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Abstract

Online pairwise learning algorithms with general convex loss functions without

regularization in a Reproducing Kernel Hilbert Space (RKHS) are investigated.

Under mild conditions on loss functions and the RKHS, upper bounds for the

expected excess generalization error are derived in terms of the approximation

error when the stepsize sequence decays polynomially. In particular, for Lips-

chitz loss functions such as the hinge loss, the logistic loss and the absolute-value

loss, the bounds can be of order O(T−
1
3 log T ) after T iterations, while for the

least squares loss, the bounds can be of order O(T−
1
4 log T ). In comparison with

previous works for these algorithms, a broader family of convex loss functions

is studied here, and refined upper bounds are obtained.

Keywords:

Learning theory, Online learning, Learning Theory, Reproducing Kernel

Hilbert Space, Pairwise learning

1. Introduction1

Many classical learning tasks can be modeled as learning a good estimator or2

predictor f : X → Y based on an observed dataset {(xt, yt)}Tt=1 of input-output3
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samples from X × Y , where X is an input space and Y ⊆ R an output space.4

Learning algorithms are often implemented by minimizing 1
T

∑T
t=1 V (yt, f(xt))5

over a hypothesis space of functions in various ways including regularization6

schemes [26]. Here V : R2 → R+ is a loss function used for measuring the perfor-7

mance of a predictor f . It induces a local error V (y, f(x)) over an input-output8

sample (x, y) ∈ X × Y . For non-parametric regression with Y = R, the least9

squares loss function V (y, a) = (y−a)2 is often used and, for an input x ∈ X and10

an estimator f , the induced local error V (y, f(x)) = (y − f(x))2 measures how11

well the predicted value f(x) approximates the output value y ∈ R. For binary12

classification with Y = {1,−1} consisting of the two labels corresponding to the13

two classes, the misclassification loss function V (y, a) = χ(−∞,0)(ya) generated14

by the characteristic function of the interval (−∞, 0) is a natural choice, and the15

induced local error V (y, f(x)) = χ(−∞,0)(yf(x)) over a sample (x, y) ∈ X × Y16

equals 1 when the sign of f(x) and y correspond to the two different labels in17

Y (that is, yf(x) < 0), while V (y, f(x)) = 0 when they correspond to a same18

label with yf(x) ≥ 0. But the characteristic function χ(−∞,0) is not convex, and19

the optimization problems involved in the related learning algorithms are not20

convex. For designing efficient learning algorithms, χ(−∞,0) may be replaced21

by a convex function φ : R→ R+, leading to convex optimization problems in-22

volving the local error V (y, f(x)) = φ(yf(x)). One choice of φ is the hinge loss23

φh(v) = max{1 − v, 0} used in the classical support vector machines for solv-24

ing binary classification problems [26]. The above learning framework has been25

well developed within the last two decades [26, 9]. It might be categorized as26

“pointwise learning”, as the local error V (y, f(x)) takes only one sample point27

(x, y) ∈ X × Y into account.28

In this paper, we study another important family of learning problems cate-29

gorized as “pairwise learning” in which the local error takes a pair {(x, y), (x′, y′)}30

of two samples from X×Y into account. Its learning tasks include ranking [1, 8],31

similarity and metric learning [5, 28], AUC maximization [34], and gradient32

learning [20, 30, 19]. The goal of pairwise learning is to learn a good predictor33

f : X2 → R predicting a value f(x, x′) ∈ R for each input pair (x, x′) ∈ X2 ac-34
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cording to various tasks. To measure the learning performance of a predictor f ,35

we use a loss function V : R2 → R+ to induce the local error V (r(y, y′), f(x, x′))36

over two input-output samples (x, y), (x′, y′) ∈ X × Y , where r : Y × Y → R is37

a function, called reducing function, chosen according to the learning task. The38

reducing function r is an essential concept making pairwise learning different39

from pointwise learning. We demonstrate how to choose the reducing function40

r by the following examples.41

1. For the least squares regression with Y = R and V (y, a) = (y − a)2, a42

sample (x, y) is drawn from a probability measure and the expected value43

of y ∈ R given x ∈ X equals f∗(x), the value of the conditional mean44

(regression) function f∗ at x. So y − y′ = f∗(x) − f∗(x′) in expectation45

and we choose the reducing function r : Y × Y → R as the output value46

difference r(y, y′) = y − y′. Then the local error V (r(y, y′), f(x, x′)) =47

(y − y′ − f(x, x′))
2

measures how well the predicted value f(x, x′) for an48

input pair (x, x′) approximates f∗(x)− f∗(x′) via the output value differ-49

ence y − y′.50

2. For metric learning in binary classification with Y = {1,−1}, we aim to51

learn a metric f such that a pair (x, x′) of inputs (objects) from the same52

class (y = y′) are close to each other while a pair from different classes (y 6=53

y′) have a large distance f(x, x′). A typical choice of the reducing function54

r : Y ×Y → R is given by r(y, y′) = 1 if y = y′ and −1 otherwise [5]. The55

local error induced by the convex loss function V (y, a) = max{0, 1 + ya}56

is V (r(y, y′), f(x, x′)) = max{0, 1 + r(y, y′)f(x, x′)}. It gives a large local57

error 1 + f(x, x′) if the distance f(x, x′) between the input pair (x, x′)58

from the same class (y = y′) is large.59

3. For ranking in a regression framework with Y = R, we aim to learn a good60

ordering f between objects (inputs) based on their observed features such61

that f(x, x′) < 0 if x is preferred over x′ meaning that the ranking labels62

satisfy y < y′. A typical choice [21] of the reducing function r : Y ×Y → R63

is given by r(y, y′) = sign(y − y′), the sign of y − y′. Then the local64
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error induced by the hinge loss φh is V (r(y, y′), f(x, x′)) = φh(sign(y −65

y′)f(x, x′)).66

Batch learning and online learning are two kinds of learning algorithms. The67

former uses an entire dataset to perform learning tasks, while the latter uses68

the dataset in a stream way. For batch learning algorithms in the pairwise69

learning framework, theoretical error and robustness analysis has been carried70

out in [1, 8, 21, 5, 7]. One challenge in conducting analysis in pairwise learning71

is that pairs of training samples are not independent. For example, given the72

independently and identically distributed (i.i.d.) samples {zt = (xt, yt)}Tt=1, a73

batch algorithm for pairwise learning possibly involves a target function74

T (T − 1)

