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Generalization Performance of Radial Basis
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Abstract—This paper studies the generalization performance of1

Radial Basis Function (RBF) networks by using local Rademacher2

complexities. We propose a general result on controlling local3

Rademacher complexities with the L1-metric capacity. We then4

apply this result to estimate RBF networks’ complexities, based5

on which a novel estimation error bound is obtained. An6

effective approximation error bound is also derived by carefully7

investigating the Hölder continuity of the ℓp loss function’s8

derivative. Furthermore, it is demonstrated that the RBF network9

minimizing an appropriately constructed structural risk admits10

a significantly better learning rate when compared to the existing11

results. An empirical study is also performed to justify the12

application of our structural risk in model selection.13

Index Terms—Structural risk minimization, Learning theory,14

Local Rademacher complexity, Radial basis function networks15

I. INTRODUCTION16

ARTIFICIAL neural networks have proved to be effective17

modeling strategies in approximating nonlinear relation-18

ships between input and output variables [1], [2]. As com-19

pared to traditional nonparametric estimation methods, neural20

networks have an advantage of dimensionality reduction by21

composition and thus have found great success in various22

multivariate prediction problems [3]. Among different types23

of artificial neural networks, Radial Basis Function (RBF)24

networks have received considerable attention since they25

constitute solutions for regularization problems using certain26

standard smoothness functionals as stabilizers [1]. Estimating27

the generalization performance of RBF networks is important28

to understand the factors influencing models’ quality, as well29

as to suggest possible ways to improve them [4], [5], [6]. This30

paper investigates the learning ability of RBF networks under31

the Structural Risk Minimization (SRM) principle. Our basic32

strategy is to consider separately two contradictory factors33

determining the generalization performance: approximation34

errors and estimation errors.35

Recent years have witnessed a great progress in under-36

standing the approximation power of RBF networks. Park37

and Sandberg [7] indicated that RBF networks with Gaussian38

computational nodes admit universal approximation ability.39

Namely, they are able to approximate with arbitrary accuracy40

among all square integrable functions on compact subsets41

of Rd, where d is the input dimension. For band-limited42
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functions with continuous derivatives up to order r > d/2, 43

Girosi and Anzellotti [8] used a probability trick to derive 44

an approximation error rate of the form k−1/2, where k is 45

the number of neurons. Girosi [9] pioneered the research of 46

applying tools in learning theory to obtain satisfactory approx- 47

imation error rates for more general kernel classes. Gnecco and 48

Sanguineti [10] refined this result by using the more advanced 49

tool called Rademacher complexity. The tractability issues in 50

RBF network approximation were treated by Kainen et al. 51

[11], [12]. Estimation errors for RBF networks have also been 52

extensively studied in Anthony and Bartlett [13], Niyogi and 53

Girosi [14], Haussler [15], Györfi et al. [16], using standard 54

complexity measures such as pseudo-dimensions and covering 55

numbers. 56

Some researchers also provided unified viewpoints to si- 57

multaneously consider approximation and estimation errors. 58

Barron [17] addressed the combined effect of the approx- 59

imation and estimation error on the overall accuracy of a 60

network as a prediction rule. However, his approach is based 61

on covering numbers under the supremum norm and therefore 62

the activation functions considered there are required to satisfy 63

the Hölder condition. Niyogi and Girosi [4] removed this 64

restriction by using the more relaxed L1-metric capacity 65

instead. Unfortunately, their analysis relies on uniform devia- 66

tion bounds via a Hoeffding type inequality, which ignores 67

the information on variances and could only yield a sub- 68

optimal learning rate. Krzyżak and Linder [1] refined these 69

results by applying a ratio-type inequality under the squared 70

loss setting. However, there still exist some weaknesses that 71

could be improved in their discussion for the general ℓp loss 72

φp(t) := |t|p, p > 1: 73

(1) Under the ℓp loss, the discussion of the estimation error 74

in Krzyżak and Linder [1] is based on the uniform 75

(supremum) deviation argument. It may happen that the 76

established model stays far away from achieving this 77

supremum and therefore this deduction could only yield 78

a rather conservative result [18]. On the other hand, 79

most learning algorithms are inclined towards choosing 80

models with small expected errors and thus the uniform 81

deviation over sub-classes with small expected errors is 82

sufficient to control estimation errors [5]. A remarkable 83

concept called local Rademacher complexity has been 84

introduced into the learning theory community to capture 85

this speciality of learning algorithms [5], [19], [20]. Since 86

local Rademacher complexity allows us to concentrate our 87

attention to those sub-classes of primary interest, it always 88

yields considerably improved estimation error bounds 89
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when the variance-expectation relation holds [5], [18].90

(2) Under the ℓp loss, Krzyżak and Linder [1] only exploited91

the Hölder continuity of φp to show that the approximation92

error E(h∗k) − E(h∗) decays as a linear function of the93

distance ∥h∗k − h∗∥1/2, where h∗ is the target function94

and h∗k is defined as Eq. (9). However, recent studies95

indicated that when the derivative φ
′

p is Hölder continuous,96

E(h∗k) − E(h∗) can superlinearly decay as a function of97

∥h∗k − h∗∥1/2 [21]. Consequently, it is worthwhile to98

investigate the Hölder continuity of φ
′

p rather than that99

of φp to derive improved approximation error rates.100

In this paper we study these issues by providing novel101

generalization error bounds for RBF networks under the SRM102

principle. Our main scheme is to apply local Rademacher103

complexities to refine the existing estimation error bounds104

and to use the Hölder continuity of φ
′

p to provide improved105

approximation error bounds. For this purpose, we first offer106

a general result on controlling local Rademacher complexities107

with the L1-metric capacity. This bound is novel since it is108

based on the L1-metric capacity rather than the traditional and109

larger L2-metric capacity. Then we apply this general result to110

control RBF networks’ local Rademacher complexities, based111

on which we derive an effective estimation error bound and112

construct an appropriate structural risk. The approximation113

power of RBF networks is investigated by exploiting the114

Hölder continuity of φ
′

p. It is shown that the RBF network115

minimizing our structural risk attains a favorable trade-off be-116

tween approximation and estimation errors, yielding a learning117

rate significantly better than that in Krzyżak and Linder [1].118

We also present an empirical study to support our theoretical119

deduction.120

This paper is organized as follows. In Section II the problem121

is formulated. The main theorem, as well as its superiority122

to the results in Krzyżak and Linder [1], is presented in123

Section III. Section IV addresses local Rademacher complex-124

ity bounds. Section V tackles estimation and approximation125

errors for RBF networks. An empirical study is provided in126

Section VI. Section VII presents some conclusion remarks.127

II. PROBLEM FORMULATION128

Before formulating our problem we first introduce some129

notations that will be used throughout this paper. Given a130

set {Z1, . . . , Zn}, the associated empirical measure Pn is131

defined as Pn := 1
n

∑n
i=1 δZi , where δZi is the Dirac measure132

supported on the point Zi [22]. For a measure µ and a133

measurable function g, we use the notation µg =
∫
gdµ to134

denote the expectation of g. Now, the empirical average of g135

over Z1, . . . , Zn can be abbreviated as Png = 1
n

∑n
i=1 g(Zi).136

For a measure µ and a number 1 ≤ q < ∞, the no-137

tation Lq(µ) means the class of functions with finite norm138

∥f∥Lq(µ) := [
∫
|f |qdµ]1/q . The infinity-norm of a function139

is defined by ∥f∥∞ := supx |f(x)|. By the notation sgn(x)140

we mean the sign of x, i.e., sgn(x) = 1 if x ≥ 0 and −1141

otherwise. For any d ∈ N+, we denote by Sd×d the class142

of non-negative definite d× d matrices. The minimum of two143

numbers is denoted by a1∧a2 := min(a1, a2). By c we denote144

constants independent of the sample size n, complexity index145

(number of neurons) k and input dimension d, and their values 146

may change from line to line, or even within the same line. 147

TABLE I
NOTATIONS

Z=X×Y sample space Z with input space X and output space Y
n, k sample size and number of neurons, respectively
d, b input dimension and output bound, respectively
Hk the space of RBF networks with k nodes, Eq. (8)
Hb closure of H′

b in Eq. (14)
Fk the k-th loss class, Eq. (16)
F∗

k the k-th shifted loss class, Eq. (17)
E(h) generalization error (risk) of h, Eq. (1)

