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Towards Better Generalization Bounds of Stochastic
Optimization for Nonconvex Learning

Yunwen Lei

Abstract—Stochastic optimization is the workhorse behind
the success of many machine learning algorithms. The existing
theoretical analysis of stochastic optimization mainly focuses on
the behavior on the training dataset or requires a convexity
assumption. In this paper, we provide a comprehensive analysis
on the generalization behavior of stochastic optimization with
nonconvex problems. We first present both upper and lower
bounds on the uniform convergence of gradients. Our analysis
outperforms existing results by incorporating the 2nd moment of
the gradient at a single model into the upper bound. Based on this
uniform convergence, we provide a high-probability bound on the
gradient norm of population risks for stochastic gradient descent
(SGD), which significantly improves the existing results. We show
that better bounds can be achieved under further assumptions
such as quasi-convexity or Polyak-Łojasiewicz condition. Our
analysis shows the computation cost can be further decreased by
taking the variance-reduction trick. Finally, we study the utility
guarantee of SGD under a privacy constraint. Our results show
a linear speed up with respect to the batch size, which shows the
benefit of computing gradients in a distributed manner.

Index Terms—Learning Theory, Generalization Analysis,
Stochastic Optimization, Stochastic Gradient Descent

I. INTRODUCTION

STOCHASTIC optimization such as stochastic gradient
descent (SGD) has found wide applications in training

complex models in the big-data era [1]. A basic idea of
stochastic optimization is to introduce randomness into the
optimization process to speed up the optimization by using the
sum structure of objective functions in machine learning (ML).
For example, SGD builds an unbiased estimate of gradients by
drawing a single example or a minibatch of examples. Variance
reduction techniques were introduced to further decrease the
variance of stochastic gradients [2–4].

The popularity of stochastic optimization motivates a lot of
theoretical studies to understand the convergence of algorithms
under different assumptions such as the Lipschitz continuity,
smoothness and convexity. For example, convergence rates on
the suboptimality of function values were developed for con-
vex problems [1, 5, 6], while convergence rates on the gradient
of objectives were derived for nonconvex problems [3, 7–11].

Most of the theoretical analysis focuses on the behavior
of empirical risks (training errors) of models on the training
dataset. However, the ultimate goal of ML is to train a model
with a good behavior on the testing dataset [12]. Based on
this consideration, researchers have studied an important issue
called the generalization gap to understand the difference
between training and testing [13]. Two popular approaches
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to study the generalization are the algorithmic stability ap-
proach [14] and the uniform convergence approach [12]. The
former shows that generalization is closely related to the
sensitivity of an algorithm up to a perturbation of the training
dataset, while the latter uses concentration inequalities for
empirical process to bound the generalization gap. Algorithmic
stability considers only the property of the output model, and
can imply capacity-independent bounds [14]. As a comparison,
uniform convergence considers the uniform deviation between
training and testing over a function space, and yields capacity-
dependent bounds [12, 15–17]. However, stability analysis
often requires a convexity assumption to get meaningful
stability bounds [13], and therefore have limited applications
to nonconvex problems.

To study the generalization of SGD with nonconvex prob-
lems, recent studies took a uniform convergence approach and
gave a high-probability bound ∥∇F (out)∥22 = Õ(

√
d/n) (we

use Õ to ignore logarithmic factors) [18, 19], where “out”
denotes the output model, F denotes the population risk,
d is the dimensionality of the model and n is the sample
size. In the literature, it was shown that supw ∥∇F (w) −
∇FS(w)∥22 = Õ(d/n) [16], where FS denotes the empirical
risk. Therefore there is a gap between the high-probability
generalization bound of order Õ(

√
d/n) [18, 19] and the

uniform convergence rate of gradients of the order Õ(d/n).
This observation motivates the following question: can we
further improve the existing high-probability analysis on the
generalization of stochastic optimization?

In this paper, we work toward a tighter generalization
analysis of stochastic optimization with nonconvex problems.
Our major contributions are summarized as follows.

• We develop both upper and lower bounds for the uniform
convergence of empirical gradients to the expectation
over a ball. Under a Lipschitzness assumption, we
develop uniform convergence rates with a logarithmic
dependency on the radius of the ball. We also develop
an upper bound with a linear dependency without the
Lipschitzness assumption, which still outperforms exist-
ing uniform convergence rates [18] since the radius has a
multiplicative factor of d/n instead of the multiplicative
factor of

√
d/

√
n in [18]. Our upper bounds involve the

2nd moment of the gradient at an output model, which is
significantly smaller than the uniform Lipschitz constant.
Furthermore, we also develop dimension-free uniform

convergence of gradients for functions with a structure.
• We apply our uniform convergence of gradients to study

the generalization behavior of SGD. We develop a
high-probability bound of the order Õ(d/n) for squared-
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norm of population gradients without a Lipschitzness
assumption, which substantially improves the existing
bound Õ(

√
d/n) [18, 19]. Under a further assumption

such as the quasi-convexity or Polyak-Łojasiewicz (PL)
condition, we get high-probability bounds on the excess
population risks.

• We extend the analysis to study variance reduction opti-
mization algorithms, and show that similar convergence
of population gradients can be achieved with less com-
putation than the vanilla SGD.

• Finally, we extend our discussions to differentially private
SGD to deal with sensitive data, which is often encoun-
tered in application domains in finance and health care.
We give high-probability bounds on the utility guarantees.
Our results show a linear speed up with respect to (w.r.t.)
the batch size, meaning the iteration number decays by a
factor of the batch size. This is effective for large-scale
optimization since the computation of gradients with
minibatch can be implemented in a distributed manner.

The remaining parts of the paper are structured as follows.
We discuss the related work in Section II and introduce the
problem formulation in Section III. We discuss the uniform
convergence of gradients in Section IV and present our results
on generalization in Section V. We present the proof on SGD
in Section VI-A and leave other proofs to the appendix. We
conclude the paper in Section VII.