2

∑
1≤i<j≤T

V (r(yi, yj), f(xi, xj)) + pen(f, λ), (1.1)

where pen(f, λ) ≥ 0 is some regularization term used to avoid overfitting. In this75

case, local errors V (r(yi, yj), f(xi, xj)) and V (r(yi, yj′), f(xi, xj′)) are indeed76

dependent. Thus, standard techniques for classification and regression cannot77

be directly applied, and new tools such as U-statistics [8] or algorithmic stability78

[1] are necessary for the analysis.79

In spite of their good theoretical guarantees, batch algorithms for pairwise80

learning may be difficult to implement for large-scale learning problems in prac-81

tice. Indeed, even for the simpler case of pointwise learning, the computational82

complexity of batch algorithms with many loss functions is of order O(T 3).83

Moreover, batch algorithms for pairwise learning suffer from extra computa-84

tional burden of optimizing an objective defined over O(T 2) possible sample85

pairs.86

In practical applications, online learning may be more favorable, due to its87

scalability to large datasets and applicability to situations where the samples88

are collected sequentially. Theoretical results for online learning in classification89

and regression have been well developed (see for example [6, 24, 31, 2, 22, 18]90

and references therein), but there is relatively little work for online learning in91

pairwise learning. Recent research of this direction can be found in [15, 27,92
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32]. In particular, online pairwise learning in a linear space was investigated in93

[15, 27], and convergence results were established for the average of the iterates94

under the assumption of uniform boundedness of the loss function, with a rate95

O(1/
√
T ) in the general convex case, or a rate O(1/T ) in the strongly convex96

case. Online pairwise learning in a RKHS with the least squares loss was studied97

in [32] where bounds in probability were derived for the excess generalization98

error.99

In this paper, we improve the analysis of online pairwise learning (see Al-100

gorithm 1 in the next section) in a RKHS with general convex loss functions.101

Our main purpose is to develop convergence results for such learning algorithms102

using polynomially decaying stepsize sequences. Unlike [15, 27], we do not as-103

sume that the iterates are restricted to a bounded domain or the loss function is104

strongly convex. In particular, we will provide bounds for the expected excess105

generalization error, under a mild condition on approximation errors and an106

increment condition on the loss. For Lipschitz loss functions such as the hinge107

loss and the logistic loss, our bounds can be of order O(T−
1
3 log T ), while for the108

least squares loss, our bounds can be of order O(T−
1
4 log T ). For general convex109

loss functions, previous error analysis techniques dealing with the least squares110

loss in [32], which rely on integral operators, do not apply and are replaced111

by tools from convex analysis and Rademacher complexity. The key to our112

proof is an error decomposition, which enables us to study the weighted excess113

generalization error in terms of the weighted average and the moving weighted114

average. The novelty lies in an estimate of the differences between partial and115

generalization errors of the learning sequence. We shall establish bounds for the116

learning sequence using tools from convex analysis, and give uniform bounds117

for the differences between partial and full generalization errors over any given118

ball using Rademacher complexity. Our methods may be applied to pairwise119

learning with non-convex loss functions. In particular, it would be interesting120

to extend our methods to online learning or gradient descent methods for a121

minimum error entropy principle [10, 14].122
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2. Main Results with Discussions123

In this section, after stating our pairwise learning problems and basic as-124

sumptions, we present our main results with some simulations and discussions.125

Proofs are postponed till the next section.126

Let the input space X be a separable metric space and ρ be a Borel proba-127

bility measure on Z := X × Y.128

For a predictor f : X2 → R, we use a loss function V : R2 → R+ and a

reducing function r : Y × Y → R to give the local error V (r(y, y′), f(x, x′)) for

z = (x, y), z′ = (x′, y′) ∈ Z. The generalization error or risk E = EV associated

with the loss function V is defined as

E(f) =

∫
Z

∫
Z

V (r(y, y′), f(x, x′))dρ(z)dρ(z′).

We assume that there exists at least one minimizer fVρ of the generalization129

error E(f), among all measurable functions f : X2 → R. The goal of pairwise130

learning is to learn fVρ from the sample set S = {zt = (xt, yt)}Tt=1 of size T ∈ N.131

Throughout this paper, we assume that the samples are independently drawn132

according to ρ.133

Our learning algorithm is a kernel method, where a RKHS is our hypothesis134

space. Let K: X2 ×X2 → R be a Mercer Kernel, i.e., a continuous, symmetric135

and positive semi-definite kernel. The kernel K defines the RKHS (HK , ‖ · ‖K)136

as the completion of the linear span of the set {K(x,x′)(·) := K((x, x′), (·, ·)) :137

(x, x′) ∈ X2} with respect to an inner product 〈, 〉K satisfying the reproducing138

property: i.e., 〈K(x,x′), g〉K = g(x, x′) for any (x, x′) ∈ X2 and g ∈ HK .139

We assume in this paper that V is convex with respect to the second variable.140

That is, for any fixed y ∈ R, the univariate function V (y, ·) on R is convex, hence141

its left-hand derivative V ′−(y, f) exists at every f ∈ R and is non-decreasing.142

The online pairwise learning algorithm considered in this paper is as follows.143

Algorithm 1. The online pairwise learning algorithm associated with the loss144
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function V and the kernel K is defined by f1 = f2 = 0 and145

ft+1 = ft −
ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))K(xt,xj), t = 2, . . . , T, (2.1)

where {ηt > 0}t is a step size sequence.146

The main purpose of this paper is to estimate the expected excess gener-147

alization error E[E(fT ) − E(fVρ )]. To this end, we shall make the following148

assumptions.149

Assumption 2.1. We assume150

|V |0 := sup
y,y′∈Y

V (r(y, y′), 0) <∞ (2.2)

and an increment condition for the left-hand derivative V ′−(y, ·) that for some151

q ≥ 0 and constant cq > 0, there holds152

∣∣V ′−(r(y, y′), f)
∣∣ ≤ cq(1 + |f |q), ∀f ∈ R, y, y′ ∈ Y. (2.3)