Ez(h) empirical error of h, Eq. (2)
Ẽz(ĥk) the structural risk of ĥk , Eq. (10)

ĥk ERM model in the class Hk , Eq. (9)
hn SRM model, Eq. (4)
h∗
k best model in the class Hk , Eq. (9)

h∗ target function, h∗ := argminh E(h)
f̂k an element in F∗

k defined by Eq. (26)
Pn empirical measure

Sd×d the class of non-negative definite d× d matrices
a1 ∧ a2 the minimum between a1 and a2

c a constant independent of n, k and d
sgn(x) the sign of x

φp ℓp loss φp(t) = |t|p
αp, βp two constants given below Eq. (10)
Lq(µ) the function class with norm ∥f∥Lq(µ) = [

∫
|f |qdµ]1/q

A. Learning and structural risk minimization 148

In the machine learning context, we are given an input space 149

X , an output space Y and a probability measure P defined on 150

Z := X ×Y governing the sampling process [23]. When pre- 151

sented with a sequence of examples Z1 = (X1, Y1), . . . , Zn = 152

(Xn, Yn), the purpose of learning is to construct a prediction 153

rule h : X → Y such that it can perform the prediction as 154

accurately as possible [21], [24], [25]. The local error suffered 155

from using h(x) to predict y is quantified by φ(h(x) − y), 156

where φ is a non-negative loss function. Consequently, the 157

quality of a prediction rule h is characterized by its general- 158

ization error (also called risk) 159

E(h) :=
∫
φ(h(X)− Y )dP. (1)

The function h∗ := argminh E(h) with minimal risk is called 160

the target function, where the minimum is taken over all 161

measurable functions. Since the underlying measure P is often 162

unknown to us, the term E(h) cannot be directly used to guide 163

the learning process and as an alternative we use the empirical 164

error (empirical risk) 165

Ez(h) :=
1

n

n∑
i=1

φ(h(Xi)− Yi) (2)

to approximate E(h) [26], [27]. Under the famous Empirical 166

Risk Minimization (ERM) principle [26], one simply mini- 167

mizes the empirical risk over a pre-selected hypothesis space 168

H to obtain the estimator ĥ, that is, ĥ := argminh∈H Ez(h). 169

As the empirical error can be optimistically biased com- 170

pared to the corresponding generalization error, the direct 171

minimization of Ez(h) may result in overfitting or underfit- 172

ting [1], [24]. To see this, we identify two factors determining 173
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the model’s generalization performance by recalling the fol-174

lowing bias-variance decomposition [24], [28]:175

EE(ĥ)−E(h∗) =
(
EE(ĥ)− inf

h∈H
E(h)

)
+

(
inf
h∈H

E(h)−E(h∗)
)
.

(3)
The first term is often called the estimation error, while the176

second is the approximation error [24], [28]. The approxima-177

tion error results from the insufficient representation power of178

the associated hypothesis space, which can be made arbitrarily179

small by expanding the searching space [17]. However, this is180

bound to increase the estimation difficulty and therefore causes181

a large estimation error [1]. Consequently, the performance of182

ERM scheme is sensitive to the class H [23], [29].183

An effective strategy to tackle this bias-variance phe-184

nomenon is to employ the SRM principle [24], [26]. Unlike185

ERM, SRM considers a sequence of classes Hk, k ∈ N+ with186

increasing complexities and then builds a set of candidate187

models ĥk, one from each class Hk, k ∈ N+. Now, the188

structural risk Ẽz(ĥk) is established by adding a penalty term189

reflecting Hk’s complexity into Ez(ĥk). The ultimate model190

hn := argmin
ĥk,k∈N+

Ẽz(ĥk) (4)

is derived by minimizing the structural risk over all candidate191

prediction rules [1], [24]. It is well known that the success192

of the SRM principle largely depends on the quality of the193

constructed structural risk, which should balance the empirical194

accuracy and the complexity of the candidate models [1], [26].195

Theorem 1 ([24]). Assume that for each complexity index k ∈196

N+, ĥk minimizes the empirical risk over the k-th hypothesis197

space Hk. Suppose that for every sample size n, there are198

positive numbers κ and γ such that for each k an estimate199

Ln,k of E(ĥk) is available which satisfies200

Pr
{
E(ĥk) > Ln,k + t

}
≤ κe−γt (5)

for any t > 0. Assume that the model hn is defined by

hn = argminĥk,k∈N+ Ẽz(ĥk), Ẽz(ĥk) := Ln,k +
2 log k

γ
.

Then the generalization error can be controlled as follows

EE(hn)− E(h∗) ≤ min
k∈N+

[
E
(
Ln,k − Ez(ĥk)

)
+(

inf
h∈Hk

E(h)− E(h∗)
)
+

2 log k + log(2eκ)

γ

]
. (6)

Theorem 1 justifies the success of the SRM principle by201

showing that the model minimizing a suitable structural risk202

can automatically trade-off the approximation and estimation203

errors. We choose to present it here since it is quite important204

for the progression of our theoretical discussion. For example,205

we will use Eq. (5) to guide the construction of our specific206

structural risk. Furthermore, Eq. (6) allows us to consider sep-207

arately the approximation and estimation errors when studying208

the generalization performance of hn.209

B. Radial basis function networks 210

We consider here RBF networks with one hidden layer, 211

which can be characterized by a kernel K : R+ → R. The 212

sample space is of the form Z := X × Y ⊂ Rd × [−b, b], 213

where d is the input dimension and b is a positive number. A 214

RBF network with k nodes considered here takes the form [1] 215

h(x) =

k∑
i=1

wiK
(
[x− ci]

TAi[x− ci]
)
+ w0, (7)

where w0, . . . , wk are real numbers called weights, 216

c1, . . . , ck ∈ Rd are centroids and A1, . . . , Ak are non- 217

negative definite d × d matrices determining the receptive 218

field of the kernel function K [1], [2]. Here xT denotes 219

the transpose of the vector x. Some typical kernels include 220

the Gaussian kernel K(t) = e−t, the exponential kernel 221

K(t) = e−
√
t and the inverse multi-quadratic kernel 222

K(t) = (1 + t)−1/2 [16]. Neural networks are trained under 223

the SRM principle and the k-th hypothesis space consists 224

of functions that can be expressed as Eq. (7) with k nodes 225

satisfying the weight condition
∑k

i=0 |wi| ≤ b. That is, 226

Hk =

{
k∑

i=1

wiK
(
[x− ci]

TAi[x− ci]
)
+ w0 :

k∑
i=0

|wi| ≤ b

}
.

(8)
The candidate models ĥk, k ∈ N+ are constructed by mini- 227

mizing the empirical error in the associated hypothesis spaces 228

under the ℓp loss φp(t) := |t|p, p > 1. In order to explicitly 229

indicate the dependence on the class, we use h∗k and ĥk to 230

denote the minimizer of the risk and empirical risk over the 231

k-th class, respectively. That is, 232

h∗k = argmin
h∈Hk

E(h) and ĥk = argmin
h∈Hk

Ez(h). (9)

It should be noted that dependencies of some notations, e.g., 233

h∗k, ĥk, E(h), Ez(h), on the parameter p are hidden for brevity. 234

III. MAIN RESULTS 235

The purpose of this paper is to study the generalization
performance of RBF networks under the SRM principle (4)
with the following specific structural risk:

Ẽz(ĥk) := E(h∗) + βp

[
Ez(ĥk)− Ez(h∗)

]
+ c

(
(kd2 log n)

1
2−αp + 2 log k

)
n
− 1

2−αp . (10)

Here the constants are αp = 2/p ∧ 1 and βp = 2 if 1 < p ≤ 236

2, βp = p/(p−2) if p > 2. Since E(h∗) and Ez(h∗) remain as 237

constants for all candidate models ĥk, k ∈ N+, the structural 238

risk (10) can also be reformulated as follows: 239

Ẽz(ĥk) := Ez(ĥk)+
c

βp

(
(kd2 log n)

1
2−αp + 2 log k

)
n
− 1

2−αp .

