = 1, respectively. We can see that OLP-RS1 and OAM-RS1 are inferior to
other algorithms. This inferior performance for OLP and OAM with a small buffering set was also
observed in the experiments of [22, 45].
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Figure G.1: More CPU running time against AUC score for the hinge loss

Secondly, we also report more plots on CPU running time against the AUC score on different
datasets. Figure G.1 contains more convergence plots for the hinge loss. For a fair comparison
of Algorithm 1 with SPAUC, the loss function is chosen as the least square loss for Algorithm 1,
SGDpair and OLP. The results are shown in Figure G.2. We can see there that SPAUC performs
very well among most of the datasets. However, this algorithm was designed very specifically for
the AUC maximization problem with the least square loss while our algorithm can handle any loss
functions and any pairwise learning problems. We can also observe that our algorithm and SGDpair
converge in a similar CPU running time. In fact, Algorithm 1 is slightly faster than SGDpair when
the number of samples gets larger. This is partly due to different sampling schemes in Algorithm
1 and SGDpair. Indeed, at each iteration SGDpair picks a random pair of examples from

(
n
2

)
pairs,

while Algorithm 1 only needs to randomly pick one example from n individual ones. Figure G.3
depicts the CPU times of these two sampling schemes versus the the number of examples n. We can
see that, when the sample size n increases, the sampling scheme used in SGDpair needs significantly
more time than our algorithm.

Figure G.2: AUC score against CPU running time for the square loss

Figure G.3: CPU running time of different sampling schemes against the sample size n

Next, we investigate our Algorithm 1 in the non-convex setting. To this end, we use the logistic link
function logit(t) = (1 + exp(−t))−1 and then the square loss surrogate function `(t) = (1 − t)2.
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Figure G.4: Convergence of Algorithm 1 for the generalized linear model

That is, the loss function for the problem of AUC maximization becomes f(w; (x, y), (x′, y′)) =
(1 − logit(w>(x − x′))2I[y=1∧y′=−1]. Although f is non-convex, it was shown that it satisfies
the PL condition [13]. The results are reported in Figure G.4 which shows that Algorithm 1 also
converges very quickly in this non-convex setting.

Finally, we compare our differentially private algorithm for AUC maximization (i.e. Algorithm 3)
with the logistic loss `(t) = log(1 + exp(−t)) against the state-of-art algorithm DPEGD [39]. DPEGD
used gradient descent and the localization technique to guarantee privacy. Algorithm 1 was used as
non-private baseline, i.e. ε = 0. Here, δ = 1

n as suggested in the previous work [39]. We consider
the effect of different privacy budget ε’s against the generalization ability. The implementation
across all algorithms is based on fixed training size 256. Average AUC scores over 25 times repeated
experiments are listed in Table G.3 and G.4 for the datasets of diabetes and german, respectively.
These results demonstrate Algorithm 3 achieves competitive performance with DPEGD using full
gradient descent.

Table G.3: Average AUC ± standard deviation on diabetes. Non-Private result is .813± .016.

Algorithm ε = 0.2 ε = 0.5 ε = 0.8 ε = 1.0 ε = 1.5 ε = 2.0

Our .690± .094 .751± .028 .771± .016 .783± .024 .784± .018 .789± .018
DPEGD [39] .624± .109 .727± .055 .768± .027 .796± .011 .797± .017 .792± .016

Table G.4: Average AUC ± standard deviation on german. Non-Private result is .763± .016.

Algorithm ε = 0.2 ε = 0.5 ε = 0.8 ε = 1.0 ε = 1.5 ε = 2.0

Our .614± .035 .672± .064 .721± .024 .725± .032 .747± .019 .749± .021
DPEGD [39] .598± .018 .703± .039 .723± .029 .742± .028 .753± .017 .757± .018

We also report the CPU running times of Algorithm 3 and DPEGD. In this setting, we fix the privacy
budget ε = 1 and vary the training size n. The results are reported in Table G.5. These results shows
that Algorithm 3 can arrive competitive performance with DPEGD with less CPU running time.

Table G.5: Average AUC score and average CPU running time ± standard deviation.

Algorithm diabetes german
n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

Our AUC .709± .051 .788± .019 .790± .021 .681± .029 .692± .032 .734± .022
Time .046± .010 .096± .019 .135± .026 .377± .097 .637± .136 .767± .151

DPEGD [39] AUC .705± .070 .772± .017 .777± .023 .687± .033 .700± .038 .755± .019
Time .421± .067 .885± .158 1.41± .248 1.00± .185 1.88± .273 2.57± .421
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