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Data-dependent Generalization Bounds for
Multi-class Classification

Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, and Marius Kloft

Abstract—In this paper, we study data-dependent generalization
error bounds that exhibit a mild dependency on the number of
classes, making them suitable for multi-class learning with a large
number of label classes. The bounds generally hold for empirical
multi-class risk minimization algorithms using an arbitrary norm
as the regularizer. Key to our analysis are new structural results
for multi-class Gaussian complexities and empirical `∞-norm
covering numbers, which exploit the Lipschitz continuity of the
loss function with respect to the `2- and `∞-norm, respectively.
We establish data-dependent error bounds in terms of the
complexities of a linear function class defined on a finite set
induced by training examples, for which we show tight lower
and upper bounds. We apply the results to several prominent
multi-class learning machines and show a tighter dependency on
the number of classes than the state of the art. For instance, for
the multi-class SVM of Crammer and Singer (2002), we obtain a
data-dependent bound with a logarithmic dependency, which is a
significant improvement of the previous square-root dependency.
Experimental results are reported to verify the effectiveness of
our theoretical findings.

Index Terms—Multi-class classification, Generalization error
bounds, Covering numbers, Rademacher complexities, Gaussian
complexities.

I. INTRODUCTION

Multi-class learning is a classic problem in machine
learning [1]. The outputs here stem from a finite set

of categories (classes), and the aim is to classify each input
into one of several possible target classes [2–4]. Classic appli-
cations of multi-class classification include handwritten optical
character recognition, where the system learns to automatically
interpret handwritten characters [5], part-of-speech tagging,
where each word in a text is annotated with part-of-speech
tag [6], and image categorization, where predefined categories
are associated with digital images [7, 8].
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Providing a theoretical framework of multi-class learning al-
gorithms is a fundamental task in statistical learning theory [1].
Statistical learning theory aims to ensure formal guarantees to
safeguard the performance of learning algorithms, often in the
form of generalization error bounds [9]. Such bounds may lead
to improved understanding of commonly used empirical prac-
tices and spur the development of novel learning algorithms
(“Nothing is more practical than a good theory” [1]).

Classic generalization bounds for multi-class learning scale
rather unfavorably (e.g., quadratic, linear, or square root at
best) with the number of classes [9–11]. This may be because
the standard theory has been constructed without the need
of having a large number of label classes in mind as many
classic multi-class learning problems consist of only a small
number of classes. For instance, the historically first multi-
class dataset—Iris—[12]—contains only three classes, the
MNIST dataset [13] consists of 10 classes, and most of the
datasets in the popular UCI corpus [14] contain up to several
dozen classes.

However, with the advent of the big data era, multi-
class learning problems—such as text or image classification
[7, 15]—can involve tens or hundreds of thousands of classes.
Recently, a subarea of machine learning that studies classifica-
tion problems involving an extremely large number of classes
(such as those mentioned above) called eXtreme Classification
(XC) has emerged [16]. Several algorithms have recently been
proposed to speed up the training or improve the prediction
accuracy in classification problems with many classes [15, 17–
26].

However, a discrepancy remains between algorithms and
theory in classification with many classes, as standard statis-
tical learning theory is void in the large number of classes
scenario [27]. With the present paper we want to contribute
toward a better theoretical understanding of multi-class classi-
fication with many classes. This theoretical understanding can
provide grounds for the commonly used empirical practices in
classification with many classes and lead to insights that may
be used to guide the design of new learning algorithms.

Note that the present paper focuses on multi-class learning.
Recently, there has been a growing interest in multi-label
learning. The difference in the two scenarios is that each
instance is associated with exactly one label class (in the
multi-class case) or multiple classes (in the multi-label case),
respectively. While the present analysis is tailored to the multi-
class learning scenario, it may serve as a starting point for
subsequent analysis of the multi-label learning scenario.
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A. Summary of Contributions

We build the present journal article upon our previous con-
ference paper published at NIPS 2015 [28], where we propose
a multi-class support vector machine (MC-SVM) using block
`2,p-norm regularization, for which we proved data-dependent
generalization bounds based on Gaussian complexities (GCs).

While the previous analysis employed margin-based loss,
in the present article, we generalize GC-based data-dependent
analysis to general loss functions that are Lipschitz continuous
with respect to (w.r.t.) a variant of the `2-norm . Furthermore,
we develop a new approach to derive data-dependent bounds
based on empirical covering numbers (CNs) to capture the
Lipschitz continuity of loss functions w.r.t. the `∞-norm with
a moderate Lipschitz constant, which is not studied in the
conference version of this article. For both approaches, our
data-dependent error bounds can be stated in terms of the
complexities of a linear function class defined on only a finite
set induced by training examples, for which we give lower and
upper bounds matching up to a constant factor. We present
examples to show that each of these two approaches has its
advantages and may outperform the other by inducing tighter
error bounds for specific MC-SVMs.

As applications of our theory, we show error bounds for
several prominent multi-class learning algorithms: multinomial
logistic regression [29], top-k MC-SVM [30], `p-norm MC-
SVM [28], and several classic MC-SVMs [31–33]. For all
these methods, we show error bounds with an improved
dependency on the number of classes over the state-of-the-art
methods. For instance, the best known bounds for multinomial
logistic regression and the MC-SVM by Crammer and Singer
[31] scale as the square root of the number of classes. We
improve this dependency to be logarithmic, which gives strong
theoretical grounds for using these methods in classification
with many classes.

We develop a novel algorithm to train the `p-norm MC-
SVM [28] and report the experimental results to verify our
theoretical findings and their applicability to model selection.

II. RELATED WORK AND CONTRIBUTIONS

In this section, we discuss related work and outline the main
contributions of this paper.

A. Related Work

In this subsection, we recapitulate the state of the art in
multi-class learning theory.

1) Related Work on Data-dependent Bounds: The existing
error bounds for multi-class learning can be classified into two
groups: data-dependent and data-independent error bounds.
Both types of bounds are often based on the assumption
that the data are realized from independent and identically
distributed random variables. However, this assumption can
be relaxed to weakly dependent time series, for which Mohri
and Rostamizadeh [34] and Steinwart et al. [35] show data-
dependent and data-independent generalization bounds, re-
spectively.

Data-dependent generalization error bounds refer to bounds
that can be evaluated on training samples and thus can capture

properties of the distribution that has generated the data [9].
Often, these bounds are built on the empirical Rademacher
complexity (RC) [36–38], which can be used in model selec-
tion and for the construction of new learning algorithms [39].

The investigation of data-dependent error bounds for multi-
class learning is initiated, to the best of our knowledge, by
Koltchinskii and Panchenko [10], who give the following
structural result on RCs: given a set H = {h = (h1, . . . , hc)}
of vector-valued functions and training examples x1, . . . ,xn,
it holds

Eε sup
h∈H

n∑
i=1

εi max
{
h1(xi), . . . , hc(xi)

}
≤

c∑
j=1

Eε sup
h∈H

n∑
i=1

εihj(xi). (1)

Here, ε1, . . . , εn denote independent Rademacher variables
(i.e., taking values +1 or −1, with equal probability), and
Eε denotes the conditional expectation operator removing the
randomness coming from the variables ε1, . . . , εn.

In much of the subsequent theoretical work on multi-class
learning, the above result is used as a starting point, by
which the maximum operator involved in multi-class hypoth-
esis classes (Eq. 1, left-hand side) can be removed [9, 31].
Applying this result leads to a simple sum of c RCs (Eq.
(1), right-hand side), each of which can be bounded using
standard theory [37]. In this way, Koltchinskii and Panchenko
[10], Cortes et al. [40], and Mohri et al. [9] derive multi-
class generalization error bounds that exhibit a quadratic
dependency on the number of classes, which Kuznetsov et al.
[41] improve to a linear dependency.
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Fig. 1. Illustration of why Eq. (1) is loose. Consider a 1-dimensional
binary classification problem with hypothesis class H consisting of functions
mapping x ∈ R to max(h1(x), h2(x)), where hj(x) = wjx for j = 1, 2.
Assume the class is regularized through the constraint ‖(w1, w2)‖2 ≤ 1,
so the left-hand side of the inequality (1) involves a supremum over the `2-
norm constraint ‖(w1, w2)‖2 ≤ 1. By contrast, the right-hand side of (1) has
individual suprema for w1 and w2 (no coupling), resulting in a supremum over
the `∞-norm constraint ‖(w1, w2)‖∞ ≤ 1. Thus applying Eq. (1) enlarges
the size of the constraint set by the area that is shaded in the figure, which
grows as O(

√
c). In the present paper, we show a proof technique to elevate

this problem, resulting in an improved bound (tighter by a factor of
√
c).

However, the reduction (1) comes at the expense of at least
a linear dependency on the number of classes c, due to the
sum in Eq. (1) (right-hand side), which consists of c terms.
We show that this linear dependency can often be suboptimal
because (1) does not take into account coupling among the
classes. To understand why, we consider the example of MC-
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SVM by Crammer and Singer [31], which uses an `2-norm
constraint ∥∥(h1, . . . , hc

)∥∥
2
≤ Λ (2)

to couple the components h1, . . . , hc. The problem with Eq.
(1) is that it decouples the components, resulting in the
constraint

∥∥(h1, . . . , hc
)∥∥
∞ ≤ Λ, which—as illustrated in

Fig. 1—is a poor approximation of (2).
In our previous work [28], we give a structural result ad-

dressing this shortcoming and tightly preserving the constraint
defining the hypothesis class. Our result is based on the so-
called GC [37], a notion similar to the RC. The difference
in the two notions is that RC and GC are the suprema of a
Rademacher and Gaussian process, respectively.

The core idea of our analysis is that we exploit a comparison
inequality for the suprema of Gaussian processes known as
Slepian’s Lemma [42], by which we can remove, from the
GC, the maximum operator that occurs in the definition of
the hypothesis class, thus preserving the above mentioned
coupling—we call the supremum of the resulting Gaussian
process the multi-class Gaussian complexity.

On the basis of our structural result, we obtain in [28] a
data-dependent error bound for [31] that exhibits—for the first
time—a sublinear (square-root) dependency on the number of
classes. When using a block `2,p-norm constraint (with p close
to 1), rather than an `2-norm constraint, one can reduce this
dependency to be logarithmic, making the analysis appealing
for classification with many classes.

We note that, addressing the same need, the following
structural result [43, 44] has appeared since the publication
of our previous work [28]:

Eε sup
h∈H

n∑
i=1

εifi(h(xi)) ≤
√

2LEε sup
h∈H

n∑
i=1

c∑
j=1

εijhj(xi),

(3)
where f1, . . . , fn are L-Lipschitz continuous w.r.t. the `2-
norm.

For the MC-SVM of Crammer and Singer [31], the above
result leads to the same favorable square-root dependency on
the number of classes as that of our previous result in [28].
We note, however, that the structural result (3) requires fi
to be Lipschitz continuous w.r.t. the `2-norm, while some
multi-class loss functions [30, 32, 45] are Lipschitz continuous
with a moderate Lipschitz constant, when choosing a more
appropriate norm. In these cases, the analysis given in the
present paper improves not only the classical results obtained
through (1), but also the results obtained through (3).

2) Related Work on Data-independent Bounds: Data-
independent generalization bounds refer to classical theoretical
bounds that hold for any sample, with a certain probability
over the draw of the samples [1, 46]. In their seminal contri-
bution On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities, Vapnik and Chervonenkis [47]
propose one of the first bounds of that type—introducing the
notion of VC dimension.

Several authors consider data-independent bounds for multi-
class learning. By controlling the entropy numbers of linear
operators with Maurey’s theorem, Guermeur [11] derives

generalization error bounds with a linear dependency on the
number of classes. This is improved to a square-root depen-
dency by Zhang [48] using `∞-norm CNs without considering
the correlation among class-wise components. Pan et al. [49]
consider a multi-class Parzen window classifier and derive an
error bound with a quadratic dependency on the number of
classes. Several authors present data-independent generaliza-
tion bounds based on combinatorial dimensions, including the
graph dimension, the Natarajan dimension dnat, and its scale-
sensitive analog dnat,γ for margin γ [50–54].

Guermeur [50, 51] presents a generalization bound decaying

as O
(

log c
√

dnat,γ logn
n

)
. When using an `∞-norm regularizer

dnat,γ is bounded by O(c2γ−2), and the generalization bound

reduces to O
(
c log c
γ

√
logn
n

)
. The author does not give a bound

for an `2-norm regularizer, which is more challenging due to
the above mentioned coupling of the hypothesis components.

Daniely et al. [52] give a bound decaying as

O
(√dnat(H) log c

n

)
, which changes to O

(√
dc log c
n

)
for

multi-class linear classifiers since the associated Natarajan
dimension grows as O(dc) [53].

Guermeur [55] has recently established an `p-norm Sauer-
Shelah lemma for large-margin multi-class classifiers, based
on which error bounds with a square-root dependency on the
number of classes are derived. This setting comprises the MC-
SVM by Crammer and Singer [31].

What is common in all the above mentioned data-
independent bounds is their super logarithmic dependency
(square root at best) on the number of classes. As a notable ex-
ception, Kontorovich and Weiss [56] show a bound exhibiting
a logarithmic dependency on the number of classes. However,
their bound holds only for the specific nearest-neighbor-
based algorithm that they propose, so their analysis does
not cover the commonly used multi-class learning machines
mentioned in the introduction (such as multinomial logistic
regression and classic MC-SVMs). Furthermore, their bound
is of the order min

{
O
(
γ−1

(
log c
n

) 1
1+D

)
, O
(
γ−

D
2

(
log c
n

) 1
2
)}

,
which admits an exponential dependence on the doubling
dimension D of the metric space in which the learning occurs.
For instance, for linear learning methods with dimension d,
the doubling dimension D grows linearly in d, so the bound
in [56] grows exponentially in d. For kernel-based learning
using an infinite doubling dimension (e.g., Gaussian kernels)
the bound is void.

B. Contributions of this Paper

This paper aims to contribute a solid theoretical founda-
tion for learning with many class labels by presenting data-
dependent generalization error bounds with relaxed dependen-
cies on the number of classes. We develop two approaches
to establish data-dependent error bounds: one based on multi-
class GCs and one based on empirical `∞-norm CNs. We give
specific examples to show that each of these two approaches
has its distinct advantages and may yield error bounds tighter
than the other. We also develop novel algorithms to train the
`p-norm MC-SVM [28] and report the experimental results.
Below we summarize the main results of this paper.
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1) Tighter Generalization Bounds by Gaussian Complexi-
ties: As an extension of our NIPS 2015 conference paper, our
GC-based analysis depends on a novel structural result on GCs
(Lemma 1 below) that is able to preserve the correlation among
class-wise components. Similar to Maurer [43] and Cortes
et al. [44], our structural result applies to function classes in-
duced by operators satisfying a Lipschitz continuity. However,
here we measure the Lipschitz continuity with respect to a
specially crafted variant of the `2-norm involving a Lipschitz
constant pair (L1, L2) (cf. Definition 2 below), motivated by
the observation that some multi-class loss functions satisfy this
Lipschitz continuity with a relatively small L1 in a dominant
term and a relatively large L2 in a non-dominant term. This
process allows us to improve the error bounds based on the
structural result (3) for MC-SVMs with a relatively large L2.

Based on this new structural result, we present an error
bound for multi-class empirical risk minimization algorithms
using an arbitrary norm as the regularizer. As instantiations of
our general bound, we compute specific bounds for the `2,p-
norm and Schatten p-norm regularizers. We apply this general
GC-based bound to some popular MC-SVMs [29, 31–33, 45].

Our GC-based analysis yields the first error bound for
top-k MC-SVM [30] as a decreasing function in k. When
setting k proportional to c, the bound does not depend on the
number of classes. By contrast, error bounds based on the
structural result (3) fail to provide insight into the influence
of k on the generalization performance because the involved
Lipschitz constant is dominated by a constant. For the MC-
SVM of Weston and Watkins [32], our analysis yields a bound
exhibiting a linear dependency on the number of classes, which
improves the dependency O(c

3
2 ) based on the structural result

(3). For the MC-SVM by Jenssen et al. [45], our analysis
yields a bound with no dependencies on c, whereas the error
bound based on the structural result (3) has a square-root
dependency. This demonstrates the effectiveness of our new
structural result in capturing the Lipschitz continuity w.r.t. a
variant of the `2-norm.