(11)
Theorem 2 shows that the risk of the SRM model under the 240

structural risk (10) is indeed within a constant factor of the 241

risk of the best model in the optimal class, i.e., almost as good 242

as if the optimal class has been previously indicated by an 243

“oracle” [30]. Theorem 2 is proved in part D of the appendix. 244

A real-valued function f defined on an interval [a1, a2] is said 245
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to be of bounded variation if there exists a number V such246

that
∑m

i=2 |f(xi) − f(xi−1)| < V for all knots a1 ≤ x1 <247

x2 < · · · < xm ≤ a2,∀m ∈ N+ [13].248

Theorem 2 (Main result). Suppose that the examples Zi =
(Xi, Yi), i = 1, 2, . . . , n are independently drawn according to
a probability measure P defined on Z := X × [−b, b], b > 0,
where X ⊂ Rd is the input space and d is the input dimension.
Assume that the loss function is φp, p > 1 and the kernel K
is of bounded variation satisfying the condition supt |K(t)| ≤
1. Then for the prediction rule hn minimizing the structural
risk (10), the term EE(hn)−E(h∗) can be upper bounded by

min
k∈N+

[
βp (E(h∗k)− E(h∗)) + c(kd2n−1 log n)

1
2−αp

]
.

Here the definitions of βp and αp can be found below Eq. (10).249

The key point in proving Theorem 2 is to show that the250

structural risk (10) is an appropriate upper bound of E(ĥk) in251

the sense of Eq. (5). It is well known that the behavior of E(ĥk)252

heavily relies on the size of the class Hk, which will be studied253

via the tool called local Rademacher complexity in Section IV.254

With this complexity bound at hand, Section V-A will apply a255

Talagrand type inequality to show that the structural risk (10)256

indeed meets the assumption (5).257

Remark 1. For the case p ̸= 2, p > 1, Krzyżak and Linder [1]258

constructed the structural risk of the form1
259

Ẽz(ĥk) = Ez(ĥk) + c

√
kd2 log n

n
(12)

and indicated that the prediction rule under the associated260

SRM principle satisfies the bound261

E(hn)− E(h∗) ≤ min
k∈N+

[
c

√
kd2 log n

n
+ (E(h∗k)− E(h∗))

]
.

(13)
As compared to this result, Theorem 2 provides an exponen-262

tially faster learning rate in the sense that the exponent of n263

is much smaller. Although k appears as a linear term in our264

bound when 1 < p < 2, one should note that this is indeed265

not a big drawback since the case k ≪ n is the one of primary266

interest. As we will see, Theorem 2 can yield a significantly267

faster learning rate than that can be derived from Eq. (13)268

when the target function admits some degree of regularity.269

Remark 2. The underlying reason for failing to get these im-270

proved rates in Krzyżak and Linder [1] is that their discussion271

is based on a Hoeffding type inequality, which is bound to272

control the universal deviation of empirical means from their273

expectations over the entire class and can only lead to the274

conservative rate c(n−1/2). As a comparison, our improvement275

is attributed to the following three strategies:276

(1) The use of local Rademacher complexity rather than the277

global counterpart allows us to concentrate our attention278

to functions that are likely to be picked out by learning279

1Krzyżak and Linder [1] did not consider the effect of d since the input
dimension is treated as a constant hidden in the big O notation. However,
a closer look of their deduction would recover the exact form of d in
Eq. (12), (13).

algorithms, typically constituting a subset of the original 280

class with small risks. 281

(2) The variance-expectation relation of the associated shifted 282

loss class, which we will consider in Section V-A, shows 283

that functions in this subset always admit small variances. 284

Consequently, to study the generalization performance of 285

the prediction rule it suffices to consider a sub-class of 286

functions with small variances. 287

(3) The application of a Talagrand type inequality (Theo- 288

rem 6) permits us to exploit this information on variances 289

to get refined learning rates. 290

When the target function h∗ satisfies some regularity con-
dition, one can control the approximation error E(h∗k)−E(h∗)
by a function of k and thus obtain explicit error bounds for
the SRM model hn. In this paper, the smoothness condition
on h∗ is formulated by assuming that it belongs to Hb. Here
Hb is the closure of H′

b in L2∧p(PX) with

H
′

b :=

{
m∑
i=1

tibiK([x−ci]TAi[x−ci]) : ti > 0,

m∑
i=1

ti = 1,

|bi| ≤ b, ci ∈ Rd, Ai ∈ Sd×d,m ∈ N+

}
. (14)

The approximation error will be controlled in Section V-B by 291

using the Hölder continuity of φ
′

p to relate it to the metric 292

distance ∥h∗k − h∗∥L2∧p(PX), which is more convenient to 293

approach in approximation theory. The proof of Corollary 3 294

is given in part D of the appendix. 295

Corollary 3. Under the same condition of Theorem 2 and if 296

we further assume that h∗ ∈ Hb, then 297

EE(hn)− E(h∗) ≤ c

(
d2 log n

n

) p
p+2∧

p
3p−2

, (15)

where d is the input dimension, n is the sample size and p 298

indicates the loss function. 299

Remark 3. Under the special case p = 2, Krzyżak and
Linder [1] derived the learning rate (n−1d2 log n)1/2. How-
ever, Krzyżak and Linder only offered the learning rate
(n−1d2 log n)1/4 for the general loss function φp(1 < p < 2).
In comparison with these results, it can be clearly seen that
the bound presented in Corollary 3 is much improved. Indeed,
the exponent p

p+2 ∧
p

3p−2 in Corollary 3 is always larger than
1/4 for any 1 < p < 2 (for the special case p = 2, our
learning rate recovers the result in Krzyżak and Linder [1]).
The reason for this improvement consists in two independent
aspects: (1) this corollary is based on a refined estimation
error bound established in Theorem 2; (2) using the Hölder
continuity of φ

′

p we derive the following refined inequality on
approximation error (see Eq. (44)):

E(h)− E(h∗) ≤ 2∥h− h∗∥pLp(PX),

which is much better than the relationship [1]

E(h)− E(h∗) ≤ c∥h− h∗∥Lp(PX)

based on the Hölder continuity of φp. 300
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IV. LOCAL RADEMACHER COMPLEXITY BOUNDS301

As a first step to show that the structural risk (10) meets302

Eq. (5), we need to consider the complexity of the loss class303

Fk := Fk,p = [|h(X)− Y |p : h ∈ Hk] , k ∈ N+. (16)

We use local Rademacher complexity to measure the size304

of function classes, as it can capture the key property of305

learning algorithms and can yield a significant improvement on306

error analysis when the variance-expectation assumption holds.307

However, as shown in Bartlett et al. [5], the local Rademacher308

complexity analysis applied to Fk can only yield an error309

bound of the form E(ĥk) ≤ cEz(ĥk) + o(1), c > 1, which310

is non-consistent if infh∈Hk
E(h) > 0. This problem can be311

circumvented by applying local Rademacher complexity to,312

instead of the class Fk, the shifted loss class F∗
k :313

F∗
k := F∗

k,p=[|h(X)−Y |p − |h∗(X)−Y |p : h∈Hk] , k∈N+.
(17)

Note that in Eqs. (16), (17), dependencies on p are suppressed314

for brevity. This section aims to estimate local Rademacher315

complexity bounds for the shifted loss classes (17). Section V316

will illustrate how to use these results to obtain satisfactory317

learning rates. The definition of Rademacher complexity can318

be traced back to Hans Rademacher and it was first proposed319

as an effective complexity measure by Koltchinskii [31].320

Definition 1 (Rademacher complexities). Let F be a class of
functions on a probability space (Z, P ) and let Z1, . . . , Zn

be n points independently drawn from P . Suppose that
σ1, . . . , σn are n independent Rademacher random variables,
i.e., Pr {σi = 1} = Pr {σi = −1} = 1/2. Introduce the
notation

RnF = sup
f∈F

1

n

n∑
i=1

σif(Zi).

The Rademacher complexity ERnF is the expectation of
RnF , and the empirical Rademacher complexity

EσRnF := E[RnF
∣∣Z1, . . . , Zn]

is defined as the conditional expectation of RnF .321

Local Rademacher complexities differ from the standard
Rademacher complexities in that the supremum is taken over
a subset of the original class rather than the whole class.
The subsets considered here are defined by the L2(P ) norm
or the L2(Pn) norm. To be precise, we consider here local
Rademacher complexities of the form

EσRn{f ∈ F : Pf2 ≤ r} or ERn{f ∈ F : Pf2 ≤ r}.