We assume the kernel to be bounded with153

κ = max

(
sup

x,x′∈X

√
K((x, x′), (x, x′)), 1

)
<∞. (2.4)

Assumption (2.2) automatically holds for loss functions widely used for clas-154

sification, where V takes the form V (y, f) = φ(−yf) with φ : R → R+ being155

a convex function, including the hinge loss φh, the exponential loss φ(v) =156

exp(−v) and the logistic loss φ(v) = log(1 + exp(−v)). Assumption (2.2) is157

equivalent to the boundedness assumption on the output space Y for r(y, y′) =158

y − y′ and loss functions of the form V (y, f) = φ(y − f) for regression with159

lim|y|→∞ φ(y) = ∞, including the p-norm absolute distance loss φ(y) = |y|p160

with p ≥ 1. Note that (2.2) may also hold for the case that Y is not bounded,161

e.g., the ranking problems with r(y, y′) = sign(y−y′). The increment condition162

on loss functions (2.3) and the boundness assumption on the kernel are quite163

common in learning theory. For specific loss functions, one can easily compute164

the constants q and cq in (2.3). For example, if the loss function is the hinge165
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loss V (y, f) = φh(yf), we know [25] that (2.3) is satisfied with q = 0 and166

cq = supy,y′∈Y |r(y, y′)|, and in this case |V |0 = 1.167

We also need a notion of approximation error to state our main results.168

Definition 2.2. The approximation error associated with the tripe (ρ, V,K) is169

defined by170

D(λ) = inf
f∈HK

{
E(f)− E(fVρ ) + λ‖f‖2K

}
, ∀λ > 0. (2.5)

Our main result of this paper is stated as follows.171

Theorem 2.3. Under Assumption 2.1, let {ηt+1 = η1t
−θ}t∈N with q

q+1 ≤ θ < 1172

and η1 satisfying173

0 < η1 ≤ min

{ √
1− θ

2
√

2cqκ(κ+ 1)q
,

1− θ
4|V |0

}
. (2.6)

Then the sequence {ft}t generated by Algorithm 1 satisfies

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
≤ C̃0D((T − 1)θ−1) + C̃1ΛT−1,

where ΛT−1 is the quantity defined by174

ΛT−1 =

 (T − 1)−(1−θ), when θ > q+2
q+3 ,

(T − 1)−
qθ+θ−q

2 log(eT ), when θ ≤ q+2
q+3 ,

(2.7)

and C̃0 and C̃1 are constants independent of T (given explicitly in the proof).175

To state explicit convergence rates, we need the following assumption for the176

decay of the approximation error.177

Assumption 2.4. Assume that for some β ∈ (0, 1] and cβ > 0, the approxima-178

tion error satisfies179

D(λ) ≤ cβλβ , ∀λ > 0. (2.8)

The assumption (2.8) on the approximation error is independent of the sam-180

ples, and measures the approximation ability of the spaceHK to fVρ with respect181

to (ρ, V ). It is standard in learning theory both in pairwise [32] and pointwise182
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learning [25, 29, 11]. Note that in the ideal case with fVρ ∈ HK , condition (2.8)183

always holds with β = 1 and cβ ≤ ‖fVρ ‖2K .184

We now have the following corollary, which follows directly from Theorem185

2.3.186

Corollary 2.5. Under the assumptions and notations of Theorem 2.3, and187

Assumption 2.4, we have188

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T (θ−1)β + ΛT ). (2.9)

In particular, we have189

(I) for θ = q+2
q+3 ,

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T−

β
q+3 log T ).

(II) for θ = q+2β
q+1+2β ,

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T−

β
q+1+2β log T ).

The above result gives bounds on the expected excess generalization error,190

where the general convergence rate in (2.9) depends on three parameters: q, β,191

and θ. In general, it is easy to compute the increment parameter q for a given192

loss function, whereas the parameter β is unknown. Given only the growth193

parameter q, Part (I) of Corollary 2.5 suggests that the optimal convergence194

rate is achieved by setting θ = q+2
q+3 . If furthermore, the parameter β is provided,195

the optimal convergence rate is achieved by setting θ = q+2β
q+1+2β .196

Specifying the loss function in the above results, we have the following con-197

vergence rates with the hinge loss and the least squares loss.198

Corollary 2.6 (Hinge loss). Let the loss function V (y, a) be given with the hinge199

loss as V (y, a) = φh(ya). Assume (2.4), (2.8) and M := supy,y′∈Y |r(y, y′)| <200

∞. Choose {ηt+1 = η1t
−θ}t∈N with η1 satisfying (2.6), where q = 0, cq = M201

and |V |0 = 1. Then for the sequence {ft}t generated by Algorithm 1, we have202

the following convergence rates.203
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(I) If θ = 2
3 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
3 log T

)
.

Specially, if β = 1, i.e., fVρ ∈ HK , then the upper bound is of order204

O
(
T−

1
3 log T

)
.205

(II) If θ = 2β
2β+1 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
2β+1 log T

)
.

Corollary 2.7 (Least squares loss). Let V be given by the least squares loss as206

V (y, a) = (y−a)2. Assume (2.4), (2.8) and M := 2 max
(

supy,y′∈Y |r(y, y′)|, 1
)
<207

∞. Choose {ηt+1 = η1t
−θ}t∈N with η1 satisfying (2.6), where q = 1, cq = M and208

|V |0 = supy,y′∈Y (r(y, y′))2. Then for the sequence {ft}t generated by Algorithm209

1, we have the following convergence rates.210

(I) If θ = 3
4 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
4 log T

)
.

Specially, if β = 1, i.e., fVρ ∈ HK , then the upper bound is of order211

O
(
T−

1
4 log T

)
.212

(II) If θ = 2β+1
2β+2 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
2β+2 log T

)
.