II. RELATED WORK

In this section, we discuss related work on the generaliza-
tion analysis of stochastic optimization methods. We divide
our discussions into two parts: generalization via algorithmic
stability and generalization via uniform convergence.

Algorithmic stability is a fundamental concept to study the
generalization issues of learning algorithms, which measures
the sensitivity of the output model up to a perturbation
of a dataset [14]. A most widely used stability concept is
the uniform stability, which was used to study regularized
learning algorithms [14], SGD [13, 20] and differentially
private SGD [21]. Several other stability concepts have been
introduced to study generalization under different assump-
tions, including hypothesis stability [14], Bayesian stabil-
ity [22, 23] and on-average stability [24–26]. For example,
argument stability can yield generalization bounds for SGD
with nonsmooth problems [26, 27], while on-average stability
can incorporate the empirical risks into the generalization
bounds, which implies fast rates under a low noise condi-
tion [24, 26]. A downside of stability analysis is that it often
requires a convexity or weak convexity assumption [28] to get
meaningful stability bounds. For general nonconvex problems,
the stability parameter grows as an exponential function of
the summation of step sizes [13]. Therefore, one needs to
choose fast-decaying step sizes of order ηt = O(1/t) to
get the summation of step sizes controlled [13]. While this
step size choice yields good stability and generalization, it
leads to a very slow decay of the optimization error. The
recent stability analysis only implies sub-optimal bounds for
nonconvex problems [29].

Another popular approach to study generalization of
stochastic optimization algorithms is the uniform convergence,
which considers the uniform deviation of the empirical process
indexed by a function class. For convex problems, one often
uses the uniform convergence of empirical risks to population
risks [15, 30, 31], while for nonconvex problems one often
resorts to the uniform convergence of empirical gradients to
population gradients [16, 32–34]. The underlying reason is that
we can derive convergence rates of excess empirical risks for
convex problems [5, 35], and convergence rates of empirical
gradients for nonconvex problems [7]. These convergence rates
can be combined with the uniform convergence to yield mean-
ingful bounds for quantities related to testing. For nonsmooth
problems, the gradients are not well-defined and one resorts to
the uniform convergence of gradients of Moreau envelops [36].
The most related work is the recent study of SGD with
nonconvex objectives [18, 37], where high-probability bounds
of the order Õ(

√
d/n) were developed for squared-norm of

population gradients. These discussions were extended to SGD
with heavy tails [19]. The uniform convergence of gradients
was also used to study the utility guarantee of gradient descent
with nonconvex problems under a Lipschitz continuity of the
Hessian of loss functions [38]. The above discussions consider
SGD for solving general problems under some smoothness
assumptions.

III. PROBLEM FORMULATION

Let ρ be a probability measure defined on a sample space
Z = X × Y , where X is an input space and Y ⊂ R is an
output space. Let S = {z1 = (x1, y1), . . . , zn = (xn, yn)} be
a dataset drawn independently from ρ, where n is the sample
size. Based on S we wish to build a function g : X 7→ Y
to learn the relationship between an input and an output. We
consider parametric models where a model is determined by
a parameter w in a parameter space W = Rd, where d ∈ N is
the dimension. The performance of a model w on an example
z can be quantified by f(w; z), where f : W × Z 7→ R+ is
a loss function. The average behavior of w on a test example
can be quantified by the population risk F (w) := Ez[f(w; z)],
where Ez[·] denotes the expectation w.r.t. z. As a comparison,
the empirical behavior on S is measured by the empirical risk
FS(w) = 1

n

∑n
i=1 f(w; zi). Let w∗ = argminw∈W F (w) be

a model with the minimal population risk.
In ML, we often apply an algorithm A to minimize the

empirical risk to get a model for future prediction. We use
A(S) to denote the output of A when applied to the dataset
S. SGD is a very popular algorithm due to its simplicity and
efficiency. Let w1 be the zero vector and {ηt}t be a sequence
of positive step sizes. At the t-th iteration, we first randomly
draw it from the uniform distribution over [n] := {1, 2, . . . , n}
and then update wt+1 as follows

wt+1 = wt − ηt∇f(wt; zit), (1)

where ∇f denotes the gradient of f w.r.t. the first argu-
ment. There is a lot of work on the convergence analysis
of SGD in terms of empirical behavior. For example, if
FS is nonconvex and smooth, a classical result shows that
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mint∈[T ] E[∥∇FS(wt)∥2] = O(1/T
1
4 ) [7]. In this paper, we

consider a more challenging problem on the convergence of
SGD in terms of the behavior on testing examples, which is
the quantity that matters in ML. We consider two performance
measures: one is the population gradient ∥∇F (A(S))∥2 and
the other is the excess population risk F (A(S)) − F (w∗),
where ∥ · ∥2 denotes the Euclidean norm. To this aim, we
introduce several assumptions.

Our first assumption is the smoothness of loss functions,
which is a standard and popular assumption in the literature
of nonconvex optimization [7, 8].

Assumption 1. We assume that for any z, the function w 7→
f(w; z) is L-smooth, i.e., for all w,w′ ∈ W, z ∈ Z

∥∇f(w; z)−∇f(w′; z)∥2 ≤ L∥w −w′∥2.

Our second assumption is the bounded variance of stochastic
gradients, which is widely used to study either optimization
errors [7] or stability of SGD [25] for nonconvex problems.

Assumption 2. We assume the existence of σ > 0 such that

Eit

[∥∥∇f(wt; zit)−∇FS(wt)
∥∥2
2

]
≤ σ2, ∀t ∈ N,

where Eit denotes the expectation w.r.t. it.