Local Rademacher complexities can be viewed as functions322

of r and they allow us to filter out those functions with large323

variances, which are of little interest since learning algorithms324

are unlikely to select them [32].325

Unfortunately, in the vast majority of cases, the direct326

computation of (local) Rademacher complexity is extremely327

difficult if not impossible [22]. The way to bypass this obstacle328

is to firstly relate it to other complexity measures such as329

covering numbers and then use these auxiliary concepts to330

estimate it indirectly.331

Definition 2 (Covering numbers). Let (G, d) be a metric space
and let F be a subset of G. For any ϵ > 0, we say that
{g1, . . . , gm} ⊂ G is an ϵ-cover of F if

sup
f∈F

min
1≤i≤m

d(f, gi) ≤ ϵ.

The covering number N (ϵ,F , d) is defined as the cardinality 332

of a minimal ϵ-cover of F . When G is a normed space with 333

norm ∥·∥, we also denote by N (ϵ,F , ∥·∥) the covering number 334

of F with respect to the metric d(f, g) := ∥f − g∥. 335

For any probability measure P , we have the following rela- 336

tionship among covering numbers under different metrics [22]: 337

N (ϵ,F , ∥ · ∥Lp(P )) ≤ N (ϵ,F , ∥ · ∥Lq(P )), ∀1 ≤ p ≤ q. (18)

In order to remove the dependence on the involved probability
measure, we introduce the following Lp-metric capacity (Lp-
norm covering numbers) by ranging Pn over all empirical
measures supported on n points [4]:

N (ϵ,F , ∥ · ∥p) = sup
n

sup
Pn

N (ϵ,F , ∥ · ∥Lp(Pn)).

Estimating Rademacher complexities is a classical theme 338

in learning theory. The first breakthrough in this direction is 339

marked by Dudley’s entropy integral [33], which captures in 340

an elegant form the relationship between covering numbers 341

and Rademacher complexities. Mendelson [22] extended this 342

classical result to the local Rademacher complexity setting 343

and provided some novel results for classes satisfying general 344

entropy assumptions. These discussions always involve the L2- 345

metric capacity. In this section we generalize these results by 346

illustrating how to use L1-norm covering numbers to control 347

local Rademacher complexities. To our best knowledge, this 348

is the first result on estimating local Rademacher complexities 349

via L1-norm covering numbers. 350

Theorem 4. Let F be a function class with supf∈F ∥f∥∞ ≤
b, where b is a positive number. Then for any r > 0 and sample
size n, local Rademacher complexity can be controlled by:

ERn{f ∈ F : Pf2 ≤ r} ≤ inf
ϵ>0

[
2ϵ+

8b logN (ϵ,F , ∥ · ∥1)
n

+ (2
√
2bϵ+

√
r)

√
2 logN (ϵ,F , ∥ · ∥1)

n

]
.

Proof. We first introduce a new random variable

Yr := sup
f∈F :Pf2≤r

Pnf
2.

The definition of Yr implies that for any sample, a function 351

f ∈ F with Pf2 ≤ r would automatically satisfy the 352

inequality Pnf
2 ≤ Yr. Consequently, the following inclusion 353

relationship holds almost surely: 354

{f ∈ F : Pf2 ≤ r} ⊂ {f ∈ F : Pnf
2 ≤ Yr}. (19)

Moreover, Yr meets the following inequality [22, Lemma 3.6] 355

EYr ≤ r + 4bERn{f ∈ F : Pf2 ≤ r}. (20)
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Putting Eqs. (19), (20) and Lemma 11 together, we have

ERn{f ∈ F : Pf2 ≤ r}
= EEσRn{f ∈F : Pf2 ≤ r} ≤ EEσRn{f ∈F : Pnf

2 ≤ Yr}

≤ ϵ+ E

[
(
√
2bϵ+

√
Yr)

√
2 logN (ϵ,F , ∥ · ∥L1(Pn))

n

]

≤ ϵ+ (
√
2bϵ+

√
EYr)

√
2 logN (ϵ,F , ∥ · ∥1)

n

≤ ϵ+
(√

2bϵ+
√
r + 4bERn{f ∈ F : Pf2 ≤ r}

)
×
√

2 logN (ϵ,F , ∥ · ∥1)
n

, ∀ϵ > 0,

where in the deduction process we have used Jensen’s inequal-
ity E

√
Yr ≤

√
EYr. The above inequality can be viewed as a

quadratic inequality of
√
ERn{f ∈ F : Pf2 ≤ r} and a direct

calculation yields that

ERn{f ∈ F : Pf2 ≤ r} ≤ 2ϵ+
8b logN (ϵ,F , ∥ · ∥1)

n

+ (2
√
2bϵ+

√
r)

√
2 logN (ϵ,F , ∥ · ∥1)

n
.

The desired inequality follows by taking the infimum over356

ϵ > 0.357

Remark 4. As compared to the existing results, our approach358

may admit the following superiorities:359

(1) It may happen that the estimation of L1-norm covering360

numbers is simpler than that of L2-norm covering num-361

bers. For example, Krzyżak and Linder [1] only discussed362

L1-norm covering numbers for RBF networks. Some other363

examples include the class of uniformly bounded convex364

functions, for which Guntuboyina and Sen [34] obtained365

optimal L1-norm covering number bounds and indicated366

that the extension of this result to L2-norm covering367

numbers requires more involved arguments. Therefore, our368

result may be more convenient to use.369

(2) As shown in Eq. (18), L1-norm covering numbers are370

always smaller than L2-norm covering numbers. Con-371

sequently, our result may yield a tighter bound when372

N (ϵ,F , ∥ · ∥1) is much smaller than N (ϵ,F , ∥ · ∥2).373

(3) The deduction presented here is simple, while the analysis374

based on the entropy integral in Mendelson [22] is more375

involved. To be precise, Mendelson obtained the following376

entropy integral by resorting to chaining arguments based377

on the L2-metric capacity:378

ERn{f ∈ F : Pf2≤r} ≤ cE
∫ √

Yr

0

log
1
2 N (ϵ,F , ∥·∥2)dϵ.

(21)
Notice that the random variable

√
Yr appears as the upper379

limit of the integral in Eq. (21) and the basic inequality380

available to us is a bound on EYr given by Eq. (20).381

Consequently, one needs some involved strategy to apply382

Eq. (20) to estimate the integral in Eq. (21). Mendelson’s383

tricky strategy is to bound the integral in Eq. (21) by384

a function of Yr in which the variable Yr appears in a385

simpler term. Furthermore, this constructed function turns386

out to be increasing and concave with respect to Yr, to 387

which Eq. (20) can be readily applied. Notice that the 388

construction of this function is not easy and requires some 389

additional effort. As a comparison, one can clearly see 390

that the variable
√
Yr always occurs as a linear term in 391

our deduction and its expectation can be simply bounded 392

by the inequality E
√
Yr ≤

√
EYr. 393

We are now in a position to present local Rademacher 394

complexity bounds for the shifted loss class (17). The proof, 395

which is given in part A of the appendix, relies on the 396

complexity bounds in Theorem 4 and the L1-norm covering 397

number bounds given by Krzyżak and Linder [1]. 398

Theorem 5. If K is of bounded variation and satisfies the
condition supt |K(t)| ≤ 1, then for any input dimension d,
sample size n, complexity index k and r > 0, the local
Rademacher complexity of the shifted loss class F∗

k satisfies:

ERn{f ∈ F∗
k : Pf2≤r}≤c

[
kd2 log n

n
+

√
rkd2 log n

n

]
.