2) Tighter Generalization Bounds by Covering Numbers:
While the GC-based analysis uses the Lipschitz continuity
measured by the `2-norm or a variant thereof, some multi-class
loss functions are Lipschitz continuous w.r.t. the `∞-norm
with a moderate Lipschitz constant. To apply the GC-based
error bounds, we need to transform this `∞-norm Lipschitz
continuity into the `2-norm Lipschitz continuity at the cost of
a multiplicative factor of

√
c. Motivated by this observation,

we present another data-dependent analysis based on empir-
ical `∞-norm CNs to fully exploit the Lipschitz continuity
measured by the `∞-norm. We show that this process leads to
bounds with a weaker dependency on the number of classes.

The core idea is to introduce a linear and scalar-valued
function class induced by training examples to extract all
the components of the hypothesis functions on the training
examples, which allows us to relate the empirical `∞-norm
CNs of the loss function classes to that of this linear function
class. Our main result is a data-dependent error bound for
general MC-SVMs expressed in terms of the worst-case RC
of a linear function class, for which we establish lower and
upper bounds that match up to a constant factor. The analysis

in this direction is unrelated to the conference version [28]
and provides an alternative to GC-based arguments.

As direct applications, we derive other data-dependent gen-
eralization error bounds that scale sublinearly for `p-norm
MC-SVM and Schatten-p norm MC-SVM, and logarithmically
for top-k MC-SVM [30], trace-norm regularized MC-SVM
[57], multinomial logistic regression [29] and the MC-SVM by
Crammer and Singer [31]. Note that the previously best results
for the MC-SVM in [31] and multinomial logistic regression
scale as the square root of the number of classes [48].

3) Novel Algorithms with Empirical Verifications: We pro-
pose a novel algorithm to train `p-norm MC-SVM [28] using
the Frank-Wolfe algorithm [58], for which we show that the
involved linear optimization problem has a closed-form solu-
tion, making the implementation of the Frank-Wolfe algorithm
simple and efficient. This method avoids the introduction of
class weights used in our previous optimization algorithm [28],
which moreover applies to only the case 1 ≤ p ≤ 2. The
effectiveness of `p-norm MC-SVM is demonstrated by empir-
ical comparisons with several baseline methods on benchmark
datasets. We also empirically show that our generalization
bounds really capture models’ generalization performance on
the number of classes, which in turn suggest a structural risk
that is able to guide the selection of model parameters.

III. MAIN RESULTS

A. Problem Setting

In multi-class classification with c classes, we are given
training examples S = {zi = (xi, yi)}ni=1 ⊂ Z := X × Y ,
where X ⊂ Rd is the input space, and Y = {1, . . . , c} is the
output space. We assume that z1, . . . , zn are independently
drawn from a probability measure P defined on Z .

Our aim is to learn, from a hypothesis space H , a hypothesis
h = (h1, . . . , hc) : X 7→ Rc used for prediction via the rule
x 7→ arg maxy∈Y hy(x). We consider prediction functions of
the form hwj (x) = 〈wj , φ(x)〉, where φ is a feature map
associated with a Mercer kernel K defined over X × X ,
and wj belongs to the reproducing kernel Hilbert space
HK induced from K with the inner product 〈·, ·〉 satisfying
K(x, x̃) = 〈φ(x), φ(x̃)〉.

We consider hypothesis spaces of the form

Hτ =
{
hw =

(
〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉

)
:

w = (w1, . . . ,wc) ∈ Hc
K , τ(w) ≤ Λ

}
, (4)

where τ is a functional defined on Hc
K := HK × · · · ×HK︸ ︷︷ ︸

c times
and Λ > 0. Here we omit the dependency on Λ for brevity.

We consider a general problem setting with
Ψy(h1(x), . . . , hc(x)) used to measure the prediction
quality of model h at (x, y) [48, 59], where Ψy : Rc 7→ R+

is a real-valued function taking a c-component vector as its
argument. The general loss function Ψy is widely used in
many MC-SVMs, including the models of Crammer and
Singer [31], Weston and Watkins [32], Lee et al. [33], Zhang
[48], and Lapin et al. [30].
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TABLE I
NOTATION USED IN THIS PAPER AND THE PAGE NUMBER WHERE IT FIRST OCCURS.

notation meaning page
X ,Y the input space and output space, respectively 4
S the set of training examples {zi = (xi, yi)} ∈ X × Y 4
c number of classes 4
K Mercer kernel 4
φ feature map associated to a kernel K 4
HK reproducing kernel Hilbert space induced by a Mercer kernel K 4
Hc
K c-fold Cartesian product of the reproducing kernel Hilbert space HK 4
w (w1, . . . ,wc) ∈ Hc

K 4
hw prediction function (〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉) 4
Hτ hypothesis space for MC-SVM constrained by a regularizer τ 4
Ψy multi-class loss function for class label y 4
‖ · ‖p `p-norm defined on Rc 5
‖ · ‖2,p `2,p norm defined on Hc

K 5
〈w,v〉 inner product on Hc

K as
∑c
j=1〈wj ,vj〉 5

‖ · ‖∗ dual norm of ‖ · ‖ 5
Nn the set {1, . . . , n} 5
p∗ dual exponent of p satisfying 1/p+ 1/p∗ = 1 5
Eu the expectation w.r.t. random u 5
BΨ the constant sup(x,y)∈Z,h∈Hτ Ψy(h(x)) 5

B̂Ψ the constant n−
1
2 suph∈Hτ

∥∥(Ψyi (h(xi))
)n
i=1

∥∥
2

5
B̂ the constant maxi∈Nn ‖φ(xi)‖2 supw:τ(w)≤Λ ‖w‖2,∞ 5
Aτ the term defined in (5) 5
Iy indices of examples with class label y 5
‖ · ‖Sp Schatten-p norm of a matrix 5
RS(H) empirical Rademacher complexity of H w.r.t. sample S 5
GS(H) empirical Gaussian complexity of H w.r.t. sample S 5
Rn(H) worst-case Rademacher complexity of H w.r.t. n examples 5
H̃τ class of scalar-valued linear functions defined on Hc

K 6
S̃ an enlarged set of cardinality nc defined in (9) 6
S̃′ a set of cardinality n defined in (11) 6
Fτ,Λ loss function class for MC-SVM 7

ρh(x, y) margin of h at (x, y) 8
N∞(ε, F, S) empirical covering number of F w.r.t. sample S 19

fatε(F ) fat-shattering dimension of F 19

B. Notations

We now present some notation used throughout this paper
(see also Table I). We say that a function f : Rc 7→ R is
L-Lipschitz continuous w.r.t. a norm ‖ · ‖ in Rc if

|f(t)− f(t′)| ≤ L‖(t1 − t′1, . . . , tc − t′c)‖, ∀t, t′ ∈ Rc.

The `p-norm of a vector t = (t1, . . . , tc) is defined as ‖t‖p =[∑c
j=1 |tj |p

] 1
p . For any v = (v1, . . . ,vc) ∈ Hc

K and p ≥ 1,

we define the structure norm ‖v‖2,p =
[∑c

j=1 ‖vj‖
p
2

] 1
p . Here,

for brevity, we denote by ‖vj‖2 the norm of vj in HK . For
any w = (w1, . . . ,wc),v = (v1, . . . ,vc) ∈ Hc

K , we denote
〈w,v〉 =

∑c
j=1〈wj ,vj〉. For any n ∈ N, we introduce the

notation Nn := {1, . . . , n}. For any p ≥ 1, we denote by
p∗ the dual exponent of p satisfying 1/p + 1/p∗ = 1. For
any norm ‖ · ‖ we use ‖ · ‖∗ to represent its dual norm.
Furthermore, we define BΨ = sup

(x,y)∈Z
sup

hw∈Hτ
Ψy(hw(x)),

B̂Ψ = n−
1
2 sup
hw∈Hτ

∥∥(Ψyi(h
w(xi))

)n
i=1

∥∥
2
, and B̂ =

max
i∈Nn

‖φ(xi)‖2 sup
w:τ(w)≤Λ

‖w‖2,∞. For any functional τ over

Hc
K , we introduce the following notation to write our bounds

compactly

Aτ := sup
hw∈Hτ

[
Ex,yΨy(hw(x))

− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
− 3BΨ

[ log 2
δ

2n

] 1
2

, (5)

where we omit the dependency on n and loss function for
brevity. Note that, for any random u, the notation Eu denotes
the expectation w.r.t. u. For any y ∈ Y , we use Iy = {i ∈
Nn : yi = y} to represent the indices of the examples with
label y.

If φ is the identity map, then the hypothesis hw can be
compactly represented by a matrix W = (w1, . . . ,wc) ∈
Rd×c. For any p ≥ 1, the Schatten-p norm of a matrix
W ∈ Rd×c is defined as the `p-norm of the vector of singular
values σ(W ) := (σ1(W ), . . . , σmin{c,d}(W ))> (the singular
values are assumed to be sorted in non-increasing order), i.e.,
‖W‖Sp := ‖σ(W )‖p.

C. Data-dependent Bounds by Gaussian Complexities

We first present data-dependent analysis based on the es-
tablished methodology of RCs and GCs [37].
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Definition 1 (Empirical Rademacher and Gaussian complex-
ities). Let H be a class of real-valued functions defined
over a space Z̃ and S′ = {z̃i}ni=1 ∈ Z̃n. The empirical
Rademacher and Gaussian complexities of H with respect to
S′ are, respectively, defined as

RS′(H) = Eε
[

sup
h∈H

1

n

n∑
i=1

εih(z̃i)
]
,

GS′(H) = Eg
[

sup
h∈H

1

n

n∑
i=1

gih(z̃i)
]
,

where ε1, . . . , εn are independent Rademacher variables, and
g1, . . . , gn are independent N(0, 1) random variables. We
define the worst-case Rademacher complexity as Rn(H) =
supS′∈Z̃n RS′(H).

Existing data-dependent analyses build on either the struc-
tural result (1) or (3), which either ignore the correlation
among predictors associated with individual class labels or
require fi to be Lipschitz continuous w.r.t. the `2-norm. Below
we introduce a new structural complexity result based on the
following Lipschitz property w.r.t. a variant of the `2-norm.
The motivation of this Lipschitz continuity is that some multi-
class loss functions satisfy (6) with a relatively small L1

and a relatively large L2, the latter of which is not strongly
influential since it is involved in a single component.

Definition 2 (Lipschitz continuity w.r.t. a variant of the
`2-norm). We say a function f : Rc 7→ R is Lipschitz
continuous w.r.t. a variant of the `2-norm involving a Lipschitz
constant pair (L1, L2) and index r ∈ {1, . . . , c} if

|f(t)−f(t′)| ≤ L1‖(t1− t′1, . . . , tc− t′c)‖2 +L2|tr− t′r| (6)

for all t, t′ ∈ Rc.

We now present our first core result of this paper, the
following structural lemma. Proofs of results in this section
are given in Section VI-A.

Lemma 1 (Structural Lemma). Let H be a class of functions
mapping from X to Rc. Let L1, L2 ≥ 0 be two constants and
r : N 7→ Y . Let f1, . . . , fn be a sequence of functions from Rc
to R. Suppose that for any i ∈ Nn, fi is Lipschitz continuous
w.r.t. a variant of the `2-norm involving a Lipschitz constant
pair (L1, L2) and index r(i). Let g1, . . . , gn, g11, . . . , gnc be
a sequence of independent N(0, 1) random variables. Then,
for any sample {x̃i}ni=1 ∈ Xn we have

Eg sup
h∈H

n∑
i=1

gifi(h(x̃i)) ≤
√

2L1Eg sup
h∈H

n∑
i=1

c∑
j=1

gijhj(x̃i)

+
√

2L2Eg sup
h∈H

n∑
i=1

gihr(i)(x̃i). (7)

Lemma 1 controls the GC of the multi-class loss function
class by that of the original hypothesis class, thereby removing
the dependency on the potentially cumbersome operator fi
in the definition of the loss function class (for instance for
Crammer and Singer [31], fi would be the component-wise
maximum). The above lemma is based on a comparison

(Slepian’s lemma, Lemma 20 below) of the suprema of Gaus-
sian processes.

Equipped with Lemma 1, we can present our main results
based on GCs. Eq. (13) is a data-dependent bound in terms of
the GC of the following linear scalar-valued function class

H̃τ := {v 7→ 〈w,v〉 : w,v ∈ Hc
K , τ(w) ≤ Λ,v ∈ S̃}, (8)

where S̃ is defined as follows

S̃ =
{
φ̃1(x1), φ̃2(x1), . . . , φ̃c(x1)︸ ︷︷ ︸

induced by x1

, φ̃1(x2), φ̃2(x2), . . . , φ̃c(x2)︸ ︷︷ ︸
induced by x2

,

. . . , φ̃1(xn), . . . , φ̃c(xn)︸ ︷︷ ︸
induced by xn

}
(9)

and, for any x ∈ X , we use the notation

φ̃j(x) :=
(

0, . . . , 0︸ ︷︷ ︸
j−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−j

)
∈ Hc

K , j ∈ Nc. (10)

Note that H̃τ is a class of functions defined on a finite set S̃.
We also introduce

S̃′ =
{
φ̃y1(x1), φ̃y2(x2), . . . , φ̃yn(xn)

}
. (11)

The terms S̃, S̃′ and φ̃j(x) are motivated by the following
identity

〈w, φ̃k(x)〉 =
〈

(w1, . . . ,wc),
(

0, . . . , 0︸ ︷︷ ︸
k−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−k

)〉
= 〈wk, φ(x)〉, ∀k ∈ Nc. (12)

Hence, the right-hand side of (7) can be rewritten as Gaussian
complexities of H̃τ when H = Hτ .

Theorem 2 (Data-dependent bounds for general regularizer
and Lipschitz continuous loss w.r.t. Def. 2). Consider the
hypothesis space Hτ in (4) with τ(w) = ‖w‖, where ‖ · ‖
is a norm defined on Hc

K . Suppose there exist L1, L2 ∈ R+

such that Ψy is Lipschitz continuous w.r.t. a variant of the `2-
norm involving a Lipschitz constant pair (L1, L2) and index
y for all y ∈ Y . Then, for any 0 < δ < 1, with probability of
at least 1− δ, we have

Aτ ≤ 2
√
π
[
L1cGS̃(H̃τ ) + L2GS̃′(H̃τ )

]
(13)

and

Aτ ≤
2Λ
√
π

n

[
L1Eg

∥∥∥( n∑
i=1

gijφ(xi)
)c
j=1

∥∥∥
∗
+

L2Eg
∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥
∗

]
, (14)

where g1, . . . , gn, g11, . . . , gnc are independent N(0, 1) ran-
dom variables.

Remark 1 (Motivation of Lipschitz continuity w.r.t. Def.
2). The dominant term on the right-hand side of (13) is
L1cGS̃(H̃τ ) if L2 = O(

√
cL1). This explains the motiva-

tion to introduce the new structural result (7) to exploit the
Lipschitz continuity w.r.t. a variant of the `2-norm involving a
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large L2. For comparison, if we apply the previous structural
result (3) for loss functions satisfying (6), then the associated
`2-Lipschitz constant is L1 + L2, resulting in the following
bound

Aτ ≤ 2
√
π(L1 + L2)cRS̃(H̃τ ),

which is worse than (13) when L1 = O(L2) since the domi-
nant term becomes L2cRS̃(H̃τ ). Many popular loss functions
satisfy (6) with L1 = O(L2) [30, 32, 45]. For example,
the loss function used in the top-k SVM [30] satisfies (6)
with (L1, L2) = ( 1√

k
, 1), which, as we will show, allows

us to derive data-dependent bounds with no dependencies
on the number of classes by setting k proportional to c.
By comparison, the (k−

1
2 + 1)-Lipschitz continuity w.r.t. `2-

norm does not capture the special structure of the top-k
loss function since k−

1
2 is dominated by the constant 1. As

further examples, the loss function in Weston and Watkins [32]
satisfies (6) with (L1, L2) = (

√
c, c), while the loss function

in Jenssen et al. [45] satisfies (27) with (L1, L2) = (0, 1).

We now consider two applications of Theorem 2 by con-
sidering τ(w) = ‖w‖2,p defined on Hc

K [28] and τ(W ) =
‖W‖Sp defined on Rd×c [57], respectively.