Our third assumption is on the Lipschitz continuity of loss
functions, which is widely considered in the literature for
stochastic optimization with both convex [39, 40] and non-
convex problems [8, 41, 42], especially for high-probability
analysis [39, 40] and differential privacy analysis [42]. This
assumption holds for robust regression, generalized linear
models and learning with shallow neural networks. In Section
G (Supplementary Material), we provide more nonconvex
problems for which Assumption 3 holds with a universal G.

Assumption 3. We assume there exists some G > 0 such that

∥∇f(wt; z)∥2 ≤ G, ∀t ∈ N, z ∈ Z.

It should be mentioned that Assumption 3 is stronger
than Assumption 2, i.e., we can always choose σ = G in
Assumption 2 if Assumption 3 holds. However, as we will also
consider generalization bounds (Theorem 7) for SGD without
Assumption 3, we keep Assumption 2 here. Furthermore,
σ can be much smaller than G and therefore we include
Assumption 2 to get a better dependency on G.

IV. UNIFORM CONVERGENCE OF GRADIENTS

In this paper we are particularly interested in the gener-
alization behavior of stochastic optimization algorithms mea-
sured by the decay of ∥∇F (wt)∥2. To this aim, we require
a quantitative connection between population gradients and
empirical gradients at the output of the algorithm. Since the
output depends on the training sample, we turn to the uniform
deviation between population and empirical gradients over the
whole function class.

A. Upper Bounds

The following theorem gives upper bounds for the uni-
form convergence over a ball of finite radius. Let BR =
{w ∈ Rd : ∥w∥2 ≤ R}. For any w, define LS(w) :=
1
n

∑n
i=1 ∥∇f(w; zi)∥22.

We say A ≲ B if there exists some universal constant C > 0
such that A ≤ BC. We use the notation A ≍ B if A ≲
B and B ≲ A. For simplicity of presentation, we assume
log log n ≲ d log(LR/G) and L ≲ Gd ≲ Gn. The proof is
given in Section A (Supplementary Material).

Theorem 1. Let δ ∈ (0, 1) and S = {z1, . . . , zn} be drawn
independently from ρ. Suppose Assumption 1 and Assump-
tion 3 hold. Then with probability at least 1− δ the following
inequality holds simultaneously for all w ∈ BR∥∥∇FS(w)−∇F (w)

∥∥
2
≲

G
(
log(1/δ) + d log(Rn)

)
n

+
(LS(w)(log(1/δ) + d log(Rn))

n

) 1
2

. (2)

Remark 1 (Explanation). We ignore logarithmic factors in

this remark. Eq. (2) involves a slow-decaying term
√

dLS(w)√
n

and a fast-decaying term Gd
n (we assume d ≪ n here). Note

that the Lipschitz constant G appears only in the fast-decaying
term and therefore can be ignored if n is sufficiently large. For

example, if G2d ≲ n, the dominating term is
√

dLS(w)√
n

, and
Eq. (2) becomes

∥∥∇F (w)−∇FS(w)
∥∥
2
= Õ

(L 1
2

S (w)(log
1
2 (1/δ) +

√
d)√

n

)
,

(3)
where we absorb the logarithmic factors in the notation Õ. A
notable property of Eq. (3) is that the Lipschitz constant G is
replaced by L

1
2

S (w), which is the 2nd-moment of ∥∇f(w; z)∥2
on S. For the generalization analysis, we are only interested
in

∥∥∇F (w)−∇FS(w)
∥∥
2

at the particular model w = A(S)
instead of the uniform convergence. Then, an application
of Theorem 1 implies a generalization bound depending on
L

1
2

S (A(S)), which is significantly smaller than the uniform
Lipschitz constant G. Note G = supw∈BR

supz ∥∇f(w; z)∥2
involves two supremums. One supremum over w is replaced
by A(S), and the other supremum over z is replaced by an
average over S. By the self-bounding property ∥∇f(w; z)∥22 ≤
2Lf(w; z) [43], we know

LS(w) ≤ 2L

n

n∑
i=1

f(w; zi) = 2LFS(w).

Then, we apply Eq. (3) to the particular model A(S) to derive∥∥∇F (A(S))−∇FS(A(S))
∥∥
2

= Õ
(√LFS(A(S))(log

1
2 (1/δ) +

√
d)√

n

)
.

This bound is of the order o(
√
Ld/n) in an interpolation

setting where FS(A(S)) = o(1).
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Remark 2 (Comparison). Under an assumption that w 7→
f(w; z) is convex, L-smooth and nonnegative for all z, Lemma
1 with ϵ = 1/n and Lemma 2 in [44] show the following
inequality with probability 1− δ for all w ∈ BR

∥∇F (w)−∇FS(w)∥2 ≲
L∥w−w∗∥2(log(1/δ)+ d log(nR))

n

+
(L(F (w)− F (w∗))(log(1/δ) + d log(nR))

n

) 1
2

+
(LF (w∗) log(1/δ)

n

) 1
2

. (4)

A key difference is that the analysis in [44] requires a
convexity assumption. Indeed, the idea of their analysis is
to control the uniform convergence for excess gradient, i.e.,
supw ∥∇F (w) − ∇F (w∗) − (∇F̂S(w) − ∇F̂S(w

∗))∥2. To
apply Bernstein’s inequality, Zhang et al. [44] first gave an
estimate on the variance as follows

Ez

[
∥∇f(w; z)−∇f(w∗; z)∥22

]
≤ L(F (w)− F (w∗)). (5)

This variance estimate requires a convexity assumption. As a
comparison, our analysis applies to nonconvex loss functions
since we directly consider the loss w 7→ f(w; z) instead
of the excess loss w 7→ f(w; z) − f(w∗; z). Then, we use
the self-bounding property of smooth functions to show that
∥∇f(w; z)∥22 ≤ 2Lf(w; z) [43]. By this strategy, we remove
the convexity assumption in [44] to control the variance in
Eq. (5). Intuitively, self-bounding property controls gradients
by function values, which is widely used to derive optimistic
rates for smooth problems [26, 43, 45].