V. GENERALIZATION PERFORMANCE OF RADIAL BASIS 399

FUNCTION NETWORKS 400

This section discusses the generalization performance of 401

RBF networks by considering separately the estimation and 402

approximation errors. We first apply local Rademacher com- 403

plexity bounds in Theorem 5 and a Talagrand-type inequal- 404

ity (Theorem 6) to tackle the estimation error bounds, based on 405

which one can show that the structural risk (10) indeed meets 406

the condition (5). Then the approximation power of RBF net- 407

works is treated via classical results in approximation theory. 408

The generalization performance of RBF networks is justified 409

by plugging the obtained estimation and approximation error 410

bounds into Eq. (6). 411

A. Controlling the estimation error 412

Our discussion on estimation error bounds is based on 413

Theorem 6 due to Bousquet [18] and Blanchard et al. [30], 414

which shows that if the uniform deviation of the empirical 415

processes indexed by sub-classes can be controlled by a sub- 416

root function ϕ, then the uniform deviation over the whole 417

class can also be dominated by the fixed point of ϕ. 418

Definition 3 ([22]). A function ϕ : [0,∞) → [0,∞) is called 419

sub-root if it is nondecreasing and if r → ϕ(r)/
√
r is non- 420

increasing over r > 0. 421

It can be checked that any sub-root function ϕ admits a 422

unique positive number r∗ satisfying ϕ(r∗) = r∗. We will 423

refer to such r∗ as the fixed point of ϕ in the remainder [5]. 424

Theorem 6 ([30]). Let F be a class of measurable, square 425

integrable functions such that Pf − f ≤ b,∀f ∈ F . Assume 426

that the convex hull of F contains the zero function. Let w(f) 427

be a non-negative functional with Var(f) ≤ w(f),∀f ∈ F . 428

Let ϕ be a sub-root function with unique fixed point r∗ such 429

that the following inequality holds: 430

E

[
sup

f∈F :w(f)≤r

(P − Pn)f

]
≤ ϕ(r), ∀r ≥ r∗. (22)
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Then, for any t > 0 and M > 1/7, the following inequality431

holds with probability at least 1− e−t:432

Pf − Pnf ≤ w(f)

M
+ 50Mr∗ +

(M + 9b)t

n
, ∀f ∈ F . (23)

The sub-classes in Theorem 6 are defined through a non-433

negative functional w(f), which will be fixed as the specific434

choice w(f) := Pf2 in this paper. To estimate the term435

M−1w(f) in Eq. (23), we need an additional assumption436

called the Bernstein condition.437

Definition 4 (Bernstein condition [18]). Let 0 < α ≤ 1 and438

B > 0 be two given constants. We say that F is an (α,B)-439

Bernstein class with respect to the probability measure P if440

Pf2 ≤ B(Pf)α, ∀f ∈ F . (24)

Bernstein condition (24) ensures that variances of functions441

in F can be controlled through their expectations, which is442

essential for us to get improved learning rates via the local443

Rademacher complexity technique. The intuitive example for444

extracting such condition is the famous Bernstein inequality,445

where the variance-expectation relation plays a significant role446

in deriving sharp bounds [22]. Lemma 13 in part B of the447

appendix guarantees the Bernstein condition for the shifted448

loss class (17). The estimation error bounds for the prediction449

rule ĥk can be controlled by the following theorem, whose450

proof is given in part B of the appendix.451

Theorem 7. Let P be a probability measure defined on Z :=452

X × [−b, b] ⊂ Rd × [−b, b], d ∈ N+, b > 0, from which the453

examples Zi = (Xi, Yi), i = 1, 2, . . . , n are independently454

drawn. Assume that the loss function is φp, p > 1, the kernel455

K is of bounded variation and satisfies that supt |K(t)| ≤ 1.456

Then for the hypothesis space defined as Eq. (8) and any t > 0,457

with probability at least 1− e−t there holds458

P f̂k ≤ βpPnf̂k + c

[(
kd2 log n

n

) 1
2−αp

+ t

(
1

n

) 1
2−αp

]
,

(25)
where αp = 2/p ∧ 1 and f̂k is an element in F∗

k defined by459

f̂k(z) := φp(ĥk(x)− y)− φp(h
∗(x)− y), k ∈ N+. (26)

B. Controlling the approximation error460

Our approximation error bounds for RBF networks are461

based on Theorem 8 due to Wu et al. [21], which implies462

that for a loss function φ with a Hölder continuous derivative,463

the term E(h) − E(h∗) can be approached by studying the464

distance between h and h∗ under the metric ∥ · ∥Lp(P ).465

Definition 5. Let I ⊂ R be an interval with nonempty interior.466

A function φ : I → R is called Hölder continuous with467

exponent α (0 < α < 1) and constant c0 on I if468

|φ(y)− φ(x)| ≤ c0|y − x|α, ∀x, y ∈ I. (27)

Theorem 8 ([21]). Assume that |y − h(x)| ≤ M and
|y − h∗(x)| ≤ M almost surely. If the loss function φ
is differentiable on [−M,M ] and its derivative is Hölder
continuous with exponent α and constant c0, then we have

E(h)− E(h∗) ≤ c0
1 + α

∥h− h∗∥1+α
L1+α(P ).

Under the assumption h∗ ∈ Hb, we have the following 469

approximation error rates. The definition of Hb can be seen 470

from Eq. (14). The proof is given in part C of the appendix. 471

Theorem 9. If the target function h∗ belongs to Hb and the 472

kernel K is uniformly bounded in the sense that supt |K(t)| ≤ 473

1, then for the loss function φp, p > 1 there holds 474

E(h∗k)− E(h∗) ≤ pcp−1

2 ∧ p

(
b√
k

)2∧p

, (28)

where cp−1 = 2 if p ≤ 2 and cp−1 = (p− 1)(2b)p−2 if p > 2. 475

Remark 5. Eq. (28) is an example of dimension-independent 476

bound since the involved convergence rate does not depend 477

on the input dimension d, which, at first glance, may seem 478

inconsistent with the curse of dimensionality: approximation 479

will become harder as the input dimension increases. However, 480

this is indeed not the case since the information on d is hidden 481

in the assumption that h∗ ∈ Hb. To clearly see the role of the 482

dimension here, we consider the special case K(t) = e−t, A = 483

σ−1I (I is the identify matrix and σ ∈ R+). For any r > 484

d/2, q ∈ [1,∞), the Bessel-potential space (Lq,r, ∥ · ∥Lq,r ) 485

is defined as the set of functions f that can be expressed as 486

f = w ∗ βr, where ∗ stands for the convolution operator, 487

w ∈ Lq(λ0) (λ0 is the Lebesgue measure) and βr is the r-th 488

Bessel potential with β̂r(s) = (1+∥s∥2)−r/2 being its Fourier 489

transform. Expressing βr in an integral formula as Eq. (12) 490

in Kainen et al. [11] and applying Theorem 2.4 in Kainen 491

et al. [11] to control the variational norm of any h∗ ∈ L1,r, 492

one can show that h∗ ∈ Hb if 493

b ≥ ∥w∥L1(λ0)2
−d/2Γ(r/2− d/2)/Γ(r/2), (29)

where Γ(x) :=
∫∞
0
tx−1e−tdt is the Gamma function. There-

fore, the condition h∗ ∈ Hb indeed hides the information
on d, which places an appropriate constraint on the target
function to allow for a dimension-independent error rate.
Furthermore, restating the regularity condition in other ways
would automatically reveal the role of the dimension in the
approximation process [11], [35]. For example, by assuming
h∗ = w∗βr ∈ L1,r with w satisfying Eq. (29), one can recover
the following dimension-dependent error rate [11], [36]

E(h∗k)−E(h∗) ≤ pcp−1

2 ∧ p

(
∥w∥L1(λ0)2

−d/2Γ(r/2− d/2)
√
kΓ(r/2)

)2∧p

.

To let the above inequality be nontrivial, we need to impose the
constraint r > d (since

∫∞
0
tx−1e−tdt = ∞ if x ≤ 0). Since

the space L1,r will become more and more constrained as r
increases, one needs to place a much stronger smoothness as-
sumption on the target function to attain similar approximation
error rates for large d, justifying the curse of dimensionality.
For a fixed c0 ≥ 0 and the degree rd := d+ c0, the factor

k(rd, d) :=

[
2−d/2Γ(rd/2− d/2)

Γ(rd/2)

]2∧p

involving d decays exponentially fast as d increases, showing 494

the hyper-tractability behavior for approximation by RBF 495

networks [11, 12]. 496



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Remark 6. It is interesting to describe the class of problems
that can be addressed by RBF networks with guaranteed
approximation error rates, i.e., to illustrate the class of func-
tions belonging to Hb. Using Theorem 8.2 in Girosi and
Anzellotti [8] one can show that functions g with the integral
representation

g(x) =

∫
Rd2+d

K
(
[x− c]tA[x− c]