Simulations.. We perform simulation experiments here to illustrate the derived213

convergence rates with polynomial decaying stepsizes. We consider the ranking214

problem with the loss function V (y, a) given by the hinge loss as V (y, a) =215

φh(ya) and the reducing function r(y, y′) = sign(y − y′). We consider the216

Boston housing dataset [13], which has 506 examples and 13 features, includ-217

ing per capita crime rate by town, weighted distances to five Boston employ-218

ment centres and average number of rooms per dwelling. We wish to predict219

the ordering based on values of houses and consider linear ranking rules with220
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Figure 1: The behavior of Algorithm 1 on the Boston housing dataset. Left: ranking er-

rors versus different stepsize sequences, right: generalization errors versus different stepsize

sequences.

K((x, x′), (u, u′)) = (x − x′)>(u − u′) for x, x′, u, u′ ∈ R13. Here x> denotes221

the transpose of x. Let ρ be the uniform distribution on the 506 examples222

in the Boston housing dataset. We define the ranking error of a predictor223

f : X ×X → R by L(f) = E[sign(y − y′)f(x, x′) < 0]. We apply Algorithm 1224

with ηt = (t− 1)−θ and θ ∈ {0, 1, 23}. We repeat the experiments 400 times and225

report the average ranking errors and average generalization errors. Figure 1226

illustrates the behavior of Algorithm 1 with three different stepsize sequences.227

It shows that the algorithm with polynomial decaying stepsize sequence with228

θ = 2
3 performs better than that with the constant stepsize sequence ηt ≡ 1229

and the sequence with θ = 1. This is consistent with our theoretical results in230

Corollary 2.6.231

Discussions.. As mentioned before, online pairwise learning involves non-i.i.d.232

sample pairs. Thus, the analysis for pairwise learning is more challenging,233

in contrast with that for the online pointwise learning [6, 24, 31, 2, 22, 18].234

With the step size ηt = η1t
− β
β+1 , the convergence rate O(T−

β
β+1 log T ) was235

established in [18] for the online pointwise learning, which is comparable to236

the convergence rate for batch learning in the pointwise setting. The con-237

vergence rate we derived in Corollary 2.5 for the online pairwise learning is238

of order O(T−
β

2β+1+q log T ). This is due to an essential statistical difference239
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between these two families of learning algorithms: while the online pointwise240

learning uses unbiased estimators of the true gradients in the learning process,241

the randomized gradient 1
t−1

∑t−1
j=1 V

′
−(r(yt, yj), ft(xt, xj))K(xt,xj) used in the242

online pairwise learning is a biased estimator of the true gradient
∫
Z

∫
Z
V ′−(y−243

y′, ft(x, x
′))K(x,x′)dρ(z)dρ(z′). We overcome this obstacle by applying the tool244

of Rademacher complexity to control the difference between partial generaliza-245

tion errors and generalization errors, resulting in, however, an additional term246

that dominates the upper bound in Proposition 3.6.247

In what follows, we compare our work with existing results on online algo-248

rithms for pairwise learning. We first compare our work with [15, 27], where249

the online-to-batch conversion bounds for projected online pairwise learning al-250

gorithms in Euclidean spaces were provided. Assuming that fVρ ∈ Rd is in the251

projected-bounded domain, upper bounds on the excess generalization error of252

order O(T−
1
2 ) were presented in [15] for the average iterates. In contrast, Algo-253

rithm 1 does not have any additional projection step and is implemented in the254

unconstrained setting on RKHSs including the Euclidean spaces. Besides, our255

bounds are stated in a more general setting for the last iterates, involving ap-256

proximation errors. It should be mentioned that convergence ratesO(T−
1
2 log T )257

can be achieved by our analysis for the pairwise learning setting if an additional258

projection is performed at each iteration and β = 1. Finally, we compare our259

results with the existing work in [32, 33, 12]. Algorithm 1 with kernel methods260

was studied in [32] for the least squares loss, and in [33] for 1-activating loss V ,261

i.e., loss function which is differentiable and satisfies262

|V ′(y, f)− V ′(y, g)| ≤ L|f − g|, ∀y ∈ R, f, g ∈ R, (2.10)

for some 0 < L < ∞. A convergence rate of order O(T−min
{

β
β+1 ,

1
3

}
log T ) is263

achieved for the algorithm with the least squares loss in [32]. However, the264

analysis in [32] is based on an integral operator approach and does not apply265

to general convex loss functions. Note that the results in [32] are in probability266

while our results are stated in expectation, and it would be interesting to further267

develop bounds in probability for the algorithm involving convex loss functions.268
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In comparison with the results in [33] where 1-activating loss functions are269

studied with an assumption on the existence of a minimizer of E(f) for f ∈270

HK , our results hold for a broader class of loss functions and are better for271

1-activating loss functions in a more general setting. First, the hinge loss and272

the p-absolute value loss functions with p 6= 2 are not covered in [33]. Second,273

it is easy to see that an 1-activating loss function always satisfies the growth274

condition (2.3) with q = 1. Thus, by setting β = 1 and ηt = η1t
−α+2
α+3 in Corollary275

2.5, our optimal convergence rates are of order O(T−
1
4 log T ) for 1-activating loss276

functions, which are better than the bounds in [33] of order O(T ε−
1
6 ) with an277

arbitrarily small ε > 0. When the incremental exponent q satisfies 0 ≤ q < 1,278

the learning rates of order O(T−
β

q+1+2β log T ) stated in Corollary 2.5 (II) are279

also better than those of order O(T−
β

2β+2
√

log T ) derived for online pairwise280

learning based on regularization schemes in RKHSs in the earlier work [12].281

3. Proofs282

In this section, we prove Theorem 2.3. To do so, it is necessary to prove283

some preliminary lemmas.284

3.1. Bounding the learning sequence285

For notational simplicity, we introduce the following two notations: the local

empirical error of a function f : X×X → R at point zt with respect to an ordered

dataset S = {z1, · · · , zT }

ÊtS(f) =
1

t− 1

t−1∑
j=1

V (r(yt, yj), f(xt, xj)),

and the partial generalization error with respect to an ordered dataset S =

{z1, · · · , zT }

ẼtS(f) =
1

t− 1

t−1∑
j=1

∫
Z

V (r(y, yj), f(x, xj))dρ(x, y).