The second difference is that Eq. (4) involves the ex-
cess population risk F (w) − F (w∗), which cannot be com-
puted from the dataset since ρ is unknown. As a compar-
ison, our upper bound in Theorem 1 involves LS(w) =
1
n

∑n
i=1 ∥∇f(w; zi)∥22, which is a data-dependent quantity.

As compared to the excess risk, LS(w) is easier to esti-
mate. For example, in the proof of Theorem 7, we show

1∑T
t=1 ηt

∑T
t=1 ηtLS(wt) ≲ σ2 log(1/δ) with probability at

least 1− δ. This estimation of LS(wt) simplifies the applica-
tion of Theorem 1.

Theorem 1 gives a bound with a logarithmic dependency
on R under a Lipschitzness assumption. We can get a bound
with a linear dependency without this assumption by noting
∥∇f(w; z)−∇f(0; z)∥ ≤ L∥w∥2. Then we put G = LR+ b
in Theorem 1 to immediately get the following theorem, where
b = supz ∥∇f(0; z)∥2. We omit the proof for simplicity.

Theorem 2. Let δ ∈ (0, 1) and S = {z1, . . . , zn} be drawn
independently from ρ. Suppose Assumption 1 holds and b =
supz ∥∇f(0; z)∥2 < ∞. Then with probability at least 1 − δ
the following inequality holds simultaneously for all w ∈ BR∥∥∇FS(w)−∇F (w)

∥∥
2
≲

(LR+ b)
(
log(1/δ) + d log(Rn)

)
n

+
(LS(w)(log(1/δ) + d log(Rn))

n

) 1
2

. (6)

Remark 3 (Comparison). The uniform convergence analysis
of gradients was initialized by a seminal paper [16] under

assumptions on gradient statistical noise, Hessian statistical
noise and Hessian regularity. Similar bounds were developed
by Rademacher complexities or covering numbers [18, 44]

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥
2
≲

(LR+ b)
√
d√

n
. (7)

Note that both Eq. (6) and Eq. (7) have a linear dependency
on R. However, there is a multiplicative factor of d/n in front
of R in Eq. (6), while the multiplicative factor in Eq. (7)
is

√
d/

√
n. Therefore, our analysis outperforms the existing

uniform convergence rates under the same condition. As we
will show, this improved uniform convergence allows us to get
improved bounds for SGD under the same assumption in [18].

B. Dimension-independent Bounds

The uniform convergence rates in the previous subsection
have an explicit dependency on the dimensionality d, which
are not appealing for high-dimensional problems [46]. This
is especially the case for overparameterized models in mod-
ern ML. In this subsection, we aim to relax this issue by
developing dimension-independent uniform convergence for
problems with a structure when the weight vector w and the
data ϕ(x) are appropriately controlled by norms. We consider
loss functions of the form

f(w; z) = ℓ(y, ⟨w, ϕ(x)⟩), (8)

where ϕ : X 7→ W is a feature map and ℓ : R2 7→ R+.
This include many problems such as generalized linear models,
robust regression models [16, 32] and shallow neural networks.
We denote a ∨ b = max{a, b}. Let (λi)i be the eigenvalue
of the operator v 7→ EX [⟨v, ϕ(X)⟩ϕ(X)] arranged in a
nonincreasing order.

Theorem 3. Suppose f takes the form in Eq. (8). As-
sume a 7→ ℓ(y, a) is Lℓ-smooth for all y. Let Bℓ =
(EY (ℓ

′(Y, 0))2)
1
2 , supx ∥ϕ(x)∥2 ≤ Bϕ and δ ∈ (0, 1). With

probability at least 1 − δ the following inequality holds
uniformly for any w ∈ BR∥∥∥∇F (w)−∇FS(w)

∥∥∥
2
= Õ

(LℓB
2
ϕR log(1/δ)

n

+BϕLℓ

( 1

n
min
h∈N+

(
1 + r̃(w)h+R2

∞∑
j=h+1

λj

)) 1
2
)
,

where r̃(w) := V (w) ∨ 1
n and V (w) := EX [⟨w, ϕ(X)⟩2].

For functions of form (8), the uniform convergence of
gradients were developed in [32]

sup
w∈BR

∥∥∥∇F (w)−∇FS(w)
∥∥∥
2
≲

LℓRB2
ϕ log

1
2 (1/δ)

√
n

. (9)

Theorem 3 improves it by replacing RBϕ with minh∈N+

(
1+

r̃(w)h + R2
∑∞

j=h+1 λj

) 1
2 , which is always smaller since∑∞

i=1 λi ≤ B2
ϕ. Furthermore, as we will show, Theorem 3

implies a fast rate if there is a fast decay of eigenvalues. We
achieve this improvement by taking a localization analysis and
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using several techniques such as local Rademacher complexity,
peeling trick and structural results on covering numbers [47].

To understand the benefit of Theorem 3, we impose some
assumptions on the decay of eigenvalues.

Assumption 4 (Polynomial decay). We assume the eigenval-
ues {λj}j of K(x, x′) := ⟨ϕ(x), ϕ(x′)⟩ admit a polynomial
decay of degree p > 1, i.e., there exists a β > 0 such that
λj ≤ βj−p,∀j ∈ N.

Assumption 4 is widely used in deriving fast rates of kernel
learning methods [48–50]. Below we present a lemma on the
polynomial decay of eigenvalues.