)
λ(dcdA)

are indeed members of Hb. Here λ is a signed measure497

on Rd2+d with variation ∥λ∥ < b. For the case K(t) =498

e−t, t ∈ R+ and A = σ−1I, σ > 0, other than the Bessel-499

potential spaces considered in Remark 5, Niyogi and Girosi [4]500

indicated that Hb contains the Sobolev space H2m,1(2m > d)501

consisting of functions whose derivatives up to order 2m are502

integrable. One can also see here that the assumption h∗ ∈ Hb503

imposes stronger constraints as d increases.504

VI. SIMULATION STUDY505

This section aims to justify the effectiveness of the previous506

theoretical analysis from an empirical perspective. Specifically,507

we will consider the application of the structural risk (11) in508

selecting an appropriate complexity index k and compare its509

behavior with other model selection methods. Instead of the510

general RBF networks of the form (7), the networks to our511

attention here take the specific form512

h(x) =

k∑
i=1

wie
−∥x−ci∥2

+ w0, (30)

which allow us to use the standard function newrb in the Mat-513

lab Neural Network Toolbox to train networks. The notation514

∥ · ∥ in Eq. (30) means the Euclidean norm. We consider515

here some specific ℓp loss functions with 1 < p < 2, which516

are more robust, or equivalently less sensitive to “outliers”517

(bad observations), than the standard squared loss. Values of p518

close to one are of great importance for robust neural network519

regression [1]. Concretely, Darken et al. [37] indicated the520

superiority of ℓ1.2 to ℓ2 since ℓ1.2 is relatively insensitive to521

“outliers”. We do not consider the squared loss here since522

Krzyżak and Linder [1] obtained a structural risk similar to523

ours in this case.524

As our purpose is to compare different model selection525

methods rather than the accurate construction of RBF net-526

works, we consider here a two-stage approximation method527

to train RBF networks under the general ℓp loss, 1 < p < 2.528

At the first stage, the centroids c1, . . . , ck are approached by529

the function newrb in Matlab, which is exclusively designed530

for the squared loss. Once the centroids are derived, the calcu-531

lation of the coefficients wi is indeed a Lp regression problem532

and, perhaps more important, a convex optimization problem.533

We use CVX [38], a package for specifying and solving convex534

programs, to identify the coefficients wi at the second stage.535

The constraint on the coefficients as
∑k

i=0 |wi| ≤ b is ignored536

here since our main focus is to study the effect of k on537

the generalization performance. Also, the parameter b relies538

on the target function’s regularity assumption, which is often539

unknown to us.540

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SRM SRM’ AIC

T
es

t E
rr

or

5

10

15

20

25

30

35

SRM SRM’ AIC

K

(a) p = 1.2.

0.1

0.15

0.2

0.25

0.3

SRM SRM’ AIC
T

es
t E

rr
or

5

10

15

20

25

30

SRM SRM’ AIC

K

(b) p = 1.4.

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

SRM SRM’ AIC

T
es

t E
rr

or

2

4

6

8

10

12

14

16

SRM SRM’ AIC

K

(c) p = 1.6.

Fig. 1. Empirical comparison of the model selection methods for the
regression problem with 1D-sinc function being the target function.

The success of a model selection method heavily relies on 541

a criterion to assess the associated models’ quality. Instead of 542

the structural risk (11), we use the following structural risk 543

SRM(ĥk) := Ez(ĥk) + λ

(
k(d+ 1) + 1

n
log n

) 1
2−αp

, (31)

where λ > 0 is a constant. The distinction between Eq. (11) 544

and Eq. (31) consists in two aspects: firstly, the negligible term 545

2 log k · n−
1

2−αp in Eq. (11) is removed here; secondly2, the 546

term kd2 in Eq. (11) is replaced by k(d + 1) + 1. Empirical 547

studies imply that λ = σ2 (σ2 is the variance of the noise 548

ϵ in Eq. (35)) is an appropriate choice and, in this case, the 549

structural risk (31) reduces to (since αp = 1 if 1 < p < 2) 550

SRM(ĥk) := Ez(ĥk) +
k(d+ 1) + 1

n
log n · σ2, (32)

which coincides with the Bayesian Information Criterion
(BIC). This fact provides a possible justification of our theo-
retical discussion as it recovers the well-known BIC proposed
from a Bayesian viewpoint. To illustrate the efficiency of
the structural risk (32), we perform an empirical comparison
between it and two other model selection methods: one based

2An intuitive interpretation is that the number of parameters is k(d+1)+1
for functions of the form (30), while that for general RBF networks is ckd2.
Indeed, for the specific RBF networks (30), analyzing in a similar way one
can show that the term kd2 in Eq. (11) should be replaced by k(d+1)+ 1.
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Fig. 2. Empirical comparison of the model selection methods for the
regression problem with 2D-sinc function being the target function.

on the analysis in Krzyżak and Linder [1] (SRM
′
) and one

based on Akaike Information Criterion (AIC) [39]:

SRM
′
(ĥk) = Ez(ĥk) +

√
k(d+ 1) + 1

n
log nσ2, (33)

AIC(ĥk) = Ez(ĥk) +
2k(d+ 1) + 2

n
σ2. (34)

Note that the structural risk (33) is derived from Eq. (12) by551

replacing kd2 and c with k(d+ 1) + 1 and σ2, respectively.552

The empirical comparison is performed in a controlled553

manner, for which the data is independently generated from554

y = fρ(x) + ϵ, (35)

where x follows the uniform distribution over X and ϵ follows
the normal distribution with expectation 0 and variance σ2.
We consider here two specific regression problems, where the
corresponding target functions are

1D-sinc function: fρ(x) = x−1 sinx x ∈ [−10, 10],

2D-sinc function: fρ(x) =
sin
√
x21 + x22√

x21 + x22
x ∈ [−5, 5]2.

We choose the noise variance σ2 in a way to let the Signal-555

Noise-Ratio (SNR) equal to 4, where SNR is defined as the556

ratio of the variance of the true output value fρ(x) to the557

variance of the noise ϵ [39]. For simplicity, we assume that558

σ2 is accessible to us and thus all the criteria (32), (33), (34) 559

can be directly computed from the data. 560

For each regression problem, we generate a training set
by independently drawing n points from Eq. (35). Then
the complexity index k is ranged over the specified set
{2, 4, 6, . . . , 36}. For each temporarily fixed k, the associated
RBF network ĥk is established by our two-stage approxima-
tion method, resulting in a sequence of candidate models. For
each model selection method, the quality of the candidate
models is assessed by the corresponding criterion (SRM,
SRM

′
, AIC), and the one with the best quality is identified

as the ultimate model. The generalization performance of
the model chosen by a model selection method is measured
through the test error:

Etest(hn) :=
1

ntest

ntest∑
i=1

|hn(x
′

i)− y
′

i|p,

where ((x
′

1, y
′

1), . . . , (x
′

ntest
, y

′

ntest
)) is the test sample indepen- 561

dently drawn from Eq. (35). Now, the test error and the 562

complexity index k of the chosen model are recorded. We 563

always set ntest = 500. 564

The above experimental procedure is repeated 100 times, 565

with each trial an independent random realization of n = 50 566

training points. The empirical distribution of these test errors, 567

as well as the corresponding complexity indices, are displayed 568

via the standard box plot, with marks at 95-th, 75-th, 50-th, 569

25-th and 5-th percentile of the empirical distribution. 570

Fig. 1 exhibits the relative behavior of different model 571

selection methods under the 1D-sinc function and different 572

loss functions (p = 1.2, 1.4, 1.6), while Fig. 2 displays their 573

performance for the 2D-sinc function. Both SRM and AIC 574

work well for all the regression problems and all considered 575

ℓp loss functions. As a comparison, SRM
′

performs relatively 576

poorly in the case p = 1.2 and p = 1.4. It can also be 577

clearly seen that SRM favors the simplest model, which is 578

mostly consistent with the principle of Occam’s razor: among 579

all hypotheses consistent with the facts, choose the simplest. 580

VII. CONCLUSIONS 581

This paper studies the generalization performance of RBF 582

networks under the SRM principle and general loss functions. 583

We propose a general local Rademacher complexity bound 584

involving the L1-metric capacity rather than the traditional L2- 585

metric capacity. We then apply this general result to the RBF 586

network setting to derive substantially improved estimation 587

error bounds. Effective approximation error bounds are also 588

presented by carefully investigating the Hölder continuity of 589

the associated loss function’s derivative. It is shown that the 590

RBF network minimizing an appropriate structural risk attains 591

a significantly faster learning rate when compared to the 592

existing results. We also perform an empirical study to justify 593

the application of our structural risk in model selection. 594
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APPENDIX599

A. Proofs on local Rademacher complexity bounds600

Lemma 10 ([18]). If F is a finite class with cardinality N ,
then for any sample size n and r > 0 there holds:

EσRn{f ∈ F : Pnf
2 ≤ r} ≤

√
2r logN

n
.