We first introduce the following lemma whose proof essentially makes use of the286

convexity and increment property of loss functions.287
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Lemma 3.1. Under condition (2.3), for an arbitrary fixed f ∈ HK , and t =288

2, . . . , T ,289

‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t + 2ηt(ÊtS(f)− ÊtS(ft)), (3.1)

where290

G2
t = 4c2qκ

2(κ+ 1)2q max
{

1, ‖ft‖2qK
}
. (3.2)

Proof. Since ft+1 is given by (2.1), we have

‖ft+1 − f‖2K =‖ft − f‖2K + η2t

∥∥∥∥∥∥ 1

t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))K(xt,xj)

∥∥∥∥∥∥
2

K

+
2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))
〈
K(xt,xj), f − ft

〉
K
.

Observe that

‖K(xt,xj)‖K =
√
K((xt, xj), (xt, xj)) ≤ κ

and that

‖f‖∞ ≤ κ‖f‖K , ∀f ∈ HK .

These together with the increment condition (2.3) yield291 ∥∥V ′−(r(yt, yj), ft(xt, xj))K(xt,xj)

∥∥
K
≤ κ

∣∣V ′−(r(yt, yj), ft(xt, xj))
∣∣

≤ κcq(1 + |ft(xt, xj)|q) ≤ κcq(1 + κq‖ft‖qK).

Therefore,

‖ft+1−f‖2K ≤ ‖ft−f‖2K+η2tG
2
t+

2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))
〈
K(xt,xj), f − ft

〉
K
.

Using the reproducing property, we get292

‖ft+1−f‖2K ≤ ‖ft−f‖2K+η2tG
2
t+

2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))(f(xt, xj)−ft(xt, xj)).

(3.3)

Since V (r(yt, yj), ·) is a convex function, we have

V ′−(r(yt, yj), a)(b− a) ≤ V (r(yt, yj), b)− V (r(yt, yj), a), ∀a, b ∈ R.

Using this relation in (3.3), we get our desired result.293
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Using the above lemma, we can bound the learning sequence as follows.294

The proof is motivated by the recent work in [16] and [17], using an induction295

argument.296

Lemma 3.2. Assume condition (2.3). Let q
q+1 ≤ θ < 1 and ηt+1 = η1t

−θ for297

t ∈ N with η1 satisfying (2.6). Then for t = 1, . . . , T ,298

‖ft+1‖K ≤ (t− 1)
1−θ
2 . (3.4)

Proof. We prove our statement by induction.299

Taking f = 0 in Lemma 3.1, we know that

‖ft+1‖2K ≤ ‖ft‖2K + η2tG
2
t + 2ηt(ÊtS(0)− ÊtS(ft)) ≤ ‖ft‖2K + η2tG

2
t + 2ηt|V |0.

This verifies (3.4) for the case t = 2 since f1 = f2 = 0 and 4η21c
2
qκ

2(κ + 1)2q +300

2η1|V |0 ≤ 1.301

Assume ‖ft‖K ≤ (t− 2)
1−θ
2 with t ≥ 3. Then302

G2
t ≤ 4c2qκ

2(κ+ 1)2q(t− 2)(1−θ)q. (3.5)

Hence303

‖ft+1‖2K ≤ (t− 2)1−θ + 4η21(t− 1)−2θc2qκ
2(κ+ 1)2q(t− 1)(1−θ)q + 2η1(t− 1)−θ|V |0

≤ (t− 1)1−θ

{(
1− 1

t− 1

)1−θ

+
4η21c

2
qκ

2(κ+ 1)2q

(t− 1)(q+1)θ+1−q +
2η1|V |0
t− 1

}
.

Since
(

1− 1
t−1

)1−θ
≤ 1− 1−θ

t−1 and the condition θ ≥ q
q+1 implies (q+1)θ+1−q ≥

1, we have

‖ft+1‖2K ≤ (t− 1)1−θ

{
1− 1− θ

t− 1
+

4η21c
2
qκ

2(κ+ 1)2q

t− 1
+

2η1|V |0
t− 1

}
.

Finally we use the restriction (2.6) for η1 and find ‖ft+1‖2K ≤ (t− 1)1−θ. This304

completes the induction procedure and proves our conclusion.305

With the above two lemmas, and noticing that ft is independent of zt, we306

can easily prove the following result.307
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Proposition 3.3. Assume condition (2.3). Let q
q+1 ≤ θ < 1 and ηt+1 = η1t

−θ
308

for all t ∈ N with η1 satisfying (2.6). Assume that t ∈ {2, . . . , T} and that309

f ∈ HK is independent of zt (but may depend on z1, · · · , zt−1). Then we have310

Ezt‖ft+1 − f‖2K ≤ ‖ft − f‖2K

+ 4η21c
2
qκ

2(κ+ 1)2q(t− 1)(1−θ)q−2θ + 2ηt

[
ẼtS(f)− ẼtS(ft)

]
.

(3.6)

Proof. Taking expectations on both sides of (3.1) with respect to zt, and noting

that ft is independent of zt, we get

Ezt‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t + 2ηt

[
ẼtS(f)− ẼtS(ft)

]
.

Lemma 3.2 shows that ‖ft‖K ≤ (t− 1)
1−θ
2 , which implies (3.5). Applying (3.5)311

and using ηt = η1(t− 1)−θ in the above inequality yield the desired bound.312

Proposition 3.3 gives an iterated inequality related to the partial generaliza-313

tion error ẼtS(ft). Note that our goal is to derive upper bounds on the excess314

generalization error. It is thus necessary to develop relationships between the315

partial generalization error and generalization error, which will be considered in316

the following subsection.317

3.2. From partial generalization error to generalization error318

For R > 0, denote BR the ball of radius R in HK : BR = {f ∈ HK : ‖f‖K ≤319

R}. The following lemma gives a uniform upper bound on the differences be-320

tween the partial generalization error and generalization error over any ball BR321

with R ≥ 1. Its proof uses a standard symmetry technique and some properties322

related to Rademacher complexity.323

Lemma 3.4. For R ≥ 1, and all 1 ≤ t ≤ T

Ez1,··· ,zt−1

[
sup
f∈BR

{E(f)− ẼtS(f)}
]
≤ 2cqRκ(1 + κqRq)√

t− 1
.