Lemma 4 ([49]). Let X = [0, 1]d and K ∈ Cα(X×X ), where
Cα(X × X ) is the space of functions f : X × X 7→ R whose
sth partial derivatives Dsf = ∂sf

∂x
s1
1 ···∂xsd

d

are continuous if

∥s∥1 ≤ α for any s = (s1, . . . , sd) ∈ Nd. If the marginal dis-
tribution of ρ on X is a Borel measure, then the corresponding
eigenvalues have a polynomial decay with p = α

d + 1
2 .

Theorem 5. Let assumptions in Theorem 3 and Assumption 4
hold. Then, we have

min
h∈N

{
r̃(w)h+R2

∞∑
j=h+1

λj

}
≲

pr̃(w)1−
1
p β

1
pR

2
p

p− 1
.

Furthermore, with probability at least 1 − δ the following
inequality holds uniformly for any w ∈ BR∥∥∥∇F (w)−∇FS(w)

∥∥∥
2
=Õ

(LℓB
2
ϕR log 1

δ

n
+
cpBϕLℓr̃(w)

1
2−

1
2pR

1
p

n
1
2

)
where cp = β

1
2p p

1
2 /(p− 1)

1
2 + 1.

Remark 4. While the uniform convergence rate in Theorem 5
grows as a linear function of R, the linear term only appears
in

LℓB
2
ϕR log 1

δ

n , which is not a dominating term due to the
factor of 1/n. The second term in the upper bound enjoys a
sublinear dependency as R

1
p , which is sharper than the linear

dependency in Eq. (9). The difference between R
1
p and R is

significant if p is large (e.g., α is large in Lemma 4), which
is the case for Gaussian kernels Kσ(x, x

′) := exp(−∥x −
x′∥2/(2σ2)), σ > 0. Indeed, Gaussian kernels belong to
Cα(X × X ) for any α ∈ N. This shows the strength of
localization analysis in our discussions.

C. Lower Bounds

In this subsection, we present specific examples to develop
lower bounds for the uniform convergence of gradients. Note
that f defined in Eq. (10) is smooth since σ is smooth, and
not convex since −σ(wdx) is not a convex function of wd.

Proposition 6. Let X = {−1,+1}. Consider f : W×X 7→ R:

f(w;x) =

d−1∑
j=1

σ(wjx)−σ(wdx), w = (w1, . . . , wd)
⊤, (10)

where σ(t) = t2+/2 and t+ := max{t, 0}. Let R = (d −
1)

1
2 and assume x1, . . . , xn are drawn independently from the

uniform distribution over {−1,+1}. With probability at least
1− exp(−1/16) we know

sup
w∈BR

∥∇FS(w)−∇F (w)∥2 ≥ (d− 1)
1
2

4
√
2n

. (11)

Remark 5. Proposition 6 shows that the square-root depen-
dency is necessary for the uniform convergence of gradients
for general nonconvex and smooth learning problems. Further-
more, the lower bound in Eq. (11) matches the upper bound
in Eq. (3) up to a logarithmic factor. This shows the tightness
of our analysis.

V. GENERALIZATION ANALYSIS

In this section, we present the generalization analysis for
stochastic optimization algorithms. We first consider SGD
under various assumptions, and then study its extension to
privacy-preserving and variance-reduced variants.

A. Stochastic Gradient Descent

We first consider error bounds of SGD on testing datasets
for three problem classes: general nonconvex problems, quasi-
weakly convex problems and gradient-dominated problems.
General Nonconvex Problems. We first consider general
smooth problems, for which we measure the performance
via population gradients. The underlying reason is that SGD
generally only guarantees a local minimizer if the problem
is nonconvex. Our idea to prove Theorem 7 is to decompose
∥∇F (wt)∥22 into two terms as follows

∥∇F (wt)∥22 ≤ 2∥∇F (wt)−∇FS(wt)∥22 + 2∥∇FS(wt)∥22.

We call the first term the generalization error, which shows
how the empirical behavior on S would generalize to the test
set. We call the second term the optimization error, which
shows how the empirical behavior would improve along the
optimization process. We will use the uniform convergence
of gradients to control the generalization error, and apply
tools in optimization theory to control the optimization error.
Eq. (12) is also imposed in [18], which is milder than the
Lipschitzness assumption since ηt is often small (e.g., of order
1/
√
t). Theorem 7 focuses on the underparamterized setting,

i.e., d ≪ n. The detailed proof is given in Section VI-A.

Theorem 7. Let {wt} be produced by Eq. (1) with ηt ≍
1/
√
t. Let Assumptions 1 and 2 hold. Assume there is G0 with

√
ηt∥∇f(wt; z)∥2 ≤ G0, ∀t ∈ [T ], z ∈ Z. (12)

For any δ ∈ (0, 1), with probability at least 1− δ

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22=Õ
(dσ2 log 1/δ

n

+ L(σ2 +G2
0) log(1/δ)

( 1√
T

+
L2

√
Td2

n2

))
. (13)
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Remark 6 (Comparison). Under the same assumptions, the
following bound for SGD was recently developed if taking
ηt ≍ 1/

√
t [18, 19]

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22 =

Õ
(
L(G2

0 + σ2) log(1/δ)
( 1√

T
+

dL2
√
T

n

))
. (14)

Both this bound and Theorem 7 involve the term L(G2
0 +

σ2) log(1/δ)√
T

, which corresponds to the optimization error
bound. The remaining terms are due to the generalization
bounds. It is clear that our risk bound is always better than
Eq. (14) since (we assume d ≲ n here)

dσ2

n
+

L3(σ2 +G2
0)
√
Td2

n2
≪ (G2

0+σ2)
dL3

√
T

n
. (15)

If the optimization error bound dominates the generalization
(this happens if T is small), then both Theorem 7 and Eq. (14)
yield the same risk bound. If the generalization dominates
optimization, our risk bound is significantly sharper. For
example, if we choose T ≍ n2

d2L2 , then Theorem 7 implies
risk bounds of order Õ(d/n)

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22 = Õ
(L2(σ2 +G2

0)d log(1/δ)

n

)
.