Lemma 11. Let n be the sample size, r and b two positive
numbers. For any function class F with supf∈F ∥f∥∞ ≤ b,
we have the following complexity bounds:

EσRn{f ∈ F : Pnf
2 ≤ r} ≤

inf
ϵ>0

[
ϵ+ (

√
2bϵ+

√
r)

√
2 logN (ϵ,F , ∥ · ∥L1(Pn))

n

]
.

Proof. We temporarily fix any parameter ϵ > 0. Let F△ be
a minimal ϵ-cover of the class F with respect to the norm
∥ · ∥L1(Pn). Denote by

F△
r := {f ∈ F△ : ∥f∥L2(Pn) ≤

√
2bϵ+

√
r}

a subset of F△. For any f ∈ F , we define f△ as the closest
element to f in F△:

f△ := argmin
g∈F△

∥f − g∥L1(Pn).

For any f, g with ∥f∥∞ ≤ b, ∥g∥∞ ≤ b, we know that601

∥f − g∥2L2(Pn)
=

∫
|f − g|2dPn ≤ 2b∥f − g∥L1(Pn).

Without loss of generality, one can always assume that the set602

F△ is also uniformly bounded by b. Now, for any element603

f ∈ F with Pnf
2 ≤ r, it follows from the triangle inequality604

and the definition of f△ that605

∥f△∥L2(Pn) ≤ ∥f△ − f∥L2(Pn) + ∥f∥L2(Pn)

≤
√
2b∥f△ − f∥L1(Pn) + ∥f∥L2(Pn)

≤
√
2bϵ+

√
r.

(36)

That is, for any f ∈ F with Pnf
2 ≤ r we have f△ ∈ F△

r .
By the definition of Rademacher complexity, we derive that

EσRn{f ∈ F : Pnf
2 ≤ r}

= Eσ sup
f∈F :Pnf2≤r

[
1

n

n∑
i=1

σi
(
f(Xi)−f△(Xi)

)
+
1

n

n∑
i=1

σif
△(Xi)

]
≤ sup

f∈F :Pnf2≤r

∥f − f△∥L1(Pn) + EσRnF△
r

≤ ϵ+ (
√
2bϵ+

√
r)

√
2 log |F△

r |
n

,

where the last step follows from Lemma 10. The proof is606

complete since the above inequality holds for any ϵ > 0.607

Proof of Theorem 5. Let V be the total variation of K. For
the hypothesis space (8), Krzyżak and Linder [1, Lemma 4]
derived the following covering number bounds:

N (ϵ,Hk, ∥ · ∥1) ≤
(
e2(d2 + d+ 3)

)2(k+1)
(
2e(b+ ϵ)

ϵ

)k+1

×
(
V e(b+ ϵ)

ϵ

)2(k+1)(d2+d+2)

≤
(
e2(d2 + d+ 3)

√
2e(V e)d

2+d+2
)2(k+1)

×
(
2b

ϵ

)(k+1)(2d2+2d+5)

if ϵ ≤ b.

Using the above inequality and the structural result [1], [22] 608

N (ϵ,F∗
k , ∥·∥1) = N (ϵ,Fk, ∥·∥1) ≤ N (ϵ/(p(2b)p−1),Hk, ∥·∥1),

one can show that

N (ϵ,F∗
k , ∥ · ∥1) ≤

(
e2(d2 + d+ 3)

√
2e(V e)d

2+d+2
)2(k+1)

×
(
p(2b)p

ϵ

)(k+1)(2d2+2d+5)

=

√
2e5(d2 + d+ 3)(V e)d

2+d+2(p2pbp)(2d
2+2d+5)/2︸ ︷︷ ︸

:=A

2(k+1)

× ϵ−(k+1)(2d2+2d+5).

The above inequality can be rewritten as follows:

logN (ϵ,F∗
k , ∥ · ∥1) ≤ 2(k + 1) logA

+ (k + 1)(2d2 + 2d+ 5) log(1/ϵ).

It can be directly checked that the class F∗
k is uniformly

bounded by (2b)p. Consequently, one can apply Theorem 4
here to derive the following inequality for any 0 < ϵ < b

ERn{f ∈ F∗
k : Pf2 ≤ r} ≤ 2ϵ+

(
2
√

2(2b)pϵ+
√
r
)

×
√
k + 1

n

√
4 logA+ 2(2d2 + 2d+ 5) log(1/ϵ)

+
8(2b)p(k + 1)

n

[
2 logA+ (2d2 + 2d+ 5) log(1/ϵ)

]
.

Taking the assignment ϵ = n−1 in the above inequality (we
assume that n−1 < b for brevity), we have

ERn{f ∈ F∗
k : Pf2 ≤ r} ≤ c

[
kd2 log n

n
+

√
rkd2 log n

n

]
.

609

B. Proofs on estimation error bounds 610

Our proof on estimation error bounds heavily relies on the 611

variance-expectation relation for functions in the class (17). 612

For this purpose we first recall the following lemma due 613

to Bartlett et al. [40] and Mendelson [41], which shows that 614

the shifted loss class (17) is indeed an (α,B)-Bernstein class, 615

provided that the involved hypothesis space Hk is convex. 616
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Lemma 12 ([41, Theorem 6.1]). Suppose that the hypothesis
space H is convex and the loss function φp(t) satisfies the
condition |φp(h(x)− y)| ≤ M, ∀h ∈ H, (x, y) ∈ Z for some
positive constant M . Then the associated shifted loss class

F = {φp(h(x)− y)− φp(h
∗
H(x)− y) : h ∈ H}

is an (αp, B)-Bernstein class, where αp = 2/p ∧ 1, B is a617

constant depending on p and M and h∗H := argminh∈H E(h).618

However, Hk does not satisfy the convexity assumption619

in our specific problem and therefore Lemma 12 cannot be620

directly applied. Fortunately, with a little additional work, we621

can obtain Lemma 13 at our rescue.622

Lemma 13. Suppose that the response variable Y takes values623

in the region [−b, b] with probability 1. Then, the shifted loss624

class F∗
k is an (αp, B)-Bernstein class, where αp = 1 ∧ 2/p625

and B is a constant depending on p and b.626

Proof. Introduce the auxiliary function class

Hb = {h is a measurable function defined on X : ∥h∥∞ ≤ b}.

The convexity of Hb follows from the above definition. For any
function h, it can be verified that hb := max(−b,min(b, h))
is a better function for modeling the data in the sense E(hb) ≤
E(h). Indeed, one can even show that the inequality |hb(x)−
y| ≤ |h(x)−y| holds for any y with |y| ≤ b. Consequently, the
target function h∗ lies in Hb and thus one can apply Lemma 12
to show that

F̄∗
b := {φp(h(x)− y)− φp(h

∗(x)− y) : h ∈ Hb}

is an (αp, B)-Bernstein class for some constant B. As a subset627

of F̄∗
b , F∗

k is also an (αp, B)-Bernstein class.628

With these preparations, we can now prove Theorem 7 on629

estimation error bounds. Since the exponent α in Eq. (24) may630

vary when p takes different values, we consider two cases (1 <631

p ≤ 2 and p > 2) to proceed with our proof.632

Proof of Theorem 7. According to Lemma A.5 in [5], the
deviation of empirical means from their expectations can be
controlled by the associated Rademacher complexity. There-
fore, we can obtain from Theorem 5 that

E

[
sup

f∈F∗
k :Pf2≤r

(P − Pn)f

]
≤ 2ERn{f ∈ F∗

k : Pf2 ≤ r}

≤ c

[
kd2 log n

n
+

√
rkd2 log n

n

]
.

Introduce the sub-root function

ϕ(r) := c

[
kd2 log n

n
+

√
rkd2 log n

n

]
.

The fixed point r∗ of ϕ(r) can be calculated by solving a633

quadratic function, which can be further bounded by634

r∗ ≤ ckd2 log n

n
. (37)

Furthermore, functions in F∗
k always satisfy the inequalities

Pf − f ≤ 2(2b)p and Var(f) ≤ Pf2, ∀f ∈ F∗
k .