Corollary 3 (Data-dependent bound for `p-norm regularizer
and Lipschitz continuous loss w.r.t. Def. 2). Consider the hy-
pothesis space Hp,Λ := Hτ,Λ in (4) with τ(w) = ‖w‖2,p, p ≥
1. If there exist L1, L2 ∈ R+ such that Ψy is Lipschitz
continuous w.r.t. a variant of the `2-norm involving a Lipschitz
constant pair (L1, L2) and index y for all y ∈ Y , then for
any 0 < δ < 1, the following inequality holds with probability
of at least 1 − δ (we use the abbreviation Ap = Aτ with
τ(w) = ‖w‖2,p)

Ap ≤
2Λ
√
π

n

[ n∑
i=1

K(xi,xi)
] 1

2

inf
q≥p

[
L1(q∗)

1
2 c

1
q∗

+ L2(q∗)
1
2 max(c

1
q∗−

1
2 , 1)

]
. (15)

Corollary 4 (Data-dependent bound for Schatten-p norm
regularizer and Lipschitz continuous loss w.r.t. Def. 2). Let φ
be the identity map and represent w by a matrix W ∈ Rd×c.
Consider the hypothesis space HSp,Λ := Hτ,Λ in (4) with
τ(W ) = ‖W‖Sp , p ≥ 1. If there exist L1, L2 ∈ R+ such
that Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm
involving a Lipschitz constant pair (L1, L2) and index y for
all y ∈ Y , then for any 0 < δ < 1 with probability of at
least 1− δ, we have (we use the abbreviation ASp = Aτ with
τ(W ) = ‖W‖Sp )

ASp ≤



2
3
4 πΛ
n
√
e

inf
p≤q≤2

(q∗)
1
2

{
(L1c

1
q∗ + L2)

[ n∑
i=1

‖xi‖22
] 1

2

+L1c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
, if p ≤ 2,

2
5
4 πΛ
(
L1c

1
2 +L2

)
min{c,d}

1
2
− 1
p

n
√
e

[∑n
i=1 ‖xi‖22

] 1
2

,

otherwise.
(16)

In comparison to Corollary 3, the error bound of Corollary 4
involves an additional term O

(
c

1
2n−1

∥∥∑n
i=1 xix

>
i

∥∥ 1
2

S q∗
2

)
for

the case p ≤ 2 due to the need to apply the non-commutative
Khintchine-Kahane inequality (71) for Schatten norms. As
we will show in Section IV, from Corollaries 3 and 4 we
can derive error bounds with sublinear dependencies on the
number of classes for `p-norm and Schatten-p norm MC-
SVMs. Furthermore, the dependency is logarithmic for the
`p-norm MC-SVM [28] when p approaches 1.

D. Data-dependent Bounds by Covering Numbers

The data-dependent generalization bounds given in subsec-
tion III-C assume the loss function Ψy to be Lipschitz contin-
uous w.r.t. a variant of the `2-norm. However, some typical
loss functions used in the multi-class setting are Lipschitz
continuous w.r.t. the much milder `∞-norm with a comparable
Lipschitz constant [48]. This mismatch between the norms
w.r.t. which Lipschitz continuity is measured requires an
additional step of controlling the `∞-norm of vector-valued
predictors by the `2-norm in the application of Theorem 2,
at the cost of a possible multiplicative factor of

√
c. This

subsection aims to avoid this loss in the class-size dependency
by presenting data-dependent analysis based on empirical `∞-
norm CNs to directly use the Lipschitz continuity measured
by the `∞-norm.

The key step in this approach lies in estimating the empirical
CNs of the loss function class

Fτ,Λ := {(x, y) 7→ Ψy(hw(x)) : hw ∈ Hτ}. (17)

A difficulty towards this aim consists in the non-linearity
of Fτ,Λ and the fact that hw ∈ Hτ takes vector-valued
outputs, whereas standard analyses are limited to scalar-valued
and essentially linear (kernel) function classes [60–62]. We
bypass this obstacle by considering a related linear scalar-
valued function class H̃τ defined in (8). A key motivation
in introducing H̃τ is that the CNs of Fτ,Λ w.r.t. x1, . . . ,xn
(CNs are defined in subsection VI-B) can be related to that of
the function class {v 7→ 〈w,v〉 : τ(w) ≤ Λ}, w.r.t. the set S̃
defined in (9). The latter is easily addressed since it is a linear
and scalar-valued function class, to which standard arguments
apply. Specifically, to approximate the projection of Fτ,Λ onto
the examples S with (ε, `∞)-covers (cf. Definition 3 below),
the `∞-Lipschitz continuity of the loss function requires us to
approximate the set

{(
〈wj , φ(xi)〉i∈Nn,j∈Nc

)
: τ(w) ≤ Λ

}
,

which, according to (12), is exactly the projection of H̃τ

onto S̃:
{(
〈w, φ̃j(xi)〉i∈Nn,j∈Nc

)
: τ(w) ≤ Λ

}
. This result

motivates the definition of H̃τ in (8) and S̃ in (9).
Theorem 5 reduces the estimation of RS(Fτ,Λ) to bounding

Rnc(H̃τ ), based on which the data-dependent error bounds are
given in Theorem 6. Note that Rnc(H̃τ ) is data-dependent
since H̃τ is a class of functions defined on a finite set induced
by training examples. The proofs of complexity bounds in
Proposition 7 and Proposition 8 are given in subsection VI-C
and Appendix B, respectively. The proofs of error bounds in
this subsection are given in subsection VI-B.
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Theorem 5 (Worst-case RC bound). Suppose that Ψy is L-
Lipscthiz continuous w.r.t. the `∞-norm for any y ∈ Y and
assume that B̂Ψ ≤ 2eB̂ncL. Then the RC of Fτ,Λ can be
bounded by

RS(Fτ,Λ) ≤ 16L
√
c log 2Rnc(H̃τ )

(
1 + log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
.

Theorem 6 (Data-dependent bounds for general regularizer
and Lipschitz continuous loss function w.r.t. ‖·‖∞). Under the
condition of Theorem 5, for any 0 < δ < 1, with probability
of at least 1− δ, we have

Aτ ≤ 27L
√
cRnc(H̃τ )

(
1 + log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
.

The application of Theorem 6 requires to control the worst-
case RC of the linear function class H̃τ from both below
and above, to which the following two propositions give
tight estimates for τ(w) = ‖w‖2,p defined on Hc

K [28] and
τ(W ) = ‖W‖Sp defined on Rd×c [57].

Proposition 7 (Lower and upper bound on worst-case RC for
`p-norm regularizer). For τ(w) = ‖w‖2,p, p ≥ 1 in (8), the
function class H̃τ becomes

H̃p :=
{
v 7→ 〈w,v〉 : w,v ∈ Hc

K , ‖w‖2,p ≤ Λ,v ∈ S̃
}
.

The RC of H̃p can be upper and lower bounded by

Λ max
i∈Nn

‖φ(xi)‖2(2n)−
1
2 c−

1
max(2,p) ≤ Rnc(H̃p)

≤ Λ max
i∈Nn

‖φ(xi)‖2n−
1
2 c−

1
max(2,p) . (18)

Remark 2 (Phase transition for p-norm regularized space).
We see an interesting phase transition at p = 2. The worst-
case RC of H̃p decays as O((nc)−

1
2 ) for the case p ≤ 2,

and decays as O(n−
1
2 c−

1
p ) for the case p > 2. Indeed, the

definition of S̃ by (9) implies ‖v‖2,∞ = ‖v‖2,p for all v ∈ S̃
and p ≥ 1 (sparsity of elements in S̃), from which we derive
the following identity

max
vi∈S̃:i∈Nnc

c∑
j=1

nc∑
i=1

‖vij‖22 = max
vi∈S̃:i∈Nnc

nc∑
i=1

‖vi‖22,∞

= ncmax
i∈Nn

‖φ(xi)‖22, (19)

where vij is the j-th component of vi ∈ S̃. That is,
we have an automatic constraint on

∥∥(∑nc
i=1 ‖vij‖22

)c
j=1

∥∥
1

for all vi ∈ S̃, i ∈ Nnc. Furthermore, according to
(65), we know ncRnc(H̃p) can be controlled in terms of
maxvi∈S̃:i∈Nn

∥∥(∑nc
i=1 ‖vij‖22

)c
j=1

∥∥
p∗
2

, for which an appropri-
ate p to fully use the identity (19) is p = 2. This explains the
phase transition phenomenon.

Proposition 8 (Lower and upper bound on worst-case RC for
Schatten-p norm regularizer). Let φ be the identity map and
represent w by a matrix W ∈ Rd×c. For τ(W ) = ‖W‖Sp , p ≥
1 in (8), the function class H̃τ becomes

H̃Sp :=
{
V 7→ 〈W,V 〉 : W ∈ Rd×c, ‖W‖Sp ≤ Λ,

V ∈ S̃ ⊂ Rd×c
}
. (20)

The RC of H̃Sp can be upper and lower bounded by

Λ max
i∈Nn

‖xi‖2(2nc)−
1
2 ≤ Rnc(H̃Sp) ≤ Λ max

i∈Nn
‖xi‖2(nc)−

1
2 ,

if p ≤ 2,

Λ max
i∈Nn

‖xi‖2(2nc)−
1
2 ≤ Rnc(H̃Sp) ≤

Λ max
i∈Nn

‖xi‖2 min{c,d}
1
2
− 1
p

√
nc

,

otherwise.
(21)

The associated data-dependent error bounds given in Corol-
lary 9 and Corollary 10 are then immediate.

Corollary 9 (Data-dependent bound for `p-norm regularizer
and Lipschitz continuous loss w.r.t. ‖ · ‖∞). Consider the hy-
pothesis space Hp,Λ := Hτ,Λ in (4) with τ(w) = ‖w‖2,p, p ≥
1. Assume that Ψy is L-Lipschitz continuous w.r.t. `∞-norm
for any y ∈ Y and B̂Ψ ≤ 2eB̂ncL. Then, for any 0 < δ < 1
with probability of 1− δ, we have

Ap ≤
27LΛ maxi∈Nn ‖φ(xi)‖2c

1
2−

1
max(2,p)

√
n

(
1+log

3
2
2

(√
2n

3
2 c
))
.

Corollary 10 (Data-dependent bound for Schatten-p norm
regularizer and Lipschitz continuous loss w.r.t. `∞-norm). Let
φ be the identity map and represent w by a matrix W ∈ Rd×c.
Consider the hypothesis space HSp,Λ := Hτ,Λ in (4) with
τ(W ) = ‖W‖Sp , p ≥ 1. Assume that Ψy is L-Lipschitz
continuous w.r.t. `∞-norm for any y ∈ Y and B̂Ψ ≤ 2eB̂ncL.
Then, for any 0 < δ < 1 with probability of 1− δ, we have

ASp ≤


27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, if p ≤ 2,

27LΛ maxi∈Nn ‖xi‖2 min{c,d}
1
2
− 1
p

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
,

otherwise.

IV. APPLICATIONS

In this section, we apply the general results in subsections
III-C and III-D to study data-dependent error bounds for some
prominent multi-class learning methods. We also compare our
data-dependent bounds with the state of the art. In subsection
IV-E, we present an in-depth discussion to compare error
bounds based on GCs with those based on CNs.

A. Classic MC-SVMs

We first apply the results from the previous section to
several classic MC-SVMs. For this purpose, we need to show
that the associated loss functions satisfy Lipschitz conditions.

To this end, for any h : X 7→ Rc, we denote by

ρh(x, y) := hy(x)− max
y′:y′ 6=y

hy′(x) (22)

the margin of the model h at (x, y). It is clear that the
prediction rule h makes an error at (x, y) if ρh(x, y) < 0.
In Examples 1, 3, and 4 below, we assume that ` : R 7→ R+

is a decreasing and L`-Lipschitz function.

Example 1 (Multi-class margin-based loss [31]). The loss
function defined as

Ψ`
y(t) := max

y′:y′ 6=y
`(ty − ty′), ∀t ∈ Rc (23)
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is (2L`)-Lipschitz continuous w.r.t. the `∞-norm and the `2-
norm. Furthermore, we have `(ρh(x, y)) = Ψ`

y(h(x)).

The loss function Ψ`
y defined above in Eq. (23) is a margin-

based loss function widely used in multi-class classification
[31] and structured prediction [9].

Next, we study the multinomial logistic loss Ψm
y defined

below, which is used in multinomial logistic regression [29,
Chapter 4.3.4].

Example 2 (Multinomial logistic loss). The multinomial lo-
gistic loss Ψm

y (t) defined as

Ψm
y (t) := log

( c∑
j=1

exp(tj − ty)
)
, ∀t ∈ Rc (24)

is 2-Lipschitz continuous w.r.t. the `∞-norm and the `2-norm.

The loss Ψ̃`
y defined in Eq. (25) below is used in [32]

to make pairwise comparisons among components of the
predictor.

Example 3 (Loss function used in [32]). The loss function
defined as

Ψ̃`
y(t) =

c∑
j=1

`(ty − tj), ∀t ∈ Rc (25)

is Lipschitz continuous w.r.t. a variant of the `2-norm in-
volving the Lipschitz constant pair (L`

√
c, L`c) and index y.

Furthermore, it is also (2L`c)-Lipschitz continuous w.r.t. the
`∞-norm.

Finally, the loss Ψ̄`
y defined in Eq. (26) and the loss Ψ̂`

y

defined in Eq. (27) are used separately in [33] based on
constrained comparisons.

Example 4 (Loss function used in [33]). The loss function
defined as

Ψ̄`
y(t) =

c∑
j=1,j 6=y

`(−tj), ∀t ∈ Ω = {t̃ ∈ Rc :

c∑
j=1

t̃j = 0}

(26)
is (L`

√
c)-Lipschitz continuous w.r.t. the `2-norm and (L`c)-

Lipschitz continuous w.r.t. the `∞-norm.

Example 5 (Loss function used in [45]). The loss function
defined as

Ψ̂`
y(t) = `(ty), ∀t ∈ Ω = {t̃ ∈ Rc :

c∑
j=1

t̃j = 0} (27)

is Lipschitz continuous w.r.t. a variant of the `2-norm involving
the Lipschitz constant pair (0, L`) and index y, and L`-
Lipschitz continuous w.r.t. the `∞-norm.

The following data-dependent error bounds are immediate
by plugging the Lipschitz conditions established in Examples
1, 2, 3, 4 and 5 into Corollaries 3, 4, 9 and 10, sepa-
rately. In the following, we always assume that the condition
B̂Ψ ≤ 2eB̂ncL holds, where L is the Lipschitz constant in
Theorem 5.

Corollary 11 (Generalization bounds for Crammer and Singer
MC-SVM). Consider the MC-SVM in [31] with the loss

function Ψ`
y (23) and the hypothesis space Hτ with τ(w) =

‖w‖2,2. Let 0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
4L`Λ

√
2πc

n

[ n∑
i=1

K(xi,xi)
] 1

2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
54L`Λ maxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Analogous to Corollary 11, we have the following corollary
on error bounds for the multinomial logistic regression in [29].

Corollary 12 (Generalization bounds for multinomial logistic
regression). Consider the multinomial logistic regression with
the loss function Ψ`

y (24) and the hypothesis space Hτ with
τ(w) = ‖w‖2,2. Let 0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
4Λ
√

2πc

n

[ n∑
i=1

K(xi,xi)
] 1

2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
54Λ maxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

The following three corollaries give error bounds for MC-
SVMs in [32, 33, 45]. The MC-SVM in Corollary 15 is a
minor variant of that in [45] with a fixed functional margin.

Corollary 13 (Generalization bounds for Weston and Watkins
MC-SVM). Consider the MC-SVM in Weston and Watkins
[32] with the loss function Ψ̃`

y (25) and the hypothesis space
Hτ with τ(w) = ‖w‖2,2. Let 0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
4L`Λc

√
2π

n

[ n∑
i=1

K(xi,xi)
] 1

2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
54L`Λcmaxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Corollary 14 (Generalization bounds for Lee et al. MC-SVM).
Consider the MC-SVM in Lee et al. [33] with the loss function
Ψ̄`
y (26) and the hypothesis space Hτ with τ(w) = ‖w‖2,2.