As a comparison, Eq. (14) implies vacuous bounds of order
Õ(1) for this T . Indeed, Eq. (14) requires to stop at a much
earlier iteration to balance the optimization and generalization.
By Eq. (14), the optimal choice is T ≍ n

L2d and in this case
Eq. (14) implies risk bounds

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22=Õ
(√dL2(σ2 +G2

0) log(1/δ)√
n

)
.

(16)
For T ≍ n

L2d , both Eq. (13) and Eq. (14) yield risk bounds
of the same order. However, as T increases from this point,
the generalization part dominates and Eq. (15) shows that the
existing bound in [18] is larger by a factor of max{

√
T , n/d}

than ours.
The discussion in [18] is based on the uniform convergence

rate in Eq. (7), which is a linear function of R. A major step
in [18, 19] is to show with high probability for ηt ≍ 1/

√
t

∥wt∥22 ≤ R2
T = Õ

(
L(σ2 +G2

0)
√
T log(1/δ)

)
, t ∈ [T ], (17)

which, according to Eq. (7), implies

∥∇F (wt)−∇FS(wt)∥22 = Õ
(L3(σ2 +G2

0)d
√
T log2(1/δ)

n

)
.

(18)
As a comparison, we use our improved uniform convergence
in Theorem 2 with R = RT defined in Eq. (17), and get

∥∥∇F (wt)−∇FS(wt)
∥∥2
2
= Õ

(dLS(wt)

n

+
(σ2 +G2

0)L
3
√
Td2 log2(1/δ)

n2

)
,

which is much better than (18) since d/n there is replaced by
d2/n2 in the last term.

The above risk bound involves a linear dependency on d.
We can remove this dependency by imposing constraints on
the norm of data and weight w for problems with a structure.

Theorem 8. Let f take the structure in Eq. (8). Let assump-
tions in Theorem 3, Eq. (12) and Assumption 2 hold. Let {wt}
be produced by Eq. (1) with ηt ≍ 1/

√
t. For any δ ∈ (0, 1),

with probability at least 1− δ we have

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22 = Õ
( B2

ϕL
2
ℓ

n
∑T

t=1 ηt

T∑
t=1

ηt min
h∈N+

(
1

+ r̃(wt)h+
(
(σ2 +G2

0)
√
TLℓB

2
ϕ log(1/δ)

) ∞∑
j=h+1

λj

)
+ LℓB

2
ϕ(σ

2 +G2
0)
( log(1/δ)√

T
+

√
TL2

ℓB
4
ϕ log(1/δ)

n2

))
,

where r̃(·) is defined in Theorem 3.

Remark 7. Theorem 8 uses localization arguments to derive
risk bounds depending on the eigenvalues of the operator
v 7→ EX [⟨v, ϕ(X)⟩ϕ(X)]. To understand how this localiza-
tion improves the analysis, we impose Assumption 4 with
p > 1 and assume r̃(wt) = Õ(1). If we focus only on the
dependency on n, then we can choose T ≍ n

2p
p+1 to get

1∑T
t=1 ηt

∑T
t=1 ηt∥∇F (wt)∥22 = Õ

(
n− p

p+1
)
, which becomes

Õ(1/n) if p → ∞. As a comparison, the analysis based on
Eq. (9) can only imply rates of order Õ(1/

√
n).

Quasi-weakly Convex Problems. Now we consider quasi-
weakly convex problems, which means that the suboptimality
F (w)−F (w∗) can be bounded by the inner product of w−w∗

and ∇F (w). This shows w − w∗ is positively correlated to
∇F (w), and therefore −∇F (w) is a direction towards w∗.

Assumption 5. Let α > 0. We assume F is α-quasi-weakly
convex in the sense that for all w ∈ W

⟨w −w∗,∇F (w)⟩ ≥ α(F (w)− F (w∗)). (19)

The class of quasi-weakly convex functions is characterized
by a parameter α ∈ [0, 1] [51]. If α = 1, then Eq. (19)
is known as star convexity [52]. As α becomes smaller,
the function becomes “more nonconvex”. In the following
theorem to be proved in Section D (supplementary material),
we show that the assumption on quasi-weak convexity al-
lows us to derive bounds for excess population risks. This
implies that SGD is able to identify an approximate global
minimizer of the population risk. In the remainder of the
paper, we always impose Assumption 3 and ignore the term
G
n

(
log(1/δ) + d log(Rn)

)
in the uniform convergence rates,

i.e., we only use Eq. (3) for simplicity of presentation. We
also only assume d ≲ n for brevity.

Theorem 9. Let Assumptions 1, 2, 3 and 5 hold. Let δ ∈ (0, 1)
and {wt} be produced by Eq. (1). With probability at least
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1− δ we have

α

T∑
t=1

ηt(F (wt)− F (w∗)) ≲ ∥w∗∥22 +G2
T∑

t=1

η2t log
2 1

δ

+
G2(d log(R′

Tn) + log(1/δ))

n

( T∑
t=1

ηt

)2

. (20)

In particular, if ηt ≍ 1/
√
t and T ≍ n/d, we get

α
( T∑

t=1

ηt

)−1 T∑
t=1

ηt(F (wt)− F (w∗)) = Õ
(∥w∗∥22

√
d√

n

+
G2

√
d log(1/δ)√

n
+

G2 log(1/δ)
√
d√

n

)
.

Remark 8. We now discuss the related work on the general-
ization analysis of SGD to study the decay of F (wt)−F (w∗).
Generalization bounds of SGD were established for convex
problems based on algorithmic stability [13, 25–27]. High-
probability generalization bounds of SGD were also studied
for convex problems based on the uniform convergence of
empirical risks to population risks [31]. A key assumption for
these discussions is the convexity of loss functions, which is
relaxed to a quasi-weak convexity assumption in Theorem 9.