The above inequality is also true if we replace {E(f)−ẼtS(f)} by {ẼtS(f)−E(f)}.324
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Proof. For notational simplicity, we denote

L(f, zj) =

∫
Z

V (r(y, yj), f(x, xj))dρ(z).

Then

ẼtS(f) =
1

t− 1

t−1∑
j=1

L(f, zj)

and

E(f) =

∫
Z

L(f, z′)dρ(z′).

Let S′ = {z′1, · · · , z′T } be another independent sample set. We first note that325

ES [ sup
f∈BR

{E(f)− ẼtS(f)}]

= ES [ sup
f∈BR

{ES′ [ẼtS′(f)]− ẼtS(f)}]

≤ ES,S′ [ sup
f∈BR

{ẼtS′(f)− ẼtS(f)}].

Here, we abuse the notation ES for Ez1,··· ,zt−1 . Let σ1, σ2, . . . , σT be independent326

random variables drawn from the Rademacher distribution i.e. Pr(σi = +1) =327

Pr(σi = −1) = 1/2 for i = 1, 2, . . . , T . Using a standard symmetry technique,328

for example in [3],329

ES,S′ [ sup
f∈BR

{ẼtS′(f)− ẼtS(f)}]

≤ ES,S′,σ

 sup
f∈BR

 1

t− 1

t−1∑
j=1

σj(L(f, z′j)− L(f, zj))


 .
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Thus,330

ES [ sup
f∈BR

{E(f)− ẼtS(f)}]

≤ ES,S′,σ

 sup
f∈BR

 1

t− 1

t−1∑
j=1

σj(L(f, z′j)− L(f, zj))




≤ 2ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjL(f, zj)


= 2ES,σ

 sup
f∈BR

Ez

 1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))


≤ 2Ez,S,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))

 .
For any z ∈ Z, the term ES,σ

[
supf∈BR

1
t−1

∑t−1
j=1 σjV (r(y, yj), f(x, xj))

]
is the

Rademacher complexity [4] of the function class BR with respect to ρ for sample

size t − 1. Using (2.3) and that ‖f‖∞ ≤ κ‖f‖K , it is easy to see that for any

f, f ′ ∈ BR,

|V (r(y, yj), f(x, xj))−V (r(y, yj), f
′(x, xj))| ≤ cq(1+Rqκq)|f(x, xj)−f ′(x, xj)|.

Applying Talagrand’s contraction lemma (see e.g., [19, Theorem 7]), we have331

ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))


≤ cq(1 + κqRq)ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjf(x, xj)


and therefore,332

ES [ sup
f∈BR

E{E(f)− Ẽt(f)}]

≤ 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjf(x, xj)


= 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

〈
f,

1

t− 1

t−1∑
j=1

σjK(x,xj)

〉
K

 .
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Applying the Schwarz inequality,333

ES [ sup
f∈BR

E{E(f)− Ẽt(f)}]

≤ 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

‖f‖K

∥∥∥∥∥∥ 1

t− 1

t−1∑
j=1

σjK(x,xj)

∥∥∥∥∥∥
K

 .
Applying E[‖g‖K ] ≤ (E[‖g‖2K ])

1
2 , and noting that σ1, σ2, . . . , σT are independent334

random variables with mean zeros,335

ES [ sup
f∈BR

E{E(f)− Ẽt(f)}]

≤ 2cq(1 + κqRq)R

t− 1

Ez,S,σ
∥∥∥∥∥∥
t−1∑
j=1

σjK(x,xj)

∥∥∥∥∥∥
2

K


1
2

=
2cq(1 + κqRq)R

t− 1

t−1∑
j=1

Ex,xj
∥∥K(x,xj)

∥∥2
K

 1
2

≤ 2cq(1 + κqRq)Rκ√
t− 1

,

where for the last inequality we use the boundness assumption on the kernel.336

Thus we get the desired result. The proof is complete.337

Combining the above lemma with Lemma 3.2, we get the following corollary.338

Corollary 3.5. Under the assumptions of Lemma 3.2, we have for any t =

3, · · · , T,

|Ez1,··· ,zt−1 [E(ft)− ẼtS(ft)]| ≤ 2cqκ(1 + κq)(t− 1)
(1−θ)(q+1)−1

2 .

3.3. A useful proposition339

The following proposition will be used several times in our proof. Its proof340

follows directly from Proposition 3.3 and Corollary 3.5.341

Proposition 3.6. Under assumptions of Proposition 3.3, for any f ∈ HK342

which is independent of z1, · · · , zt, or f = fk (3 ≤ k ≤ t), we have343

2ηtEz1,··· ,zt−1
[E(ft)− E(f)]

≤Ez1,··· ,zt
{
‖ft − f‖2K − ‖ft+1 − f‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
.

(3.7)
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Here344

q∗ =
3θ − (1− θ)q

2
. (3.8)

and Cq,κ,η1 is a constant depending only on q, κ and η1, given explicitly by (3.10)345

in the proof.346

Proof. Note that for 3 ≤ k ≤ T , fk depends only on z1, · · · , zk−1. By Proposi-347

tion 3.3, we have348

Ez1,··· ,zt‖ft+1 − f‖2K ≤ Ez1,··· ,zt‖ft − f‖2K

+ 4η21c
2
qκ

2(κ+ 1)2q(t− 1)(1−θ)q−2θ + 2ηtEz1,··· ,zt−1

[
ẼtS(f)− ẼtS(ft)

]
.

Rewrite Ez1,··· ,zt−1

[
ẼtS(f)− ẼtS(ft)

]
as349

Ez1,··· ,zt−1 [E(f)− E(ft)] + Ez1,··· ,zt−1

[
(ẼtS(f)− E(f)) + (E(ft)− ẼtS(ft))

]
.

(3.9)

If f = fk with 1 ≤ k ≤ t, by applying Corollary 3.5 to bound the last term of

(3.9), and noting that θ ≥ q
q+1 implies

(1− θ)(q + 1)− 1

2
− θ =

(1− θ)q − 3θ

2
≥ (1− θ)q − 2θ,

we get (3.7) with350

Cq,κ,η1 = 4η21c
2
qκ

2(κ+ 1)2q + 8η1cqκ(1 + κq). (3.10)

If f is independent of z1, · · · , zt, the last term of (3.9) is exactly

Ez1,··· ,zt−1

[
E(ft)− ẼtS(ft)

]
.