Let 0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
2L`Λc

√
2π

n

[ n∑
i=1

K(xi,xi)
] 1

2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
27L`Λcmaxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Corollary 15 (Generalization bounds for Jenssen et al.
MC-SVM). Consider the MC-SVM in Jenssen et al. [45] with
the loss function Ψ̂`

y (26) and the hypothesis space Hτ with
τ(w) = ‖w‖2,2. Let 0 < δ < 1. Then,
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(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
2L`Λ

√
2π

n

[ n∑
i=1

K(xi,xi)
] 1

2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
27L`Λ maxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Remark 3 (Comparison with the state of the art). It is inter-
esting to compare the above error bounds with the best known
results in the literature. To start with, the data-dependent error
bound of Corollary 11 (a) exhibits a square-root dependency
on the number of classes, matching the state of the art from
the conference version of this paper [28], which is significantly
improved to a logarithmic dependency in Corollary 11 (b).

The error bound in Corollary 13 (a) for the MC-SVM
by Weston and Watkins [32] scales linearly in c. On the
other hand, according to Example 3, it is evident that Ψ̃`

y is
(c +

√
c)L`-Lipschitz continuous w.r.t. the `2-norm, for any

y ∈ Y . Therefore, one can apply the structural result (3) from
[43, 44] to derive the bound O(c

3
2n−1[

∑n
i=1K(xi,xi)]

1
2 ).

Furthermore, according to Example 5, Ψ̂`
y is L`-Lipschitz

continuity w.r.t. ‖·‖2. Hence, one can apply the structural result
(3) to derive the bound O(c

1
2n−1[

∑n
i=1K(xi,xi)]

1
2 ), which

is worse than the error bound O(n−1[
∑n
i=1K(xi,xi)]

1
2 )

based on Lemma 1 and stated in Corollary 15 (a), which
has no dependency on the number of classes. This justifies
the effectiveness of our new structural result (Lemma 1) in
capturing the Lipschitz continuity of loss functions w.r.t. a
variant of the `2-norm to allow for a relatively large L2, which
is exactly the case for some popular MC-SVMs [30, 32, 45].

Note that for the MC-SVMs by Weston and Watkins [32],
Lee et al. [33], Jenssen et al. [45], the GC-based error bounds
are tighter than the corresponding error bounds based on CNs,
up to logarithmic factors.

B. Top-k MC-SVM

Motivated by the ambiguity in class labels caused by the
rapid increase in number of classes in modern computer vision
benchmarks, Lapin et al. [30, 63] introduce the top-k MC-
SVM by using the top-k hinge loss to allow k predictions for
each object x. For any t ∈ Rc, let the brackets [·] denote a
permutation such that [j] is the index of the j-th largest score,
i.e., t[1] ≥ t[2] ≥ · · · ≥ t[c].

Example 6 (Top-k hinge loss [30]). The top-k hinge loss
defined for any t ∈ Rc

Ψk
y(t) = max

{
0,

1

k

k∑
j=1

(1y 6=1+t1−ty, . . . , 1y 6=c+tc−ty)[j]

}
(28)

is Lipschitz continuous w.r.t. a variant of the `2-norm involving
a Lipschitz constant pair

(
1√
k
, 1
)

and index y. Furthermore, it
is also 2-Lipschitz continuous w.r.t. the `∞-norm.

With the Lipschitz conditions established in Example 6, we
can now give the generalization error bounds for the top-k
MC-SVM [30].

Corollary 16 (Generalization bounds for top-k MC-SVM).
Consider the top-k MC-SVM with the loss functions (28) and
the hypothesis space Hτ with τ(w) = ‖w‖2,2. Let 0 < δ < 1.
Then,
(a) with probability of at least 1− δ, we have (by GCs)

A2 ≤
2Λ
√

2π

n
(c

1
2 k−

1
2 + 1)[

n∑
i=1

K(xi,xi)]
1
2 ;

(b) with probability of at least 1− δ, we have (by CNs)

A2 ≤
54Λ maxi∈Nn ‖φ(xi)‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
.

Remark 4 (Comparison with the state of the art). An ap-
pealing property of Corollary 16 (a) is the involvement of
the factor k−

1
2 . Note that we even can get error bounds with

no dependencies on c if we choose k > C̃c for a universal
constant C̃.

Comparing our result to the state of the art, it follows again
from Example 6 that Ψk

y is (1 + k−
1
2 )-Lipschitz continuous

w.r.t. the `2-norm for all y ∈ Y . Using the structural result
(3) [28, 43, 44], one can derive an error bound decaying as
O
(
n−1c

1
2

[∑n
i=1K(xi,xi)

] 1
2
)
, which is suboptimal to Corol-

lary 16 (a) since it does not shed insight on how the parameter
k would affect the generalization performance. Furthermore,
the error bound in Corollary 16 (b) enjoys a logarithmic
dependency on the number of classes.

C. `p-norm MC-SVM

In our previous work [28], we introduce the `p-norm MC-
SVM as an extension of the Crammer & Singer MC-SVM
by replacing the associated `2-norm regularizer with a general
block `2,p-norm regularizer [28]. We establish data-dependent
error bounds in [28], showing a logarithmic dependency on the
number of classes as p decreases to 1. The present analysis
yields the following bounds, which also hold for the MC-SVM
with the multinomial logistic loss and the block `2,p-norm
regularizer.

Corollary 17 (Generalization bounds for `p-norm MC-SVM).
Consider the `p-norm MC-SVM with loss function (23) and
the hypothesis space Hτ with τ(w) = ‖w‖2,p, p ≥ 1. Let
0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs):

Ap ≤
4L`Λ

√
π

n

[ n∑
i=1

K(xi,xi)
] 1

2 inf
q≥p

[(q∗)
1
2 c

1
q∗ ];

(b) with probability of at least 1− δ, we have (by CNs):

Ap ≤
54L`Λ max

i∈Nn
‖φ(xi)‖2c

1
2−

1
max(2,p)

√
n

(
1+log

3
2
2

(√
2n

3
2 c
))
.

Remark 5 (Comparison with the state of the art). Corollary 17
(a) is an extension of error bounds in the conference version
[28] from 1 ≤ p ≤ 2 to the case p ≥ 1. We can see
how p affects the generalization performance of `p-norm MC-
SVM. The function f : R+ 7→ R+ defined by f(t) = t

1
2 c

1
t

is monotonically decreasing on the interval (0, 2 log c) and
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increasing on the interval (2 log c,∞). Therefore, the data-
dependent error bounds in Corollary 17 (a) transfer to

Ap≤


4ΛL`

√
πp∗n−1c1−

1
p

[ n∑
i=1

K(xi,xi)
] 1

2

, if p> 2 log c
2 log c−1 ,

4ΛL`(2πe log c)
1
2n−1

[ n∑
i=1

K(xi,xi)
] 1

2

, otherwise.

That is, the dependency on the number of classes would
be polynomial with exponent 1/p∗ if p > 2 log c

2 log c−1 and
logarithmic otherwise. On the other hand, the error bounds
in Corollary 17 (b) significantly improve those in Corollary
17 (a). Indeed, the error bounds in Corollary 17 (b) enjoy a
logarithmic dependency on the number of classes if p ≤ 2
and a polynomial dependency with exponent 1

2 −
1
p otherwise

(up to logarithmic factors). This phase transition phenomenon
at p = 2 is explained in Remark 2. It is also clear that error
bounds based on CNs outperform those based on GCs by a
factor of

√
c for p ≥ 2 (up to logarithmic factors), which, as

we will explain in subsection IV-E, is due to the use of the
Lipschitz continuity measured by a norm suitable to the loss
function.

D. Schatten-p Norm MC-SVM

Amit et al. [57] propose to use trace-norm regularization
in multi-class classification to uncover shared structures that
always exist in the learning regime with many classes. Here we
consider error bounds for the more general Schatten-p norm
MC-SVM.

Corollary 18 (Generalization bounds for Schatten-p norm
MC-SVM). Let φ be the identity map and represent w by
a matrix W ∈ Rd×c. Consider Schatten-p norm MC-SVM
with loss functions (23) and the hypothesis space Hτ with
τ(W ) = ‖W‖Sp , p ≥ 1. Let 0 < δ < 1. Then,
(a) with probability of at least 1− δ, we have (by GCs):

ASp ≤


2

7
4 πΛL`
n
√
e

inf
p≤q≤2

(q∗)
1
2

[
c

1
q∗
[∑n

i=1 ‖xi‖22
] 1

2

+c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

S q∗
2

]
, if p ≤ 2,

2
9
4 πΛL`c

1
2 min{c,d}

1
2
− 1
p

n
√
e

[∑n
i=1 ‖xi‖22

] 1
2 , otherwise.

(b) with probability of at least 1− δ, we have (by CNs):

ASp ≤


54L`Λ max

i∈Nn
‖xi‖2

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
, if p ≤ 2,

54L`Λ max
i∈Nn

‖xi‖2 min{c,d}
1
2
− 1
p

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
,

otherwise.

Remark 6 (Analysis of Schatten-p norm MC-SVM). Analo-
gous to Remark 5, error bounds of Corollary 18 (a) transfer
to

O
(
n−1(p∗)

1
2

(
c

1
p∗
[∑n

i=1 ‖xi‖22
] 1

2 + c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

S p∗
2

))
,

if 2 ≤ p∗ ≤ 2 log c,

O
(
n−1
√

log c
([∑n

i=1 ‖xi‖22
] 1

2 + c
1
2 ‖
∑n
i=1 xix

>
i ‖

1
2

Slog c

))
,

if 2 < 2 log c < p∗,

O
(
n−1c1−

1
p
[∑n

i=1 ‖xi‖22
] 1

2
)
, if p > 2.

As a comparison, error bounds in Corollary 18 (b)
would decay as O(n−

1
2 log

3
2 (n

3
2 c)) if p ≤ 2 and

O
(
n−

1
2 c

1
2−

1
p log

3
2 (n

3
2 c)
)

otherwise, which significantly out-
perform those in Corollary 18 (a).

E. Comparison of the GC and the CN Approach

In this paper, we develop two methods to derive data-
dependent error bounds that are applicable to learning with
many classes. We summarize these two types of error bounds
for some specific MC-SVMs in the third and fourth columns
of Table II, from which it is clear that each approach can
yield better bounds than the other for some MC-SVMs. For
example, for multinomial logistic regression and the Crammer
& Singer MC-SVM, the GC-based error bound has a square-
root dependency on the number of classes, whereas the CN-
based bound has a logarithmic dependency. CN-based error
bounds also have significant advantages for `p-norm MC-
SVM and Schatten-p norm MC-SVM. On the other hand,
GC-based analyses have their own advantages. First, for the
MC-SVMs in Weston and Watkins [32], Lee et al. [33], the
GC-based error bounds decay as O(n−

1
2 c), while the CN-

based bounds decay as O(n−
1
2 c log

3
2 (nc)). Second, the GC-

based error bounds involve a summation of K(xi,xi) over
training examples, while the CN-based error bounds involve
a maximum of ‖φ(xi)‖i over the training examples. In this
sense, the GC-based error bounds better capture the properties
of the distribution from which the training examples are drawn.

An in-depth discussion can explain the mismatch between
these two types of generalization error bounds. Our GC-based
bounds are based on a structural result (Lemma 1) of empirical
GCs to exploit the Lipschitz continuity of loss functions w.r.t. a
variant of the `2-norm, while our CN-based analysis is based
on a structural result of empirical `∞-norm CNs to directly
use the Lipschitz continuity of loss functions w.r.t. the `∞-
norm. Which approach is better depends on the Lipschitz
continuity of the associated loss functions. Specifically, if
Ψy is Lipschitz continuous w.r.t. a variant of the `2-norm
involving the Lipschitz constant pair (L1, L2) and is L-
Lipschitz continuous w.r.t. the `∞-norm, then one can show
the following inequality with probability of at least 1− δ for
δ ∈ (0, 1) (Theorem 2 and Theorem 6, respectively)

Aτ ≤


2
√
π
[
L1cGS̃(H̃τ )+L2GS̃′(H̃τ )

]
(by GCs), (29a)

27L
√
cRnc(H̃τ )

(
1+log

3
2
2

B̂n
√
c

Rnc(H̃τ )

)
(by CNs).(29b)

It is reasonable to assume that GS̃(H̃τ ) and Rnc(H̃τ ) decay
at the same order. For example, if τ(w) = ‖w‖2,p, p ≥ 2, then
one can show (the first inequality follows from (39), (40) and
(41), and the second inequality follows from Proposition 7)

GS̃(H̃τ ) = O
(
n−1c−

1
p
( n∑
i=1

K(xi,xi)
) 1

2

)
,

Rnc(H̃τ ) = O
(
n−

1
2 c−

1
p max
i∈Nn

‖φ(xi)‖2
)
.

We further assume that the dominant term in (29a) is
L1cGS̃(H̃τ ) to clearly illustrate the relative behavior of these
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TABLE II
COMPARISON OF DATA-DEPENDENT GENERALIZATION ERROR BOUNDS DERIVED IN THIS PAPER. We use the notation B1 =

(
1
n

∑n
i=1K(xi,xi)

) 1
2

and B∞ = maxi∈Nn ‖φ(xi)‖2. The best bound for each MC-SVM is followed by a bullet.

MC-SVM by structural result (3) by GCs by CNs

Crammer & Singer O
(
B1n

− 1
2 c

1
2
)

O
(
B1n

− 1
2 c

1
2
)

O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Multinomial Logistic O
(
B1n

− 1
2 c

1
2
)

O
(
B1n

− 1
2 c

1
2
)

O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Weston and Watkins O
(
B1n

− 1
2 c

3
2
)

O
(
B1n

− 1
2 c
)
• O

(
B∞n

− 1
2 c log

3
2 (nc)

)
Lee et al. O

(
B1n

− 1
2 c
)
• O

(
B1n

− 1
2 c
)
• O

(
B∞n

− 1
2 c log

3
2 (nc)

)
Jenssen et al. O

(
B1n

− 1
2 c

1
2
)

O
(
B1n

− 1
2
)
• O

(
B∞n

− 1
2 log

3
2 (nc)

)
top-k O

(
B1n

− 1
2 c

1
2
)

O
(
B1n

− 1
2 (ck−1)

1
2
)

O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

`p-norm p ∈ (1,∞) O
(
B1n

− 1
2 c

1− 1
p
)

O
(
B1n

− 1
2 c

1− 1
p
)

O
(
B∞n

− 1
2 c

1
2
− 1

max(2,p) log
3
2 (nc)

)
•

Schatten-p p ∈ [1, 2) O
(
B1n

− 1
2 c

1
2
)

O
(
B1n

− 1
2 c

1
2
)

O
(
B∞n

− 1
2 log

3
2 (nc)

)
•

Schatten-p p ∈ [2,∞) O
(
B1n

− 1
2 c

1− 1
p
)

O
(
B1n

− 1
2 c

1− 1
p
)

O
(
B∞n

− 1
2 c

1
2
− 1
p log

3
2 (nc)

)
•

two types of error bounds. If L1 and L are of the same order,
as exemplified by Example 1 and Example 2, then the error
bounds based on CNs outperform those based on GCs by a
factor of

√
c (up to logarithmic factors). If L1 = O(c−

1
2L), as

exemplified by Example 3, Example 4 and Example 5, then
the error bounds based on GCs outperform those based on
CNs by a factor of log

3
2 (nc). The underlying reason is that

the Lipschitz continuity w.r.t. ‖ · ‖2 is a stronger assumption
than that w.r.t. ‖ · ‖∞ in the magnitude of Lipschitz constants.
Indeed, if Ψy is L1-Lipschitz continuous w.r.t. ‖ · ‖2, then
one may expect that Ψy is (L1

√
c)-Lipschitz continuous w.r.t.

‖ · ‖∞ due to the inequality ‖t‖2 ≤
√
c‖t‖∞ for any t ∈ Rc.

This explains why (29b) outperforms (29a) by a factor of√
c if we ignore the Lipschitz constants. To summarize, if

L1 = O(c−
1
2L), then (29a) outperforms (29b). Otherwise,

(29b) is better. Therefore, one should choose an appropriate
approach according to the associated loss function to exploit
the inherent Lipschitz continuity.

We also include the error bounds based on the structural
result (3) in the second column to demonstrate the advantages
of the structural result based on the variant of the `2-norm
over (3).