Remark 9. To prove Theorem 9, we need to give a high-
probability bound of

∑T
t=1 ξ̃t, where

ξ̃t = ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩.

To apply a concentration inequality to handle it, we need to
bound the magnitude of ξ̃t as follows

|ξ̃t| ≤ ηt∥w∗ −wt∥2∥∇f(wt; zit)−∇FS(wt)∥2.

Therefore, to get an informative bound we need to give a good
estimate of ∥wt∥2. Indeed, the most essential part in proving
Theorem 9 is to control ∥wt∥2. This is totally different from
the proof of Theorem 7, where a crude bound of ∥wt∥2 is
sufficient due to the logarithmic dependency of the uniform
convergence on the radius under the Lipschitzness assumption.

Gradient-dominated Problems. Finally, we consider
gradient-dominated problems, which are common in non-
convex optimization [8, 53, 54], and are shown to hold true for
deep (linear) and shallow neural networks [20, 55]. Roughly
speaking, gradient dominance means that the suboptimality
in terms of function values can be bounded by gradients.

Assumption 6 (PL Condition). We assume F satisfies PL or
gradient-dominated condition with parameter µ > 0, i.e.,

F (w)− F (w∗) ≤ 1

2µ
∥∇F (w)∥22, ∀w ∈ W. (21)

Under the PL condition, we can derive excess population
risk bounds of the order O(d/(nµ)) by stopping SGD after
an appropriate number of iterations. As a comparison, most
of existing studies of stochastic optimization for gradient-
dominated problems consider excess empirical risk bounds,
i.e., how FS(wT ) − infw FS(w) would decay as a function
of T . The proof is given in Section VI-B.

Theorem 10. Let Assumptions 1, 2, 3 and 6 hold. Let δ ∈
(0, 1) and {wt} be produced by Eq. (1) with ηt = 2/(µ(t+1)).
Denote L̃T := T−2

∑T
t=1 tLS(wt). With probability 1− δ

F (wT )−F (w∗)=Õ
(G2 log

1
2 (1/δ)√
Tµ

+
dL̃T log(1/δ)

nµ
+
LG2

Tµ2

)
.

If T ≳ n2G4/(d2L̃2
T ) and T ≳ LnG2/(µdL̃T ), then

Theorem 10 implies bounds of order Õ
(dL̃T log(1/δ)

nµ

)
.

Algorithm 1 Differentially Private SGD

Input: w1 = 0, learning rates {ηt}t, parameter β, ϵ, δ > 0
and dataset S = {z1, . . . , zn}

1 Set noise variance σ2
T := 8TG2 log(1/δ)

n2ϵ2

Set batch size m := max{1, n
√
ϵ/(4T )}

for t = 1, 2, . . . , T do
2 sample a batch Bt = {zit,1 , . . . , zit,m} with replacement

uniformly from S
update wt+1 according to Eq. (22)

Output: {wt}

B. Differentially Private SGD

In this subsection, we use our previous generalization anal-
ysis to develop differentially private algorithms to handle sen-
sitive data. Differential privacy measures how the perturbation
of a training dataset would change the distribution of output
models [56]. We say S and S′ are two neighboring datasets
if they differ by a single example.

Definition 1 (Differential Privacy). Let ϵ > 0 and δ ∈ (0, 1). A
randomized mechanism A provides (ϵ, δ)-differential privacy
(DP) if for any two neighboring datasets S and S′, and any
set E in the range of A there holds

P{A(S) ∈ E} ≤ eϵP{A(S′) ∈ E}+ δ.

A basic idea to develop differentially private algorithms is
to inject noises in the learning process according to the sen-
sitivity of the algorithm. We consider a differentially-private
SGD introduced in [21] (Algorithm 1), where the stochastic
gradient is estimated based on a minibatch of samples. At
each iteration, we first sample a batch Bt = {zit,1 , . . . , zit,m}
with replacement from the uniform distribution of S. Then we
update the model as follows

wt+1 = wt − η
( 1

m

m∑
j=1

∇f(wt; zit,j ) +Gt

)
, (22)

where Gt ∼ N(0, σ2
T Id) (Gaussian distribution) and

σ2
T :=

8TG2 log(1/δ)

n2ϵ2
. (23)

We present the pseudo-code in Algorithm 1 whose privacy
guarantee is given in the following lemma.

Lemma 11 (Privacy guarantee [21]). If Assumption 3 holds,
then Algorithm 1 is (ϵ, δ)-differentially private.

In the following two theorems, we establish the utility
guarantees of Algorithm 1. Theorem 12 considers the utility
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guarantee as measured by the gradient norm of empirical risks,
while Theorem 13 considers the utility guarantee as measured
by the gradient norm of population risks.

Theorem 12. Suppose Assumptions 1, 2 and 3 hold. Let {wt}
be produced by Eq. (22). Then for any δ ∈ (0, 1), the following
inequality holds with probability at least 1− δ

η

T∑
t=1

∥∇FS(wt)∥22 ≲ 1 + η log(1/δ)(G2 + σ2
T )+

G2Lη2
(
T log(1/δ)

) 1
2 +

σ2Lη2T

m
+ Lη2σ2

TTd.

Theorem 13. Under the same assumptions of Theorem 12, we
have

η

T∑
t=1

∥∇F (wt)∥22 = Õ
(η(d+ log(1/δ))

n

T∑
t=1

LS(wt)

+ 1 + η log(1/δ)(G2 + σ2
T ) +G2Lη2

(
T log(1/δ)

) 1
2

+
σ2Lη2T

m
+ Lη2σ2

TTd
)
.