Using Corollary 3.5 to bound this term again, we get (3.7). From the above351

analysis, one can conclude the proof.352

3.4. Estimating excess generalization error353

We now give the following general result, with which we can prove our main354

result, Theorem 2.3. For notational simplicity, we denote the excess generaliza-355

tion error of f∗ ∈ HK with respect to (ρ, V ) by A(f∗):356

A(f∗) = E(f∗)− E(fVρ ). (3.11)
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Theorem 3.7. Assume (2.3) with q ≥ 0. Let ηt+1 = η1t
−θ with q

q+1 ≤ θ < 1357

and η1 satisfying (2.6). Then for every fixed f∗ ∈ HK ,358

Ez1,··· ,zT−1

{
E(fT )− E(fVρ )

}
≤ A(f∗)

1− θ
+
‖f∗‖2K

2η1
(T − 1)θ−1 + C̃1ΛT−1, (3.12)

where ΛT−1 is given by (2.7) and C̃1 is a positive constant depending on q, κ, θ359

(independent of T and f∗, and given explicitly in the proof).360

The proof of this theorem is postponed to the next subsection. A novel361

error decomposition plays an important role in the proof. Note that the de-362

composition of ρ into the margin probability measure on X and the conditional363

probability measures allows the case with noise.364

Now we are in a position to prove Theorem 2.3.365

Proof of Theorem 2.3. By Theorem 3.7, we have

Ez1,··· ,zT−1

{
E(fT )− E(fVρ )

}
≤ C̃0

(
E(f∗)− E(fVρ ) + (T − 1)θ−1‖f∗‖2K

)
+C̃1ΛT−1,

where

C̃0 =
1

1− θ
+

1

2η1
.

Since the constants C̃0 and C̃1 are independent of f∗ ∈ HK , we can take infimum366

over f∗ ∈ HK on both sides, and conclude the desired result.367

3.5. Proof of Theorem 3.7368

Before proving Theorem 3.7, we present two lemmas, whose proofs follow369

from Proposition 3.6 and some elementary inequalities. In the rest of this sub-370

section, we denote Ez1,··· ,zT by E for simplicity.371

Lemma 3.8 (Weighted average). Under the assumption of Theorem 3.7, for372

any T ≥ 2,373

1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
≤ ‖f∗‖

2
K

T − 1
+

2η1A(f∗)

1− θ
(T − 1)−θ

+


q∗Cq,κ,η1
q∗−1 (T − 1)−1, when θ > q+2

q+3 ,

Cq,κ,η1(T − 1)−1 log(eT ), when θ = q+2
q+3 ,

Cq,κ,η1
1−q∗ (T − 1)−q

∗
, when θ < q+2

q+3 .
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Here q∗ and Cq,κ,η1 are given by (3.8) and (3.10), respectively.374

Proof. Note that by Proposition 3.6, we have (3.7). Choosing f = f∗ in (3.7)375

and adding both sides with 2ηtA(f∗), we get376

2ηtE
[
E(ft)− E(fVρ )

]
≤E

{
‖ft − f∗‖2K − ‖ft+1 − f∗‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
+ 2ηtA(f∗),

Taking summations over t = 2, . . . , T, with f2 = 0, and ηt = η1(t− 1)−θ,377

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
≤ ‖f∗‖2K + Cq,κ,η1

T−1∑
t=1

t−q
∗

+ 2η1A(f∗)

T−1∑
t=1

t−θ.

Note that q∗ is given by (3.8), and that from the restriction θ ∈ [ q
q+1 , 1), q∗

satisfies 0 < q∗ < 2 and

q∗


> 1 when θ > q+2

q+3 .

= 1 when θ = q+2
q+3 ,

< 1 when θ < q+2
q+3 .

Applying378

T−1∑
t=1

t−θ
′
≤ 1 +

∫ T−1

1

u−θ
′
du ≤


(T−1)1−θ

′

1−θ′ , when θ′ < 1,

log(eT ), when θ′ = 1,

θ′

θ′−1 , when θ′ > 1,

(3.13)

to bound
∑T−1
t=1 t−q

∗
and

∑T−1
t=1 t−θ, we get the desired result. The proof is379

complete.380

Lemma 3.9 (Moving weighted average). Under the assumption of Theorem381

3.7, for any T ≥ 2,382

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)}

≤


2Cq,κ,η1

(
2q
∗

+ q∗

q∗−1

)
(T − 1)−1, when θ > q+2

q+3 ,

4Cq,κ,η1(log T )(T − 1)−1, when θ = q+2
q+3 ,

2Cq,κ,η1

(
2q
∗

+ 1
1−q∗

)
(log T )(T − 1)−q

∗
, when θ < q+2

q+3 .

Here q∗ and Cq,κ,η1 are given by (3.8) and (3.10), respectively.383

22



Proof. Let k ∈ {2, . . . , T − 1}. Note that fT−k depends only on z1, · · · , zT−k−1.384

By Proposition 3.6, we have for t ≥ T − k,385

2ηtE [E(ft)− E(f)] ≤ E
{
‖ft − f‖2K − ‖ft+1 − f‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
.

Taking summation over t = T − k, . . . , T yields386

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} =

T∑
t=T−k

2ηtE {E(ft)− E(fT−k)}

≤ Cq,κ,η1
T∑

t=T−k

(t− 1)−q
∗

= Cq,κ,η1

T−1∑
t=T−1−k

t−q
∗
.

It thus follows that

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} ≤ Cq,κ,η1
T−2∑
k=1

1

k(k + 1)

T−1∑
t=T−1−k

t−q
∗
.