V. EXPERIMENTS

In this section, we report experimental results to show the
effectiveness of our theory. We consider the `p-norm MC-SVM
with multinomial logistic loss Ψy(t) = Ψm

y (t) defined in Ex-
ample 2 and hypothesis space Hτ , where τ(w) = ‖w‖2,p, p ≥
1 and φ(x) = x. In subsection V-A, we aim to show that our
error bounds capture well the effects of the number of classes
on the generalization performance. In subsection V-B, we aim
to show that our error analysis is able to imply a structural risk
that works well in model selection, as well as the efficiency
of `p-norm MC-SVM. We use several benchmark datasets in
our experiments: MNIST [64], NEWS20 [65], LETTER [3],
RCV1 [66], SECTOR [67] and ALOI [68]. For ALOI, we
include the first 67% of the instances of each class in the
training dataset and use the remaining instances as the test
dataset. Table III gives some information on these datasets,
which can be downloaded from the LIBSVM website [69].

TABLE III
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset c n # Test Examples d
MNIST 10 60, 000 10, 000 778

NEWS20 20 15, 935 3, 993 62, 060
LETTER 26 10, 500 5, 000 16

RCV1 53 15, 564 518, 571 47, 236
SECTOR 105 6, 412 3, 207 55, 197

ALOI 1, 000 72, 000 36, 000 128

A. Empirical verification of generalization bounds

According to the proof of Corollary 17 (b), we know

GAP(wp,Λ) := Ex,yΨy(hwp,Λ(x))− 1

n

n∑
i=1

Ψyi(h
wp,Λ(xi))

≤ sup
hw∈Hτ

[
Ex,yΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
= O(1)RS(Fτ,Λ) = O(Λn−

1
2 c

1
2−

1
max(2,p) max

i∈Nn
‖xi‖2 log

3
2 (nc)),

where the trained model wp,Λ associated with a pair (p,Λ) is
defined by

wp,Λ := arg min
w∈Rd×c
‖w‖2,p≤Λ

1

n

n∑
i=1

Ψm
yi

(
〈w1,xi〉, . . . , 〈wc,xi〉

)
.

(30)
Note that GAP measures the difference between the gen-
eralization error and the empirical error for the particular
learned model, which is the quantity we are interested in. For
comparison, RS(Fτ,Λ) controls the uniform deviation between
generalization errors and empirical errors over the hypothesis
space and is a standard tool used to control GAPs [37, 47].
Our purpose here is to validate whether our bounds capture the
dependency of RS(Fτ,Λ) and GAPs on the number of classes
in practice. To this aim, we first discuss how to approximate
RS(Fτ,Λ) and GAPs.

Approximation of RS(Fτ,Λ). We approximate RS(Fτ,Λ)
by an Approximation of the Empirical Rademacher Complexity
(AERC) defined by AERC(Fτ,Λ) := 1

50

∑50
t=1 R̃S(ε(t), Fτ,Λ),
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where ε(t) = {ε(t)i }i∈Nn , t = 1, . . . , 50, are independent
sequences of independent Rademacher random variables and

R̃S(ε, Fτ,Λ) :=
1

n
sup

w∈Rd×c
‖w‖2,p≤Λ

n∑
i=1

εiΨ
m
yi

(
〈w1,xi〉, . . . , 〈wc,xi〉

)
.

(31)
It can be checked that R̃S(ε, Fτ,Λ) (as a function of ε) satisfies
the increment condition (36) in McDiarmid’s inequality below
and concentrates sharply around its expectation RS(Fτ,Λ).
Therefore, AERC is a good approximation of RS(Fτ,Λ). The
calculation of AERC involves the constrained non-convex
optimization problem (31), which we solve by the classic
Frank-Wolfe algorithm [58, 70]. We describe the Frank-Wolfe
algorithm to solve minw∈4p f(w) for a general function f
defined on the feasible set 4p = {w ∈ Rd×c : ‖w‖2,p ≤ Λ}
with p ≥ 1 and Λ > 0 in Algorithm 1. This is a projection-free
method that involves a constrained linear optimization problem
at each iteration, which, as shown in the following proposition,
has a closed-form solution. In line 4 of Algorithm 1, we use a
backtracking line search to find the step size γ satisfying the
Armijo condition (e.g., page 33 in [71]). Proposition 19 can be
proved by checking ‖w∗‖2,p ≤ 1 and 〈w∗,v〉 = −‖v‖2,p∗ ,
which is deferred to Appendix C.

Algorithm 1: Frank-Wolfe Algorithm

1 Let k = 0 and w(0) = 0 ∈ Rd×c
2 while Optimality conditions are not satisfied do
3 Compute w̃ = arg minw:‖w‖2,p≤Λ

〈
w,∇f(w(k))〉

4 Calculate the direction v = w̃−w(k) and step size
γ ∈ [0, 1]

5 Update w(k+1) = w(k) + γv
6 Set k = k + 1
7 end

Proposition 19. Let v = (v1, . . . ,vc) ∈ Rd×c have nonzero
column vectors and p ≥ 1. Then the problem

arg min
w∈Rd×c

〈w,v〉 s.t. ‖w‖2,p ≤ 1 (32)

has a closed-form solution w∗ = (w∗1, . . . ,w
∗
c ) as follows

w∗j =



−vj̄‖vj̄‖−1
2 , if p = 1 and j = j̄,

0, if p = 1 and j 6= j̄,

− ‖vj‖p
∗−2

2 vj(∑c
j̃=1
‖vj̃‖

p∗
2

) 1
p
, if 1 < p <∞,

−‖vj‖−1
2 vj , if p =∞,

(33)

where j̄ is the smallest index satisfying ‖vj̄‖2 =
maxj̃∈Nc ‖vj̃‖2 and p∗ = p/(p− 1).

Estimation of GAPs. To calculate GAPs, we need to solve
the convex optimization problem (30), which is solved by
introducing class weights and alternating the update w.r.t. class
weights and the update w.r.t. the model w in [28]. In this paper,
we propose to solve this optimization problem with the Frank-
Wolfe algorithm (Algorithm 1), which avoids the introduction
of additional class weights and extends the algorithm in [28]

to the case of p > 2. The closed-form solution established
in Proposition 19 makes the implementation of this algorithm
simple and efficient for training `p-norm MC-SVM.

Behavior with respect to the number of classes.
We now show that our generalization bounds capture
the dependency of AERCs and GAPs on the number
of classes. To this aim, we need to construct several
datasets with different numbers of classes. We fix the in-
put {xi}ni=1 of either ALOI or SECTOR, the parameter
p and Λ = 1, and vary the number of classes c̃ over
the set {100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800}
(ALOI) or {50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 105} (SEC-
TOR). For each c̃ and dataset, we create a dataset with c̃
classes as S(c̃) = {(xi, y(c̃)

i )}ni=1, where y
(c̃)
i = dyic̃/ce,

yi is the i-th output and dae denotes the least integer not
smaller than a. Note that this strategy of grouping class labels
may affect the meaning of labels and further influence the
classification quality. However, it is reasonable here since we
are interested in the behavior of AERCs and GAPs w.r.t.
the number of classes. For each c̃, we can calculate the
corresponding AERCs and GAPs. We repeat the experiment
50 times and report the average of the experimental results.
We plot AERCs and GAPs as functions of c̃ in Fig. 2 and Fig.
3, respectively, for p = 2, 5,∞. In each of these panels, we
also include plots of the function CNBτ (c̃) = τ c̃

1
2−

1
max(2,p)

and GCBτ̃ (c̃) = τ̃ c̃1−
1
p , where the corresponding parameters

τ and τ̃ are computed by fitting the AERCs/GAPs with models
{c̃ 7→ CNBτ (c̃) : τ ∈ R+} and {c̃ 7→ GCBτ̃ (c̃) : τ̃ ∈ R+},
respectively. Note that the CNBs and GCBs are constructed
based on CN analysis and GC analysis, as listed in Table II
(we ignore logarithmic factors here).

According to Fig. 2, we see clearly that AERCs match
very well with the CNB plot, which indicates that our CN-
based analysis captures the dependency of the generalization
performance on the number of classes. By comparison, there
is a clear discrepancy between the AERC and GCB plots,
indicating a crudeness of the GC-based analysis. Furthermore,
AERCs behave nearly as constants in the case of p = 2, which
is consistent with the almost class-size independent bounds
based on CN analysis for p = 2 (up to a logarithmic factor).
One can see a similar phenomenon in Fig. 3: CNBs behave
much better than GCBs in fitting the GAPs. It should be
mentioned that the fitting of GAPs by CNBs is not as perfect
as the fitting of AERCs by CNBs. The underlying reason is as
follows. Our generalization bounds directly apply to RS(Fτ,Λ)
which controls the uniform deviation between generalization
errors and empirical errors over all w ∈ Hτ , whereas GAPs
correspond to the deviation for the particular trained model
wp,Λ. Nevertheless, as shown in Fig. 3, CNBs already capture
well the behavior of GAPs as a function of the class size,
which justifies the usefulness of our theoretical analysis since
it is the trained model wp,Λ that we are most interested in for
practical learning processes.

B. Behavior of the `p-norm MC-SVM and model selection

In this section, we describe the application of our error
bounds in model selection, as well as the effectiveness of the
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Fig. 2. AERCs as a function of the number of classes. Based on ALOI or SECTOR, we construct datasets with a varying number of classes c̃, for each of
which we compute the associated AERC. We also include plots of CNBτ (c̃) and GCBτ̃ (c̃) in this figure, where both τ and τ̄ are calculated by applying the
least-squares method to fit these AERCs with CNBτ (c̃) and GCBτ̃ (c̃), respectively. Each panel corresponds to a specific dataset and a parameter p.
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(b) ALOI, p = 5
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(d) SECTOR, p = 2
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Fig. 3. GAPs as a function of the number of classes. Based on ALOI or SECTOR, we construct datasets with a varying number of classes c̃, for each of
which we compute the associated GAP. We also include plots of CNBτ (c̃) and GCBτ̃ (c̃) in this figure, where both τ and τ̄ are calculated by applying the
least squares method to fit these GAPs with CNBτ (c̃) and GCBτ̃ (c̃), respectively. Each panel corresponds to a specific dataset and a parameter p.
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`p-norm MC-SVM as compared to multinomial logistic regres-
sion (MLR) [29] and the Weston & Watkins (WW) MC-SVM
in Corollary 13 with `(t) = log(1 + exp(−t)). We traverse p
over the set {1, 1.2, 1.5, 1.8, 2, 2.33, 2.5, 2.67, 3, 4, 8,∞} and
Λ over the set {100.5, 10, 101.5, . . . , 103.5}. For each pair
(p,Λ), we train the model wp,Λ defined in (30) by Algorithm
1 as candidate models, and compute the accuracy (the percent
of instances labeled correctly) on the test examples. We also
train a model by MLR and a model by WW MC-SVM for each
candidate Λ. Our aim is to identify an appropriate model from
these candidate models based on our generalization analysis,
and to compare the behavior of MLR, `p-norm MC-SVM and
WW MC-SVM on several datasets.

Model selection strategy. Since wp,Λ ∈ Hp̃,‖wp,Λ‖2,p̃ for
any p̃ ≥ 1, one can derive from Corollary 17 the following
inequality with probability of 1−δ (here we omit the random-
ness of ‖wp,Λ‖2,p̃ for brevity)

Ex,yΨy(hwp,Λ(x)) ≤ 1

n

n∑
i=1

Ψyi(h
wp,Λ(xi))+3BΨ

[ log 4
δ

2n

] 1
2

+

54‖wp,Λ‖2,p̃ max
i∈Nn

‖xi‖2c
1
2−

1
max(2,p̃)

(
1+log

3
2
2

(√
2n

3
2 c
))
/
√
n.

According to the inequality ‖w‖2,2 ≤ ‖w‖2,p̃c
1
2−

1
p̃ for any

p̃ ≥ 2, the term ‖w‖2,p̃c
1
2−

1
max(2,p̃) attains its minimum at p̃ =

2. Hence, we construct the following structural risk (ignoring
logarithmic factors here)

Errstr,λ(w) :=
1

n

n∑
i=1

Ψyi(h
w(xi)) + λ‖w‖2,2 max

i∈Nn
‖xi‖2/

√
n

(34)
and use it to select a model with the minimal structural
risk among all candidates wp,Λ. According to Table II, we
construct a different structural risk for WW MC-SVM with
the penalty being λc‖w‖2,2 maxi∈Nn ‖xi‖2/

√
n. We use λ =

1/25 in this paper.
In Table IV, we report the accuracies of MLR, `p-norm

MC-SVM and WW MC-SVM on several benchmark datasets.
For each method, we report the best accuracy achieved by
the candidate model and the accuracy of the model selected
from these candidate models with the minimal structural risk,
as shown in the columns termed “Oracle” and “Model selec-
tion”, respectively. For `p-norm MC-SVM, we also report the
parameter p at which the corresponding accuracy is achieved.

According to Table IV, our structural risk based on gen-
eralization analysis behaves well in guiding the selection of
a model with comparable prediction accuracy to the best
candidate model. For `p-norm MC-SVM, the accuracies for
the model selected according to (34) and the best candidate
model differ by less than 0.17% on all datasets. `p-norm MC-
SVM consistently outperforms both MLR and WW MC-SVM.
For example, for ALOI and the model selection strategy, `p-
norm MC-SVM achieves an accuracy of 88.48%, while MLR
and WW MC-SVM achieve accuracies of 85.70% and 78.53%,
respectively.

VI. PROOFS

In this section, we present the proofs of the results presented
in the previous sections.

A. Proof of Bounds by Gaussian Complexities

In this subsection, we present the proofs for data-dependent
bounds in subsection III-C. The proof of Lemma 1 requires to
use a comparison result (Lemma 20) on Gaussian processes
attributed to Slepian [42], while the proof of Theorem 2 is
based on a concentration inequality in [72].

Lemma 20. Let {Xθ : θ ∈ Θ} and {Yθ : θ ∈ Θ} be two
mean-zero separable Gaussian processes indexed by the same
set Θ and suppose that

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2], ∀θ, θ̄ ∈ Θ. (35)

Then E[supθ∈Θ Xθ] ≤ E[supθ∈Θ Yθ].

Lemma 21 (McDiarmid’s inequality [72]). Let Z1, . . . , Zn be
independent random variables taking values in a set Z , and
assume that f : Zn 7→ R satisfies

sup
z1,...,zn,z̄i∈Z

|f(z1, · · · , zn)− f(z1, · · · , zi−1, z̄i,

zi+1, · · · , zn)| ≤ ci (36)

for 1 ≤ i ≤ n. Then, for any 0 < δ < 1, with probability of
at least 1− δ, we have

f(Z1, . . . , Zn) ≤ Ef(Z1, . . . , Zn) +

√∑n
i=1 c

2
i log(1/δ)

2
.

Proof of Lemma 1. Define two mean-zero separable Gaussian
processes indexed by the finite dimensional Euclidean space
{(h(x1), . . . , h(xn)) : h ∈ H}

Xh :=

n∑
i=1

gifi(h(xi)),

Yh :=
√

2L1

n∑
i=1

c∑
j=1

gijhj(xi) +
√

2L2

n∑
i=1

gihr(i)(xi).

For any h, h′ ∈ H , the independence among gi, gij and Eg2
i =

1,Eg2
ij = 1,∀i ∈ Nn, j ∈ Nc imply that

E[(Xh − Xh′)
2] = E

[( n∑
i=1

gi
(
fi(h(xi))− fi(h′(xi))

))2]
=

n∑
i=1

[
fi(h(xi))−fi(h′(xi))

]2
≤

n∑
i=1

[
L1

[ c∑
j=1

|hj(xi)−h′j(xi)|2
] 1

2 + L2|hr(i)(xi)−h′r(i)(xi)|
]2

≤ 2L2
1

n∑
i=1

c∑
j=1

|hj(xi)−h′j(xi)|2+2L2
2

n∑
i=1

|hr(i)(xi)−h′r(i)(xi)|
2

= E[(Yh −Yh′)
2],

where we have used the Lipschitz continuity of fi w.r.t.
a variant of the `2-norm in the first inequality, and the
elementary inequality (a + b)2 ≤ 2(a2 + b2) in the second
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TABLE IV
PERFORMANCE OF MC-SVMS ON SEVERAL BENCHMARK DATASETS.

We consider MLR, `p-norm MC-SVM and WW MC-SVM in Corollary 13 with `(t) = log(1 + exp(−t)). We traverse p over
{1, 1.2, 1.5, 1.8, 2, 2.33, 2.5, 2.67, 3, 4, 8,∞} and Λ over {100.5, 10, . . . , 103.5} to obtain the candidate models. We report the accuracy of the best

candidate model and the selected model with a minimal structural risk in the columns “Oracle” and “Model selection”, respectively. For `p-norm MC-SVM,
we also report the parameter p at which the corresponding accuracy is achieved.