Applying Theorem 6 with w(f) = Pf2 and F = F∗
k , with 635

probability at least 1− e−t there holds: 636

P f̂k ≤ Pnf̂k+M
−1P f̂2k+

50Mckd2 log n

n
+
(M+18(2b)p)t

n
,

(38)
where f̂k is defined by Eq. (26). Now we can continue our 637

proof by distinguishing two cases according to the value of p: 638

CASE 1 < p ≤ 2. In this case, Lemma 13 guarantees the
existence of B satisfying Pf2 ≤ BPf, ∀f ∈ F∗

k and therefore
Eq. (38) reduces to

P f̂k ≤ Pnf̂k +
BPf̂k
M

+
50Mckd2 log n

n
+

(M + 18(2b)p)t

n
.

Since the above inequality holds for any M > 1/7, one can 639

take the assignment M = 2B to give (we assume B > 1/14) 640

P f̂k ≤ 2Pnf̂k +
200Bckd2 log n

n
+

2(2B + 18(2b)p)t

n
. (39)

CASE p > 2. For such p, Lemma 13 implies that the 641

inequality Pf2 ≤ B(Pf)2/p holds for some B > 0 and any 642

f ∈ F∗
k . Now, it follows directly from Eq. (38) that 643

P f̂k ≤ Pnf̂k +
B

M
(P f̂k)

2/p

+
50Mckd2 log n

n
+

(M + 18(2b)p)t

n

≤ Pnf̂k +
2

p

[
(P f̂k)

2/p
]p/2

+

(
1− 2

p

)(
B

M

)p/(p−2)

+
50Mckd2 log n

n
+

(M + 18(2b)p)t

n
,

(40)

where we have used the Hölder inequality [23]

p−1ap + q−1bq ≥ ab, ∀ p−1 + q−1 = 1, a, b, p, q > 0.

Eq. (40) can be reformulated as follows

P f̂k ≤ p

p− 2
Pnf̂k +

(
B

M

)p/(p−2)

+
50pMckd2 log n

n(p− 2)
+
p(M + 18(2b)p)t

n(p− 2)
.

Plugging M = (kn−1d2 log n)(p−2)/(2−2p) into the above
inequality, we have

P f̂k ≤ p

p− 2
Pnf̂k +

(
B

p
p−2 +

50pc

p− 2

)(
kd2 log n

n

) p
2p−2

+
18p(2b)pt

n(p− 2)
+

pt

p− 2

(
1

kd2 log n

) p−2
2p−2

(
1

n

) p
2p−2

. (41)

Eq. (39) and Eq. (41) can be written in a compact form as 644

Eq. (25), where c is a constant independent of n, k and d. 645

C. Proofs on the approximation error bounds 646

To apply Theorem 8 in our context we need to check 647

the Hölder continuity of the signed power function ψ(x) := 648

sgn(x)|x|α, which is justified by the following lemma. 649



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Lemma 14. The signed power function ψ(x) :=650

sgn(x)|x|α, α > 0 defined on [−M,M ] is Hölder continuous651

with exponent 1 ∧ α and constant cα, where cα = 2 if652

0 < α ≤ 1 and cα = αMα−1 if α > 1.653

Proof. We consider two cases according to the value of α.654

CASE 0 < α ≤ 1. For such α, it can be directly checked655

that the power function ψ̃(x) := xα defined on [0,∞) satisfies656

the following inequality657

(x+ y)α ≤ xα + yα ≤ 2(x+ y)α, ∀x, y ∈ [0,∞). (42)

Indeed, the first inequality follows from the sub-additive658

property of ψ̃(x), whereas the second inequality is due to the659

non-negativity of x, y.660

For numbers x, y with x · y ≥ 0, Eq. (42) implies that

|x|α = |x− y + y|α ≤ |x− y|α + |y|α,
|y|α = |y − x+ x|α ≤ |x− y|α + |x|α.

These two basic inequalities yield that

|sgn(x)|x|α − sgn(y)|y|α| ≤ |x− y|α.

For numbers x, y with x · y < 0, the desired inequality

|sgn(x)|x|α − sgn(y)|y|α| ≤ 2|x− y|α

is equivalent to |x|α+|y|α ≤ 2 (|x|+ |y|)α (note that |x−y| =661

|x|+ |y|), which follows from the right-hand side of Eq. (42).662

CASE α > 1. In this case, it can be verified that ψ(x) =
sgn(x)|x|α is differentiable and the derivative is uniformly
bounded in that |ψ′

(x)| ≤ αMα−1,∀x ∈ [−M,M ]. Conse-
quently, the Hölder continuity of ψ(x) can be established by

|ψ(x)− ψ(y)| =
∣∣ ∫ x

y

ψ
′
(t)dt

∣∣ ≤ αMα−1|x− y|.

663

Proof of Theorem 9. For the target function h∗ in Hb, the664

monotonicity of the norm ∥ · ∥Lp(PX) with respect to p and665

Lemma 1 in Barron [36] guarantee the existence of a function666

h̃k ∈ Hk such that667

∥h̃k − h∗∥L2∧p(PX) ≤ ∥h̃k − h∗∥L2(PX) ≤ b
√
1/k. (43)

Note that |y−h(x)| ≤ 2b,∀h ∈ Hk and |y−h∗(x)| ≤ 2b hold668

almost surely. Lemma 14 implies that φ
′

p(x) = sgn(x)·p|x|p−1
669

is Hölder continuous with exponent 1 ∧ (p− 1) and constant670

pcp−1. Consequently, it follows from Theorem 8 that671

E(h̃k)− E(h∗) ≤ pcp−1

2 ∧ p
∥h̃k − h∗∥2∧p

L2∧p(PX), (44)

which, coupled with h∗k’s definition and Eq. (43), yields that

E(h∗k)− E(h∗) ≤ E(h̃k)− E(h∗) ≤ pcp−1

2 ∧ p

(
b√
k

)2∧p

.

672

D. Proofs on the generalization error bounds 673

Proof of Theorem 2. Theorem 7 implies that the following
inequality holds with probability at least 1− e−t

E(ĥk) ≤ E(h∗) + βp

[
Ez(ĥk)− Ez(h∗)

]
+ c

[(
kd2 log n

n

) 1
2−αp

+ t

(
1

n

) 1
2−αp

]
.

Consequently, for the estimate Ln,k defined as

Ln,k := E(h∗)+βp
[
Ez(ĥk)− Ez(h∗)

]
+c(kd2n−1 log n)

1
2−αp ,

the inequality (5) holds with κ = 1 and γ = c−1n1/(2−αp).
Now the term Ln,k − Ez(ĥk) can be upper bounded by

(βp − 1)Ez(ĥk) + E(h∗)− βpEz(h∗) + c(kd2n−1 log n)
1

2−αp .

Taking the expectation on both sides and using the ERM
property Ez(ĥk) ≤ Ez(h∗k), we get

E
[
Ln,k − Ez(ĥk)

]
≤ (βp − 1) (E(h∗k)− E(h∗))

+ c(kd2n−1 log n)
1

2−αp .

It can be directly verified that the structural risk defined by
Eq. (10) is indeed Ln,k + 2γ−1 log k. Plugging the above
inequality into Eq. (6) yields the following result

EE(hn)− E(h∗) ≤ min
k

[
βp (E(h∗k)− E(h∗))

+ c(kd2n−1 log n)
1

2−αp + (2 log k + log(2e))cn
− 1

2−αp

]
.

674

Proof of Corollary 3. For the case 1 < p ≤ 2, we can derive
from Theorem 9 and Theorem 2 that

EE(hn)− E(h∗) ≤ min
k

[
βpck

− p
2 + ckd2n−1 log n

]
≤ c

(
d2 log n

n

) p
p+2

,

where in the second inequality we simply take the choice k = 675

(d2n−1 log n)−2/(p+2). 676

The case p > 2 can be analogously addressed by taking
k = (d2n−1 log n)p/(2−3p) in the deduction:

EE(hn)− E(h∗) ≤ min
k

[
βpck

−1 + c(kd2n−1 log n)
p

2p−2

]
≤ c(d2n−1 log n)

p
3p−2 .

677
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[16] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free723

Theory of Nonparametric Regression. New York: Springer-Verlag,724

2002.725

[17] A. Barron, “Approximation and estimation bounds for artificial neural726

networks,” Mach. Learn., vol. 14, no. 1, pp. 115–133, 1994.727

[18] O. Bousquet, “Concentration inequalities and empirical processes theory728

applied to the analysis of learning algorithms,” Ph.D. dissertation, Ecole729

Polytechnique, 2002.730

[19] P. Massart, “Some applications of concentration inequalities to statis-731
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