By applying the following elementary inequality from [16] (which will be proved387

in the appendix for completeness)388

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗
≤


2
(

2q
∗

+ q∗

q∗−1

)
T−1, when q∗ ∈ (1, 2),

4(log T )T−1, when q∗ = 1,

2
(

2q
∗

+ 1
1−q∗

)
(log T )T−q

∗
, when q∗ ∈ (0, 1),

(3.14)

the desired estimate is verified. The proof is complete.389

With the above two lemmas, now we are ready to prove Theorem 3.7.390

Proof of Theorem 3.7. The basic idea is to bound the weighted excess gener-391

alization error 2ηTEz1,··· ,zT−1
[E(fT )− E(fVρ )] in terms of the weighted average392

and the moving weighted average. To do so, we need the following fact from393

[22, 18] which asserts that for any sequence {uj}j∈N in R, there holds394

uT =
1

T − 1

T∑
j=2

uj +

T−2∑
k=1

1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k). (3.15)
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In fact, for k ∈ {1, · · · , T − 2}, we have395

1

k

T∑
j=T−k+1

uj −
1

k + 1

T∑
j=T−k

uj

=
1

k(k + 1)

(k + 1)

T∑
j=T−k+1

uj − k
T∑

j=T−k

uj


=

1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k).

Summing over k = 2, · · · , T − 1, and rearranging terms, we get (3.15). Now, for396

any k = 1, . . . , T − 2, we choose ut = 2ηtE
{
E(ft)− E(fVρ )

}
in (3.15) to get397

2ηTE
{
E(fT )− E(fVρ )

}
=

1

T − 1

T∑
j=2

2ηjE
{
E(fj)− E(fVρ )

}
+

T−2∑
k=1

1

k(k + 1)

T∑
j=T−k+1

(
2ηjE

{
E(fj)− E(fVρ )

}
− 2ηT−kE

{
E(fT−k)− E(fVρ )

})
,

which can be rewritten as398

2ηTE
{
E(fT )− E(fVρ )

}
=

1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
+

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)}

+

T−2∑
k=1

1

k + 1

[
1

k

T∑
t=T−k+1

2ηt − 2ηT−k

]
E
{
E(fT−k)− E(fVρ )

}
. (3.16)

Since, E(fT−k) − E(fVρ ) ≥ 0 and that {ηt}t∈N is a non-increasing sequence, we399

know that the last term of the above inequality is at most zero. Therefore, we400

get401

2ηTE
{
E(fT )− E(fVρ )

}
≤ 1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
+

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} .

(3.17)

Applying lemmas 3.8 and 3.9 to bound the last two terms, we get the desired
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bound (3.12) with C̃1 given explicitly by

C̃1 =


Cq,κ,η1 (3q

∗+2q
∗+1(q∗−1))

2η1(q∗−1) , when θ > q+2
q+3 ,

3Cq,κ,η1
η1

, when θ = q+2
q+3 ,

Cq,κ,η1

(
2q
∗+1+ 3

1−q∗

)
2η1

, when θ < q+2
q+3 .

The proof of Theorem 3.7 is complete.402

4. Conclusion403

This paper presents learning rates of the last iterate for online pairwise learn-404

ing algorithms involving general convex loss functions which are better than the405

existing results under certain circumstances. Our idea is to use an error decom-406

position from [16, 23] to decompose the weighted excess generalization error into407

weighted average errors and moving weighted average errors. We apply some408

tools from Rademacher complexity to overcome the difficulty with the bias of the409

randomized gradients as estimators of the true gradients in the online pairwise410

learning setting. It is interesting to discuss here the connection between classifi-411

cation/regression tasks and pairwise learning problems. For the specific pairwise412

learning problem with V (y, f) = (y − f)2 and r(y, y′) = y − y′, it was proved413

in [32, 10] that the optimal predictor is fVρ (x, x′) =
∫
X
ydρ(y|x)−

∫
X
ydρ(y|x′),414

where ρ(y|x) is the conditional measure at x. This shows that the pairwise learn-415

ing based on the least squares loss is essentially a pointwise learning problem416

since f̃ρ(x) :=
∫
X
ydρ(y|x) is the regression function minimizing

∫
Z

(y−f(x))2dρ.417

Characterizing fVρ and the approximation error assumption (2.8) for a general418

pairwise learning loss function in terms of function space properties, such as for419

metric and similarity learning, is a challenging problem for further study.420
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Appendix A. Appendix for Proving (3.14)509

First note that

T∑
t=T−k+1

t−q
∗
≤
∫ T

T−k
x−q

∗
dx ≤ T 1−q∗ − (T − k)1−q

∗

1− q∗
, when q∗ 6= 1.

When 0 < q∗ < 1, for k ≤ T
2 ,

T∑
t=T−k

t−q
∗
≤ (T − k)−q

∗
(k + 1) ≤ 2q

∗
T−q

∗
(k + 1),

and for k > T
2

T∑
t=T−k

t−q
∗
≤ T 1−q∗ − (T − k)1−q

∗

1− q∗
+ (T − k)−q

∗
≤ T 1−q∗

1− q∗
.

It thus follows that510

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗

≤
∑
k≤T/2

1

k(k + 1)
2q
∗
T−q

∗
(k + 1) +

∑
T−1≥k>T/2

1

k(k + 1)

T 1−q∗

1− q∗

≤
(

2q
∗+1 +

2

1− q∗

)
(log T )T−q

∗
.

When q∗ = 1, we have511

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗
≤
T−1∑
k=1

1

k(k + 1)

k + 1

T − k
=

1

T

T−1∑
k=1

{
1

k
+

1

T − k

}
≤ 4(log T )T−1.

When 2 > q∗ > 1, for k ≤ T
2 ,

T∑
t=T−k

t−q
∗
≤ (T − k)−q

∗
(k + 1) ≤ 2q

∗
T−q

∗
(k + 1),
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and for k > T
2

T∑
t=T−k

t−q
∗
≤ (T − k)1−q

∗ − T 1−q∗

q∗ − 1
+ (T − k)−q

∗
≤ q∗

q∗ − 1
.

Therefore, we have512

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗

≤ 2q
∗
T−q

∗ ∑
k≤T/2

1

k
+

q∗

q∗ − 1

∑
T−1≥k>T/2

1

k(k + 1)

≤ 2q
∗+1T−q

∗
log T +

2q∗

q∗ − 1
T−1

≤ 2q
∗+1 + 2q∗

q∗ − 1
T−1.
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