Dataset
MLR `p-norm MC-SVM WW MC-SVM

Oracle Model Selection Oracle Model Selection Oracle Model Selection
Accuracy Accuracy p Accuracy p Accuracy Accuracy Accuracy

MNIST 91.43 91.39 3 91.99 8 91.82 91.00 90.98

NEWS20 84.07 83.25 4 84.45 4 84.45 84.10 84.10

LETTER 73.52 73.52 ∞ 73.74 ∞ 73.68 69.28 68.92

RCV1 88.67 88.62 1.8 88.71 2.33 88.65 88.68 86.96

SECTOR 93.08 93.08 4 93.30 2.33 93.20 92.83 91.21

ALOI 85.70 85.70 ∞ 88.48 ∞ 88.48 78.56 78.53

inequality. Therefore, the condition (35) holds and Lemma 20
can be applied here to give

Eg sup
h∈H

n∑
i=1

gifi(h(xi))

≤ Eg sup
h∈H

[√
2L1

n∑
i=1

c∑
j=1

gijhj(xi) +
√

2L2

n∑
i=1

gihr(i)(xi)
]

≤
√

2L1Eg sup
h∈H

n∑
i=1

c∑
j=1

gijhj(xi)+
√

2L2Eg sup
h∈H

n∑
i=1

gihr(i)(xi).

The proof of Lemma 1 is complete.

Proof of Theorem 2. It can be checked that

f(z1, . . . , zn) = sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
satisfies the increment condition (36) with ci = BΨ/n. An
application of McDiarmid’s inequality (Lemma 21) then shows
the following inequality with probability of 1− δ/2

sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤

Ez sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
+BΨ

√
log 2

δ

2n
.

It follows from the standard symmetrization technique (see,
e.g., proof of Theorem 3.1 in [9]) that

Ez sup
hw∈Hτ

[
Ex,yΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤ 2EzEε sup

hw∈Hτ

[ 1

n

n∑
i=1

εiΨyi(h
w(xi))

]
.

It can also be checked that the function

f(z1, . . . , zn) = Eε sup
hw∈Hτ

[ 1

n

n∑
i=1

εiΨyi(h
w(xi))

]

satisfies the increment condition (36) with ci = BΨ/n.
Another application of McDiarmid’s inequality shows the
inequality

EzRS(Fτ,Λ) ≤ RS(Fτ,Λ) +BΨ

√
log 2

δ

2n

with probability of 1 − δ/2, which together with the above
two inequalities then imply the following inequality with
probability of at least 1− δ

sup
hw∈Hτ

[
EzΨy(hw(x))− 1

n

n∑
i=1

Ψyi(h
w(xi))

]
≤

2RS(Fτ,Λ) + 3BΨ

√
log 2

δ

2n
. (37)

Furthermore, according to the following relationship between
Gaussian and Rademacher processes for any function class
H̃ [37] (|S| is the cardinality of S)

RS(H̃) ≤
√
π

2
GS(H̃) ≤ 3

√
π log |S|

2
RS(H̃),

we derive

RS

({
Ψy(hw(x)) : hw ∈ Hτ

})
≤
√
π

2
GS
({

Ψy(hw(x)) : hw ∈ Hτ

})
=

√
π

2

1

n
Eg sup

hw∈Hτ

n∑
i=1

giΨyi(h
w(xi))

≤ L1
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

c∑
j=1

gijh
w
j (xi)

+
L2
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

gih
w
yi(xi),

where the last step follows from Lemma 1 with fi = Ψyi and
r(i) = yi,∀i ∈ Nn. Plugging the above RC bound into (37)



LEI et al.: DATA-DEPENDENT GENERALIZATION BOUNDS FOR MULTI-CLASS CLASSIFICATION 17

gives the following inequality with probability of at least 1−δ

Aτ ≤
2L1
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉

+
2L2
√
π

n
Eg sup

hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉. (38)

It remains to estimate the two terms on the right-hand side of
(38). By (12), the definition of H̃τ , S̃ and S̃′, we know

Eg sup
hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉

= Eg sup
w:τ(w)≤Λ

n∑
i=1

c∑
j=1

gij〈w, φ̃j(xi)〉 = ncGS̃(H̃τ ) (39)

and

Eg sup
hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉

= Eg sup
w:τ(w)≤Λ

n∑
i=1

gi〈w, φ̃yi(xi)〉 = nGS̃′(H̃τ ).

Plugging the above two identities back into (38) gives (13).
We now show (14). According to the definition of dual

norm, we derive

Eg sup
hw∈Hτ

n∑
i=1

c∑
j=1

gij〈wj , φ(xi)〉

= Eg sup
hw∈Hτ

c∑
j=1

〈
wj ,

n∑
i=1

gijφ(xi)
〉

= Eg sup
hw∈Hτ

〈w,
( n∑
i=1

gijφ(xi)
)c
j=1
〉

≤ Eg sup
hw∈Hτ

‖w‖
∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥
∗

= ΛEg
∥∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥∥
∗
. (40)

Analogously, we also have

Eg sup
hw∈Hτ

n∑
i=1

gi〈wyi , φ(xi)〉

= Eg sup
hw∈Hτ

c∑
j=1

〈wj ,
∑
i∈Ij

giφ(xi)〉

= Eg sup
hw∈Hτ

〈w,
(∑
i∈Ij

giφ(xi)
)c
j=1
〉

≤ ΛEg
∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥
∗.

Plugging the above two inequalities back into (38) gives (14).

Proof of Corollary 3. Let q ≥ p be any real number. It follows
from Jensen’s inequality and Khintchine-Kahane inequality
(69) that

Eg
∥∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗

= Eg
[ c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗

≤
[ c∑
j=1

Eg
∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗ ≤

[ c∑
j=1

[
q∗

n∑
i=1

‖φ(xi)‖22
] q∗

2
] 1
q∗

= c
1
q∗
[
q∗

n∑
i=1

K(xi,xi)
] 1

2

. (41)

Applying again Jensen’s inequality and Khintchine-Kahane
inequality (69), we get

Eg
∥∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥∥
2,q∗
≤
[
Eg

c∑
j=1

∥∥∥∑
i∈Ij

giφ(xi)
∥∥∥q∗

2

] 1
q∗

≤
√
q∗
[ c∑
j=1

[∑
i∈Ij

‖φ(xi)‖22
] q∗

2
] 1
q∗
. (42)

We now control the last term in the above inequality by
distinguishing whether q ≥ 2 or not. If q ≤ 2, we have
2−1q∗ ≥ 1 and it follows from the elementary inequality
as + bs ≤ (a+ b)s,∀a, b ≥ 0, s ≥ 1 that

c∑
j=1

[∑
i∈Ij

K(xi,xi)
] q∗

2 ≤
[ c∑
j=1

∑
i∈Ij

K(xi,xi)
] q∗

2

=
[ n∑
i=1

K(xi,xi)
] q∗

2

. (43)

Otherwise we have 2−1q∗ ≤ 1 and Jensen’s inequality implies
c∑
j=1

[∑
i∈Ij

K(xi,xi)
] q∗

2 ≤ c
[ c∑
j=1

1

c

∑
i∈Ij

K(xi,xi)
] q∗

2

= c1−
q∗
2

[ n∑
i=1

K(xi,xi)
] q∗

2

. (44)

Combining (42), (43) and (44) together implies

Eg
∥∥∥(∑

i∈Ij

giφ(xi)
)c
j=1

∥∥∥
2,q∗

≤ max(c
1
q∗−

1
2 , 1)

[
q∗

n∑
i=1

K(xi,xi)
] 1

2

. (45)

According to the monotonicity of ‖ · ‖2,p w.r.t. p, we have
Hp,Λ ⊂ Hq,Λ if p ≤ q. Plugging the complexity bound
established in Eqs. (41), (45) into the generalization bound
given in Theorem 2, we get the following inequality with
probability of at least 1− δ

Aτ ≤
2Λ
√
π

n

[
L1c

1
q∗
[
q∗

n∑
i=1

K(xi,xi)
] 1

2

+ L2 max(c
1
q∗−

1
2 , 1)

[
q∗

n∑
i=1

K(xi,xi)
] 1

2

]
, ∀q ≥ p.

The proof is complete.
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Remark 7 (Tightness of the Rademacher Complexity
Bound). Eq. (41) gives an upper bound on
Eg
∥∥∥(∑n

i=1 gijφ(xi)
)c
j=1

∥∥∥
2,q∗

. We now show that this

bound is tight up to a constant factor. Indeed, according to
the elementary inequality for a1, . . . , ac ≥ 0

(
a1 + · · ·+ ac

) 1
q∗ ≥ c

1
q∗−1(a 1

q∗

1 + · · ·+ a
1
q∗
c

)
,

we derive

∥∥∥( n∑
i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗

=
[ c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥q∗

2

] 1
q∗

≥ c
1
q∗−1

c∑
j=1

∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥

2
.

Taking expectations on both sides, we get that

Eg
∥∥∥( n∑

i=1

gijφ(xi)
)c
j=1

∥∥∥
2,q∗
≥c

1
q∗−1

c∑
j=1

Eg
∥∥∥ n∑
i=1

gijφ(xi)
∥∥∥

2

≥ 2−
1
2 c

1
q∗
[ n∑
i=1

K(xi,xi)
] 1

2

,

where the second inequality is due to (70). The above lower
bound coincides with the upper bound (41) up to a constant
factor. Specifically, the above upper and lower bounds show
that Eg

∥∥∥(∑n
i=1 gijφ(xi)

)c
j=1

∥∥∥
2,q∗

enjoys exactly a square-

root dependency on the number of classes if q = 2.

Proof of Corollary 4. We first consider the case 1 ≤ p ≤
2. Let q ∈ R satisfy p ≤ q ≤ 2. Denote X̃j

i =
(0, . . . , 0,xi, 0, . . . , 0) with the j-th column being xi. Then,
we have

( n∑
i=1

gijxi
)c
j=1

=

n∑
i=1

c∑
j=1

gijX̃
j
i

(∑
i∈I1

gixi, . . . ,
∑
i∈Ic

gixi
)

=

c∑
j=1

∑
i∈Ij

giX̃
j
i .

(46)

Since q∗ ≥ 2, we can apply Jensen’s inequality and
Khintchine-Kahane inequality (71) to derive (recall σr(X)
denotes the r-th singular value of X)

Eg
∥∥ n∑
i=1

c∑
j=1

gijX̃
j
i

∥∥
Sq∗
≤
[
Eg

min{c,d}∑
r=1

σq
∗

r

( n∑
i=1

c∑
j=1

gijX̃
j
i

)] 1
q∗

≤ 2−
1
4

√
πq∗

e
max

{∥∥∥[ n∑
i=1

c∑
j=1

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

,

∥∥∥[ n∑
i=1

c∑
j=1

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

}
. (47)

For any u = (u1, . . . , uc) ∈ Rc, we denote by diag(u) the
diagonal matrix in Rc×c with the j-th diagonal element being
uj . The following identities can be directly checked
n∑
i=1

c∑
j=1

(X̃j
i )>(X̃j

i )=

n∑
i=1

c∑
j=1

‖xi‖22diag(ej)=

n∑
i=1

‖xi‖22Ic×c,

n∑
i=1

c∑
j=1

(X̃j
i )(X̃j

i )> =

n∑
i=1

c∑
j=1

xix
>
i = c

n∑
i=1

xix
>
i ,

where (e1, . . . , ec) forms the identity matrix Ic×c ∈ Rc×c
Therefore,∥∥∥[ n∑

i=1

c∑
j=1

(X̃j
i )>(X̃j

i )
] 1

2
∥∥∥
Sq∗

=
∥∥∥( n∑

i=1

‖xi‖22
) 1

2

Ic×c

∥∥∥
Sq∗

= c
1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

, (48)

and∥∥∥[ n∑
i=1

c∑
j=1

(X̃j
i )(X̃j

i )>
] 1

2
∥∥∥
Sq∗

=
√
c
∥∥∥( n∑

i=1

xix
>
i

) 1
2
∥∥∥
Sq∗

=
√
c
[min{c,d}∑

r=1

σq
∗

r

(( n∑
i=1

xix
>
i

) 1
2

)] 1
q∗

=
√
c
[min{c,d}∑

r=1

σ
q∗
2
r

( n∑
i=1

xix
>
i

)] 1
q∗

=
[
c
∥∥ n∑
i=1

xix
>
i

∥∥
S q∗

2

] 1
2

.

(49)

Plugging (48) and (49) into (47) gives

Eg
∥∥∥ n∑
i=1

c∑
j=1

gijX̃
j
i

∥∥∥
Sq∗
≤ 2−

1
4

√
πq∗

e
max

{
c

1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

,

c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
. (50)

Applying again Jensen’s inequality and Khintchine-Kahane
inequality (71) gives

Eg
∥∥ c∑
j=1

∑
i∈Ij

giX̃
j
i

∥∥
Sq∗
≤
[
Eg

min{c,d}∑
r=1

σq
∗

r

( c∑
j=1

∑
i∈Ij

giX̃
j
i

)] 1
q∗

≤ 2−
1
4

√
πq∗

e
max

{∥∥∥[ c∑
j=1

∑
i∈Ij

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

,

∥∥∥[ c∑
j=1

∑
i∈Ij

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

}
. (51)

It can be directly checked that
c∑
j=1

∑
i∈Ij

(X̃j
i )>(X̃j

i ) =

c∑
j=1

∑
i∈Ij

‖xi‖22diag(ej)

= diag
(∑
i∈I1

‖xi‖22, . . . ,
∑
i∈Ic

‖xi‖22
)

and
c∑
j=1

∑
i∈Ij

(X̃j
i )(X̃j

i )> =

c∑
j=1

∑
i∈Ij

xix
>
i =

n∑
i=1

xix
>
i ,
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from which and q∗ ≥ 2 we derive∥∥∥[ c∑
j=1

∑
i∈Ij

(X̃j
i )>X̃j

i

] 1
2
∥∥∥
Sq∗

=
[ c∑
j=1

(∑
i∈Ij

‖xi‖22
) q∗

2
] 1
q∗

≤
[ c∑
j=1

∑
i∈Ij

‖xi‖22
] 1

2

=
[ n∑
i=1

‖xi‖22
] 1

2

and ∥∥∥[ c∑
j=1

∑
i∈Ij

X̃j
i (X̃j

i )>
] 1

2
∥∥∥
Sq∗

=
∥∥∥[ n∑

i=1

xix
>
i

] 1
2
∥∥∥
Sq∗

≤
∥∥∥[ n∑

i=1

xix
>
i

] 1
2
∥∥∥
S2

=
[ n∑
i=1

‖xi‖22
] 1

2

,

where we have used deduction similar to (49) in the last
identity. Plugging the above two inequalities back into (51)
implies

Eg
∥∥ c∑
j=1

∑
i∈Ij

giX̃
j
i

∥∥
Sq∗
≤ 2−

1
4

√
πq∗

e

[ n∑
i=1

‖xi‖22
] 1

2

. (52)

Plugging (50) and (52) into Theorem 2 and noting that HSp ⊂
HSq we get the following inequality with probability of at least
1− δ

ASp ≤
2

3
4πΛ

n
√
e

inf
p≤q≤2

(q∗)
1
2

{
L1 max

{
c

1
q∗
[ n∑
i=1

‖xi‖22
] 1

2

,

c
1
2

∥∥∥ n∑
i=1

xix
>
i

∥∥∥ 1
2

S q∗
2

}
+ L2

[ n∑
i=1

‖xi‖22
] 1

2

}
. (53)

This finishes the proof for the case p ≤ 2.
We now consider the case p > 2. For any W with ‖W‖Sp ≤

Λ, we have ‖W‖S2
≤ min{c, d}

1
2−

1
pΛ. The stated bound (16)

for the case p > 2 then follows by recalling the established
generalization bound (53) for p = 2.

B. Proof of Bounds by Covering Numbers

We use the tool of empirical `∞-norm CNs to prove
data-dependent bounds given in subsection III-D. The key
observation to proceed with the proof is that the empirical
`∞-norm CNs of Fτ,Λ w.r.t. the training examples can be
controlled by that of H̃τ w.r.t. an enlarged data set of car-
dinality nc, due to the Lipschitz continuity of loss functions
w.r.t. the `∞-norm [48, 73]. The remaining problem is to
estimate the empirical CNs of H̃τ , which, by the universal
relationship between fat-shattering dimension and CNs (Part
(a) of Lemma 22), can be further transferred to the estimation
of fat-shattering dimension. Finally, the problem of estimating
fat-shattering dimension reduces to the estimation of worst
case RC (Part (b) of Lemma 22). We summarize this deduction
process in the proof of Theorem 23.

Definition 3 (Covering number). Let F be a class of
real-valued functions defined over a space Z̃ and S′ :=
{z̃1, . . . , z̃n} ∈ Z̃n of cardinality n. For any ε > 0, the
empirical `∞-norm CN N∞(ε, F, S′) w.r.t. S′ is defined as the

minimal number m of a collection of vectors v1, . . . ,vm ∈ Rn
such that (vji is the i-th component of the vector vj)

sup
f∈F

min
j=1,...,m

max
i=1,...,n

|f(z̃i)− vji | ≤ ε.

In this case, we call {v1, . . . ,vm} an (ε, `∞)-cover of F w.r.t.
S′.

Definition 4 (Fat-Shattering Dimension). Let F be a class of
real-valued functions defined over a space Z̃ . We define the
fat-shattering dimension fatε(F ) at scale ε > 0 as the largest
D ∈ N such that there exist D points z̃1, . . . , z̃D ∈ Z̃ and
witnesses s1, . . . , sD ∈ R satisfying: for any δ1, . . . , δD ∈
{±1} there exists f ∈ F with

δi(f(z̃i)− si) ≥ ε/2, ∀i = 1, . . . , D.

Lemma 22 ([74, 75]). Let F be a class of real-valued func-
tions defined over a space Z̃ and S′ := {z̃1, . . . , z̃n} ∈ Z̃n
of cardinality n.

(a) If functions in F take values in [−B,B], then for any
ε > 0 with fatε(F ) < n we have

logN∞(ε, F, S′) ≤ fatε(F ) log
2eBn

ε
.

(b) For any ε > 2Rn(F ), we have fatε(F ) < 16n
ε2 R2

n(F ).
(c) For any monotone sequence (εk)∞k=0 decreasing to 0

such that ε0 ≥
√
n−1 supf∈F

∑n
i=1 f

2(z̃i), the following
inequality holds for every non-negative integer N :

RS′(F ) ≤ 2

N∑
k=1

(
εk + εk−1)

√
logN∞(εk, F, S′)

n
+ εN .

(54)

Theorem 23 (Covering number bounds). Assume that, for any
y ∈ Y , the function Ψy is L-Lipschitz continuous w.r.t. the `∞-
norm. Then, for any ε > 4LRnc(H̃τ ), the CN of Fτ,Λ w.r.t.
S = {(x1, y1), . . . , (xn, yn)} can be bounded by

logN∞(ε, Fτ,Λ, S) ≤ 16ncL2R2
nc(H̃τ )

ε2
log

2eB̂ncL

ε
.

Proof. We proceed with the proof in three steps. Note that H̃τ

is a class of functions defined on a finite set S̃ =
{
φ̃j(xi) :

i ∈ Nn, j ∈ Nc
}

.
Step 1. We first estimate the CN of H̃τ w.r.t. S̃. For any

ε > 4Rnc(H̃τ ), Part (b) of Lemma 22 implies that

fatε(H̃τ ) <
16nc

ε2
R2
nc(H̃τ ) ≤ nc. (55)

According to (12) and the definition of B̂, we derive the
following inequality for any w with τ(w) ≤ Λ and i ∈
Nn, j ∈ Nc

|〈w, φ̃j(xi)〉| = |〈wj , φ(xi)〉| ≤ ‖wj‖2‖φ(xi)‖2
≤ sup

w:τ(w)≤Λ

‖w‖2,∞‖φ(xi)‖2 ≤ B̂.
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Then, the conditions of Part (a) in Lemma 22 are satisfied with
F = H̃τ , B = B̂ and S′ = S̃, and we can apply it to control
the CNs for any ε > 4Rnc(H̃τ ) (note fatε(H̃τ ) < nc in (55))

logN∞(ε, H̃τ , S̃) ≤ fatε(H̃τ ) log
2eB̂nc

ε

≤ 16ncR2
nc(H̃τ )

ε2
log

2eB̂nc

ε
, (56)

where the second inequality is due to (55).
Step 2. We now relate the empirical `∞-norm CNs of H̃τ

w.r.t. S̃ to that of Fτ,Λ w.r.t. S. Let{
rj =

(
rj1,1, r

j
1,2, . . . , r

j
1,c, . . . , r

j
n,1, r

j
n,2, . . . , r

j
n,c

)
: j = 1, . . . , N

}
⊂ Rnc (57)

be an (ε, `∞)-cover of{(
〈w, φ̃1(x1)〉, . . . , 〈w, φ̃c(x1)〉︸ ︷︷ ︸

related to x1

, 〈w, φ̃1(x2)〉, . . . , 〈w, φ̃c(x2)〉︸ ︷︷ ︸
related to x2

,

. . . 〈w, φ̃1(xn)〉, . . . , 〈w, φ̃c(xn)〉︸ ︷︷ ︸
related to xn

)
: τ(w) ≤ Λ

}
⊂ Rnc

with N not larger than the right-hand side of (56). Define
rji =

(
rji,1, . . . , r

j
i,c

)
for all i ∈ Nn, j ∈ NN . Now, we show

that{(
Ψy1

(rj1),Ψy2
(rj2) . . . ,Ψyn(rjn)

)
: j = 1, . . . , N

}
⊂ Rn

(58)
would be an (Lε, `∞)-cover of the set (note hw(x) =(
〈w1, φ(x)〉, . . . , 〈wc, φ(x)〉

)
){(

Ψy1
(hw(x1)), . . . ,Ψyn(hw(xn))

)
: τ(w) ≤ Λ

}
⊂ Rn.

Indeed, for any w ∈ Hc
K with τ(w) ≤ Λ, the construction

of the cover in Eq. (57) guarantees the existence of j(w) ∈
{1, . . . , N} such that

max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈w, φ̃k(xi)〉
∣∣ ≤ ε. (59)

Then, the Lipschitz continuity of Ψy w.r.t. the `∞-norm
implies that

max
1≤i≤n

|Ψyi(r
j(w)

i )−Ψyi(h
w(xi))|

≤ L max
1≤i≤n

‖rj(w)

i − hw(xi)‖∞

= L max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈wk, φ(xi)〉
∣∣

= L max
1≤i≤n

max
1≤k≤c

∣∣rj(w)

i,k − 〈w, φ̃k(xi)〉
∣∣

≤ Lε,

where we have used (12) in the third step and (59) in the last
step. That is, the set defined in (58) is also an (Lε, `∞)-cover
of Fτ,Λ w.r.t. S = {(x1, y1), . . . , (xn, yn)}. Therefore,

logN∞(ε, Fτ,Λ, S) ≤ logN∞(ε/L, H̃τ , S̃), ∀ε > 0. (60)

Step 3. The stated result follows directly if we plug the
complexity bound of H̃τ established in (56) into (60). The
proof is complete.

We can now apply the entropy integral (54) to control
RS(Fτ,Λ) in terms of Rnc(H̃τ ).

Proof of Theorem 5. Let

N =

⌈
log2

n−
1
2 suph∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2

16L
√
c log 2Rnc(H̃τ )

⌉
,

εN = 16L
√
c log 2Rnc(H̃τ ) and εk = 2N−kεN , k =

0, . . . , N − 1. It is clear that

ε0 ≥ n−
1
2 sup
h∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2
≥ ε0/2

and εN ≥ 4LRnc(H̃τ ). Plugging the CN bounds established
in Theorem 23 into the entropy integral (54), we derive the
following inequality

RS(Fτ,Λ) ≤ 8L
√
cRnc(H̃τ )

N∑
k=1

εk + εk−1

εk

√
log

2eB̂ncL

εk
+εN .

(61)
We know

N∑
k=1

√
log

2eB̂ncL

εk
=

N∑
k=1

√
k log 2 + log(2eB̂ncLε−1

0 )

≤
√

log 2

∫ N+1

1

√
x+ log2(2eB̂ncLε−1

0 )dx

=
2
√

log 2

3

∫ N+1

1

d
(
x+ log2(2eB̂ncLε−1

0 )
) 3

2

≤ 2
√

log 2

3
log

3
2
2 (4eB̂ncLε−1

N ),

where the last inequality follows from

4eB̂ncL ≥ 2n−
1
2 sup
h∈Hτ

∥∥(Ψyi(h(xi))
)n
i=1

∥∥
2
≥ ε0.

Plugging the above inequality back into (61) gives

RS(Fτ,Λ) ≤ 16L
√
c log 2Rnc(H̃τ ) log

3
2
2

(
4eB̂ncLε−1

N

)
+ εN

= 16L
√
c log 2Rnc(H̃τ )

(
1 + log

3
2
2

√
ceB̂n

4
√

log 2Rnc(H̃τ )

)
.

The proof is complete by noting e ≤ 4
√

log 2.

The proof of Theorem 6 is now immediate.

Proof of Theorem 6. The proof is complete if we plug the RC
bounds established in Theorem 5 back into (37) and noting
32
√

log 2 ≤ 27.

Proof of Corollary 9. Plugging the complexity bounds of H̃p

given in (18) into Theorem 6 gives the following inequality
with probability of at least 1− δ

Ap ≤
27
√
cLΛ max

i∈Nn
‖φ(xi)‖2

n
1
2 c

1
max(2,p)

(
1+log

3
2
2

√
2B̂n

3
2 c

1
2 + 1

max(2,p)

Λ max
i∈Nn

‖φ(xi)‖2

)

≤ 27LΛ maxi∈Nn ‖φ(xi)‖2c
1
2−

1
max(2,p)

√
n

(
1 + log

3
2
2 (
√

2n
3
2 c)
)
,

where we have used the following inequality in the last step

B̂ = max
i∈Nn

‖φ(xi)‖2 sup
w:‖w‖2,p≤Λ

‖w‖2,∞ ≤ Λ max
i∈Nn

‖φ(xi)‖2.
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The proof of Corollary 9 is complete.

Proof of Corollary 10. Consider any W = (w1, . . . ,wc) ∈
Rd×c. If 1 < p ≤ 2, then

‖W‖Sp ≥ ‖W‖S2
= ‖W‖2,2 ≥ ‖W‖2,∞.

Otherwise, according to the following inequality for any semi-
definite positive matrix A = (ajj̃)

c
j,j̃=1

(e.g., (1.67) in [76])

‖A‖Sp̃ ≥
[ c∑
j=1

|ajj |p̃
] 1
p̃ , ∀p̃ ≥ 1,

we derive

‖W‖Sp = ‖(W>W )
1
2 ‖Sp =

∥∥∥[(w>j wj̃

)c
j,j̃=1

] 1
2
∥∥∥
Sp

=
∥∥∥(w>j wj̃

)c
j,j̃=1

∥∥∥ 1
2

S p
2

≥
[ c∑
j=1

(w>j wj)
p
2

] 1
p

≥ max
j=1,...,c

‖wj‖2 = ‖W‖2,∞.

Thereby, for the specific choice τ(W ) = ‖W‖Sp , p ≥ 1, we
have

B̂ = max
i∈Nn

‖xi‖2 sup
W :‖W‖Sp≤Λ

‖W‖2,∞ ≤ Λ max
i∈Nn

‖xi‖2. (62)

We now consider two cases. If 1 < p ≤ 2, plugging the
RC bounds of H̃Sp given in (21) into Theorem 6 gives the
following inequality with probability of at least 1− δ

ASp ≤
27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

√
2B̂n

3
2 c

Λ maxi∈Nn ‖x‖i

)
≤ 27LΛ maxi∈Nn ‖xi‖2√

n

(
1 + log

3
2
2

(√
2n

3
2 c
))
,

where the last step follows from (62). If p > 2, analyzing
analogously yields the following inequality with probability
of at least 1− δ

ASp ≤
27LΛ max

i∈Nn
‖xi‖2 min{c, d}

1
2−

1
p

√
n

(
1 + log

3
2
2 (
√

2n
3
2 c)
)
.

The stated error bounds follow by combining the above two
cases together.

C. Proofs on worst-case Rademacher Complexities

Proof of Proposition 7. We proceed with the proof by distin-
guishing two cases according to the value of p.

We first consider the case 1 ≤ p ≤ 2, for which the RC can
be lower bounded by

Rnc(H̃p) = max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

nc∑
i=1

εi〈w,vi〉

= max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

〈w,
nc∑
i=1

εiv
i〉

= max
vi∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,p∗
(63)

≥ max
v1∈S̃

Λ

nc
Eε
∣∣ nc∑
i=1

εi
∣∣‖v1‖2,p∗ ,

where the equality (63) follows from the definition of dual
norm and the inequality follows by taking v1 = · · · = vnc.
Applying the Khitchine-Kahane inequality (70) and using the
definition of S̃ in (9), we then derive (‖v‖2,p = ‖v‖2,∞ for
v ∈ S̃)

Rnc(H̃p) ≥
Λ√
2nc

max
v1∈S̃

‖v1‖2,p∗ =
Λ maxi∈Nn ‖φ(xi)‖2√

2nc
.

Furthermore, according to the subset relationship H̃p ⊂
H̃2, 1 ≤ p ≤ 2 due to the monotonicity of ‖ · ‖2,p, the term
Rnc(H̃p) can also be upper bounded by (vij denotes the j-th
component of vi)

Rnc(H̃p) ≤ Rnc(H̃2) = max
vi∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,2

≤ max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ c∑
j=1

Eε‖
nc∑
i=1

εivij‖22

= max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ c∑
j=1

nc∑
i=1

‖vij‖22

= max
vi∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

‖vi‖22,∞

=
Λ maxi∈Nn ‖φ(xi)‖2√

nc
,

where the first identity is due to (63), the second inequality is
due to Jensen’s inequality and the last second identity is due
to
∑c
j=1 ‖vj‖22 = ‖v‖22,∞ for all v ∈ S̃.

We now turn to the case p > 2. In this case, we have

Rnc(H̃p) = max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖w‖2,p≤Λ

nc∑
i=1

εi

c∑
j=1

〈wj ,v
i
j〉

≥ max
vi∈S̃:i∈Nnc

1

nc
Eε sup
‖wj‖p2≤

Λp

c :j∈Nc

nc∑
i=1

εi

c∑
j=1

〈wj ,v
i
j〉

= max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Eε sup
‖wj‖p2≤

Λp

c

nc∑
i=1

εi〈wj ,v
i
j〉

= max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Eε sup
‖wj‖p2≤

Λp

c

〈wj ,

nc∑
i=1

εiv
i
j〉,

where we can exchange the summation over j with the
supremum in the second identity since the constraint ‖wj‖p2 ≤
Λp

c , j ∈ Nc are decoupled. According to the definition of dual
norm and the Khitchine-Kahane inequality (70), Rnc(H̃p) can
be further controlled by

Rnc(H̃p) ≥ max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Λ

c
1
p

Eε‖
nc∑
i=1

εiv
i
j‖2

≥ max
vi∈S̃:i∈Nnc

1

nc

c∑
j=1

Λ
√

2c
1
p

[ nc∑
i=1

‖vij‖22
] 1

2 . (64)

We can find v̄1, . . . , v̄nc ∈ S̃ such that for each j ∈ Nc,
there are exactly n v̄k with ‖v̄kj ‖2 = maxi∈Nn ‖φ(xi)‖2.



22 IEEE TRANSACTIONS ON INFORMATION THEORY

Then,
∑nc
i=1 ‖v̄ij‖22 = nmaxi∈Nn ‖φ(xi)‖22,∀j ∈ Nc, which,

coupled with (64), implies that

Rnc(H̃p) ≥
1

nc

c∑
j=1

Λ
√

2c
1
p

[
nmax
i∈Nn

‖φ(xi)‖22
] 1

2

≥ Λ max
i∈Nn

‖φ(xi)‖2(2n)−
1
2 c−

1
p .

On the other hand, according to (63) and Jensen’s inequality,
we derive

ncRnc(H̃p)

Λ
= max

vi∈S̃:i∈Nnc
Eε
∥∥ nc∑
i=1

εiv
i
∥∥

2,p∗

≤ max
vi∈S̃:i∈Nnc

[
Eε

c∑
j=1

‖
nc∑
i=1

εiv
i
j‖
p∗

2

] 1
p∗
.

By the Khitchine-Kahane inequality (69) with p∗ ≤ 2 and the
following elementary inequality

c∑
j=1

|tj |p̃ ≤ c1−p̃
( c∑
j=1

|tj |
)p̃
,∀0 < p̃ ≤ 1,

we get

ncRnc(H̃p)

Λ
≤ max

vi∈S̃:i∈Nnc

[ c∑
j=1

( nc∑
i=1

‖vij‖22
) p∗

2

] 1
p∗

(65)

≤ max
vi∈S̃:i∈Nnc

[
c1−

p∗
2

( c∑
j=1

nc∑
i=1

‖vij‖22
) p∗

2
] 1
p∗

≤
√
ncc

1
p∗−

1
2 max
i∈Nn

‖φ(xi)‖2 =
√
nc1−

1
p max
i∈Nn

‖φ(xi)‖2,

where we have used the inequality
∑c
j=1 ‖vj‖22 ≤

maxi∈Nn ‖φ(xi)‖22 for all v ∈ S̃ in the last inequality.
The above upper and lower bounds in the two cases can be

written compactly as (18). The proof is complete.

D. Proofs on Applications

Proof of Example 1. According to the monotonicity of `,
there holds

`(ρh(x, y)) = `
(

min
y′:y′ 6=y

(hy(x)− hy′(x))
)

= max
y′:y′ 6=y

`(hy(x)− hy′(x)) = Ψ`
y(h(x)).

It remains to show the Lipschitz continuity of Ψ`
y . Indeed, for

any t, t′ ∈ Rc, we have

|Ψ`
y(t)−Ψ`

y(t′)| =
∣∣ max
y′:y′ 6=y

`(ty − ty′)− max
y′:y′ 6=y

`(t′y − t′y′)
∣∣

≤ max
y′:y′ 6=y

∣∣`(ty − ty′)− `(t′y − t′y′)∣∣
≤ max
y′:y′ 6=y

L`|(ty − ty′)− (t′y − t′y′)|

≤ 2L` max
y′∈Y

|ty′ − t′y′ |

≤ 2L`‖t− t′‖2,

where in the first inequality we have used the elementary
inequality

|max{a1, . . . , ac} −max{b1, . . . , bc}| ≤
max{|a1 − b1|, . . . , |ac − bc|}, ∀a, b ∈ Rc (66)

and the second inequality is due to the Lipschitz continuity of
`.

Proof of Example 2. Define the function fm : Rc 7→ R by
fm(t) = log

(∑c
j=1 exp(tj)

)
. For any t ∈ Rc, the partial

gradient of fm with respect to tk is

∂fm(t)

∂tk
=

exp(tk)∑c
j=1 exp(tj)

, ∀k = 1, . . . , c,

from which we derive that ‖∇fm(t)‖1 = 1,∀t ∈ Rc. Here ∇
denotes the gradient operator. For any t, t′ ∈ Rc, according to
the mean-value theorem we know the existence of α ∈ [0, 1]
such that

|fm(t)− fm(t′)| =
∣∣〈∇fm(αt + (1− α)t′), t− t′

〉∣∣
≤ ‖∇fm(αt + (1− α)t′)‖1‖t− t′‖∞ = ‖t− t′‖∞.

It then follows that

|Ψm
y (t)−Ψm

y (t′)| = |fm
(
(tj − ty)cj=1

)
− fm

(
(t′j − t′y)cj=1

)
|

≤
∥∥(tj − ty)cj=1 − (t′j − t′y)cj=1

∥∥
∞

≤ 2‖t− t′‖∞.

That is, Ψm
y is 2-Lipschitz continuous w.r.t. the `∞-norm.

Proof of Example 3. For any t, t′ ∈ Rc, we have

|Ψ̃`
y(t)− Ψ̃y(t′)| =

∣∣ c∑
j=1

`(ty − tj)−
c∑
j=1

`(t′y − t′j)
∣∣

≤
c∑
j=1

∣∣`(ty − tj)− `(t′y − t′j)∣∣
≤ L`c|ty − t′y|+ L`

c∑
j=1

|tj − t′j |

≤ L`c|ty − t′y|+ L`
√
c‖t− t′‖2.

The Lipschitz continuity of Ψ̃`
y(t) w.r.t. `∞-norm is also clear.

Proof of Example 4. For any t, t′ ∈ Ω, we have

|Ψ̄`
y(t)− Ψ̄`

y(t′)| =
∣∣∣ c∑
j=1,j 6=y

[
`(−tj)− `(−t′j)

]∣∣∣
≤ L`

c∑
j=1,j 6=y

|tj − t′j | ≤ L`
√
c‖t− t′‖2 ≤ L`c‖t− t′‖∞.

This establishes the Lipschitz continuity of Ψ̄`
y .

Proof of Example 5. For any t, t′ ∈ Ω, we have∣∣Ψ̂`
y(t)−Ψ̂`

y(t′)
∣∣ = |`(ty)−`(t′y)| ≤ L`|ty−t′y| ≤ L`‖t−t′‖∞.

This establishes the Lipschitz continuity of Ψ̂`
y .

Proof of Example 6. It is clear that

k∑
j=1

t[j] = max
1≤i1<i2<···<ik≤c

[ti1 + · · ·+ tik ], ∀t ∈ Rc. (67)
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For any t, t′ ∈ Rc, we have

|Ψk
y(t)−Ψk

y(t′)|

≤ 1

k

∣∣∣ k∑
j=1

(1y 6=1 + t1 − ty, . . . , 1y 6=c + tc − ty)[j]

−
k∑
j=1

(1y 6=1 + t′1 − t′y, . . . , 1y 6=c + t′c − t′y)[j]

∣∣∣
=

1

k

∣∣∣ max
1≤i1<i2<···<ik≤c

k∑
r=1

(1y 6=ir + tir − ty)

− max
1≤i1<i2<···<ik≤c

k∑
r=1

(1y 6=ir + t′ir − t
′
y)
∣∣∣

≤ 1

k
max

1≤i1<i2<···<ik≤c

∣∣∣ k∑
r=1

(1y 6=ir + tir − ty)

−
k∑
r=1

(1y 6=ir + t′ir − t
′
y)
∣∣∣

≤ 1

k
max

1≤i1<i2<···<ik≤c

∣∣ k∑
r=1

(tir − t′ir )
∣∣+ |ty − t′y|

≤ 1√
k

max
1≤i1<i2<···<ik≤c

[ k∑
r=1

(tir − t′ir )
2
] 1

2 + |ty − t′y| (68)

≤ 1√
k

[ c∑
j=1

(tj − t′j)2
] 1

2 + |ty − t′y|,

where the first and the second inequality are due to (66) and
the first identity is due to (67). This establishes the Lipschitz
continuity w.r.t. a variant of the `2-norm. The 2-Lipschitz
continuity of Ψk

y w.r.t. `∞-norm is clear from (68). The proof
is complete.

VII. CONCLUSION

Motivated by the ever-growing number of label classes
in classification problems, we develop two approaches to
derive data-dependent error bounds that scale favorably with
the number of labels. The two approaches are based on the
Gaussian and Rademacher complexities, respectively, of a
related linear function class defined over a finite set induced
from the training examples, for which we establish tight upper
and lower bounds that match within a constant factor. Due
to the ability to preserve the correlation among class-wise
components, both of these data-dependent bounds admit an
improved dependency on the number of classes over the state-
of-the-art methods.

Our first approach is based on a novel structural result on
the Gaussian complexities of function classes composed by
Lipschitz operators measured by a variant of the `2-norm. We
show the advantage of our structural result over the previous
one (3) in [28, 43, 44] by better capturing the Lipschitz
property of loss functions and yielding tighter bounds, which
is the case for some popular MC-SVMs [30, 32, 45].

Our second approach is based on a novel structural result
controlling the worst-case Rademacher complexity of the
loss function class by the `∞-norm covering numbers of an

associated linear function class. Our approach addresses the
fact that several loss functions are Lipschitz continuous w.r.t.
the `∞ norm with a moderate Lipschitz constant [48]. This
allows us to obtain error bounds exhibiting a logarithmic
dependency on the number of classes for the MC-SVM in
Crammer and Singer [31] and MLR, significantly improving
the existing square-root dependency [28, 48].

We show that each of these two approaches has its own
advantages and can outperform the other for some applications
depending on the Lipschitz continuity of the associated loss
function. We report experimental results to show that our
theoretical bounds capture the influence of class size on
models’ generalization performance, which in turn imply a
structural risk that works well in model selection. Furthermore,
we propose an efficient algorithm to train `p-norm MC-SVM
based on the Frank-Wolfe algorithm.

We now present here some possible directions for future
study. First, our generalization analysis gives generalization
bounds with a logarithmic dependency for MLR and Crammer
& Singer MC-SVM. It would be interesting to investigate
whether this logarithmic dependency can be further relaxed to
a class-size independency. Second, research in classification
with many classes increasingly focuses on multi-label classifi-
cation with each output yi taking values in {0, 1}c [18, 22, 77].
It would be interesting to transfer the results obtained in the
present analysis to the multi-label case. To this aim, it is
helpful to check the Lipschitz continuity of loss functions
in multi-label learning, which, as in the present work, are
typically of the form Ψy(h(x)) [77, 78], (e.g., Hamming
loss, subset zero-one loss, and ranking loss [78]). Third,
we study examples with the functional τ depending on the
components of w in the RKHS. It would be interesting to
consider examples with τ defined in other forms, such as those
in [79, 80]. Fourth, our error bounds are derived for convex
surrogates of the 0-1 loss. It would be interesting to relate
these error bounds to excess generalization errors measured
by the 0-1 loss [48, 59, 81, 82].
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APPENDIX A
KHINTCHINE-KAHANE INEQUALITY

The following Khintchine-Kahane inequality [83, 84] pro-
vides a powerful tool to control the p-th norm of the summa-
tion of Rademacher (Gaussian) series.

Lemma 24. (a) Let v1, . . . ,vn ∈ H, where H is a Hilbert
space with ‖ · ‖ being the associated norm. Let ε1, . . . , εn
be a sequence of independent Rademacher variables.
Then, for any p ≥ 1 there holds

min(
√
p− 1, 1)

[ n∑
i=1

‖vi‖2
] 1

2 ≤
[
Eε‖

n∑
i=1

εivi‖p
] 1
p

≤ max(
√
p− 1, 1)

[ n∑
i=1

‖vi‖2
] 1

2 , (69)

and

Eε‖
n∑
i=1

εivi‖ ≥ 2−
1
2

[ n∑
i=1

‖vi‖2
] 1

2 . (70)

The above inequalities also hold when the Rademacher
variables are replaced by N(0, 1) random variables.

(b) Let X1, . . . , Xn be a set of matrices of the same dimension
and let g1, . . . , gn be a sequence of independent N(0, 1)
random variables. For all q ≥ 2,(

Eg
∥∥ n∑
i=1

giXi

∥∥q
Sq

) 1
q ≤ 2−

1
4

√
qπ

e

×max
{∥∥( n∑

i=1

X>i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

XiX
>
i

) 1
2
∥∥
Sq

}
.

(71)

Proof. For Part (b), the original Khintchine-Kahane inequality
for matrices is stated for Rademacher random variables, i.e, the
Gaussian variables gi are replaced by Rademacher variables
εi. We now show that it also holds for Gaussian variables.
Let ψ(k)

i = 1√
k

∑k
j=1 εik+j with εik+j being a sequence of

independent Rademacher variables, then we have

(
Eε‖

n∑
i=1

ψ
(k)
i Xi‖qSq

) 1
q =

(
Eε‖

n∑
i=1

k∑
j=1

εik+j
1√
k
Xi‖qSq

) 1
q

≤
√
qπ

2
1
2 e

max
{∥∥( n∑

i=1

k∑
j=1

X>i Xi

k

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

k∑
j=1

XiX
>
i

k

) 1
2
∥∥
Sq

}
≤
√

qπ

2
1
2 e

max
{∥∥( n∑

i=1

X>i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

XiX
>
i

) 1
2
∥∥
Sq

}
,

where the first inequality is due to the Khintchine-Kahane in-
equality for matrices involving Rademacher random variables
[84]. The proof is complete if we take k to ∞ and use central
limit theorem.

APPENDIX B
PROOF OF PROPOSITION 8

We present the proof of Proposition 8 in the appendix due
to its similarity to the proof of Proposition 7.

We first consider the case 1 ≤ p ≤ 2. Since the dual norm
of ‖ · ‖Sp is ‖ · ‖Sp∗ , we have the following lower bound on
RC in this case

Rnc(H̃Sp) = max
V i∈S̃:i∈Nnc

1

nc
Eε sup
‖W‖Sp≤Λ

nc∑
i=1

εi〈W,V i〉

= max
V i∈S̃:i∈Nnc

1

nc
Eε sup
‖W‖Sp≤Λ

〈W,
nc∑
i=1

εiV
i〉

= max
V i∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiV
i
∥∥
Sp∗

. (72)

Taking V 1 = · · · = V nc and applying the Khitchine-Kahane
inequality (70) further imply

Rnc(H̃Sp) ≥ max
V 1∈S̃

Λ

nc
Eε
∣∣ nc∑
i=1

εi
∣∣‖V 1‖Sp∗

≥ Λ√
2nc

max
V 1∈S̃

‖V 1‖Sp∗ =
Λ maxi∈Nn ‖xi‖2√

2nc
,

where the last identity follows from the following identity for
any V ∈ S̃

‖V ‖Sp∗ = ‖V ‖S2 = ‖V ‖2,2 = ‖V ‖2,∞. (73)

We now turn to the upper bound. It follows from the
relationship H̃Sp ⊂ H̃S2

,∀1 ≤ p ≤ 2 and (72) that (tr(A)
denotes the trace of A)

Rnc(H̃Sp) ≤ Rnc(H̃S2
) = max

V i∈S̃:i∈Nnc

Λ

nc
Eε
∥∥ nc∑
i=1

εiV
i
∥∥
S2

= max
V i∈S̃:i∈Nnc

Λ

nc
Eε

√√√√tr
( nc∑
i,̃i=1

εiεĩV
i(V ĩ)>

)

≤ max
V i∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

tr(V i(V i)>)

= max
V i∈S̃:i∈Nnc

Λ

nc

√√√√ nc∑
i=1

‖V i‖22,∞ ≤
Λ max
i∈Nn

‖xi‖2
√
nc

,

(74)

where the second identity follows from the identity between
Frobenius norm and ‖·‖S2

, the second inequality follows from
the Jensen’s inequality and the last identity is due to (73).

We now consider the case p > 2. According to the
relationship H̃S2

⊆ H̃Sp for all p > 2 and the discussion
for the case p = 2, we know

Rnc(H̃Sp) ≥ Rnc(H̃S2
) ≥ Λ maxi∈Nn ‖xi‖2√

2nc
.

Furthermore, for any W with ‖W‖Sp ≤ Λ we have ‖W‖S2 ≤
min{c, d}

1
2−

1
pΛ, which, combined with (74), implies that

Rnc(H̃Sp)

≤ max
V i∈S̃:i∈Nnc

1

nc
Eε sup

‖W‖S2
≤Λ min{c,d}

1
2
− 1
p

nc∑
i=1

εi〈W,V i〉

≤ Λ maxi∈Nn ‖xi‖2 min{c, d}
1
2−

1
p

√
nc

.
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The proof is complete.

APPENDIX C
PROOF OF PROPOSITION 19

It suffices to check ‖w∗‖2,p ≤ 1 and 〈w∗,v〉 = −‖v‖2,p∗ .
We consider three cases.

If p = 1, it is clear that ‖w∗‖2,1 ≤ 1 and 〈w∗,v〉 =
−‖v‖2,∞.

If p = ∞, it is clear that ‖w∗‖2,∞ ≤ 1 and 〈w∗,v〉 =
−
∑c
j=1 ‖vj‖2 = −‖v‖2,1.

If 1 < p <∞, it is clear that

‖w∗‖2,p =
( c∑
j̃=1

‖vj̃‖
(p∗−1)p
2

) 1
p /
( c∑
j̃=1

‖vj̃‖
p∗

2

) 1
p = 1

and

〈w∗,v〉 = −
( c∑
j̃=1

‖vj̃‖
p∗

2

)− 1
p

c∑
j̃=1

‖vj̃‖
p∗

2 = −‖v‖2,p∗ .

The proof is complete.
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