We specify parameters in the utility guarantees and derive
the following corollary on the utility guarantee of DP-SGD.

Corollary 14. Let assumptions in Theorem 12 hold. Sup-
pose we choose m according to Algorithm 1 and η =

min
{ √

m

σ
√
LT

, 1√
TLdσT

}
. If m ≲

√
Tσ2/G2 and T ≥ n2ϵ2σ2

mdG2 ,
then with probability at least 1− δ we have

1

T

T∑
t=1

∥∇FS(wt)∥22 ≲
G2 log(1/δ)

n2ϵ2
+
G
√
Ld log(1/δ)

nϵ
(24)

and

1

T

T∑
t=1

∥∇F (wt)∥22 = Õ
(d+ log(1/δ)

n

1

T

T∑
t=1

LS(wt)+

G2 log(1/δ)

n2ϵ2
+

G
√
Ld log(1/δ)

nϵ

)
. (25)

According to the choice of m in Algorithm 1, the require-
ment m ≲

√
Tσ2/G2 corresponds to 1 ≲ σ2

√
T/G2 and

n
√
ϵ/(4T ) ≲

√
Tσ2/G2, which further corresponds to T ≳

max{G4/σ4, G2n
√
ϵ/σ2}. Furthermore, the condition T ≥

n2ϵ2σ2

mdG2 means either T ≥ n2ϵ2σ2

dG2 or T ≥ 4ϵ3σ4n2/(G4d2).

Remark 10. Under the assumption ∥wt∥2 ≤ D for some
D > 0, utility guarantees of the order E[∥∇FS(A(S))∥22] ≲
LGD

√
d log(n/δ) log(1/δ)

nϵ have been derived for a Random
Round Private Stochastic Gradient Descent in [57], which
requires O(n2) gradient evaluations. This discussion was
extended to other private algorithms with utility guarantee
bounds on population gradient squares [38, 58]. However,
these discussions require a computation of full gradient per
iteration and is therefore not computationally efficient to
handle large-scale data. For example, the algorithm in [58]
requires O(nϵ

√
L/(G

√
d log(1/δ)) iterations with O(n) gra-

dient evaluations per iteration, leading to a total gradient
computation O(n2ϵ

√
L/(G

√
d log(1/δ)). As a comparison,

our algorithm requires O
(
n2ϵ2σ2

mdG2

)
iterations and therefore the

gradient computation complexity is O
(
n2ϵ2σ2

dG2

)
. Better utility

guarantees of order E[∥∇FS(A(S))∥2] ≲
(GLd log(1/δ)

nϵ

) 2
3

were developed for a differentially-private stochastic recursive
variance reduced descent method proposed in [42]1, which
enjoys a smaller total gradient computational complexity of
the order O((nϵ)2/(d log(1/δ))). Their utility guarantee is
measured in terms of ∥∇FS(A(S))∥2, while we also provide
guarantee as measured by ∥∇F (A(S))∥2. Furthermore, the
discussions in [38, 42, 58] developed utility guarantees in
expectation, while our analysis gives high-probability bounds.
Finally, our analysis in Corollary 14 shows that if m ≲

√
T ,

our algorithm achieves a linear speed up on the iteration
number w.r.t. the batch size, i.e., the number T of iterations
decays by a factor of m. The gradient computation per iteration
can be performed in a distributed manner.

C. Stochastic Variance Reduced Optimization
In this subsection, we consider a class of stochastic variance

reduced optimization algorithms [2, 3, 8, 9, 54], which are
implemented in epochs. Let w̃0 be an initialization point. For
the s-th epoch, we first set a reference point w0 = w̃s−1,
draw a batch Ĩs ⊆ [n] and compute v0 = ∇fĨs(w0). Here we
use the notation fI(w) = 1

|I|
∑

i∈I f(w; zi) for I ⊆ [n] with
|I| being the cardinality of I . We can set Ĩs = [n] [2, 8, 54]
or build Ĩs by drawing with replacement from the uniform
distribution over [n] [9, 10]. Then we run ms inner iterations.
At the t-th inner iteration, we first draw a batch It ⊆ [n]
from the uniform distribution over [n] and update models
with gradient estimators of decreased variance. The original
SVRG [2, 8] takes the following gradient estimator (we omit
the dependency on s for brevity)

vt = ∇fIt(wt)−∇fIt(w0) + v0, (26)

while the recent discussions propose the following gradient
estimator [3, 9]

vt = ∇fIt(wt)−∇fIt(wt−1) + vt−1. (27)

The variance of these vt diminishes to zero as we run more
and more iterations, which allows us to update iterates with a
constant step size wt+1 = wt − ηvt while still enjoying con-
vergence [2]. The framework of stochastic variance-reduced
optimization is described in Algorithm 2.

We now give the population gradient bounds for stochastic
variance reduced optimization algorithms. Theorem 15 con-
siders the SVRG in [8], while Theorem 16 considers the
SARAH in [3] and the Spider in [9]. The proofs of these two
theorems are given in Section E (supplementary material). We
present convergence rates in expectation here since the existing
optimization error bounds are stated in expectation.

Theorem 15. Let Assumptions 1, 2 and 3 hold. Let A be the
SVRG in [8]. We can take O(n+Ln

2
3 /ϵ2) stochastic gradient

evaluations to get a model A(S) with

E[∥∇F (A(S))∥2] = Õ
(
ϵ+

√
dE[L

1
2

S (A(S))]√
n

)
.

1the measure is slightly different here: they consider the gradient norm
while we consider the gradient norm square.
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Algorithm 2 Stochastic Variance Reduced Optimization

Input: step size η, initialization w̃0, {ms}
3 for s = 1, 2, . . . do
4 set w0 = w̃s−1

draw a batch Ĩs ⊆ [n]
compute v0 = ∇fĨs(w0)
update w1 = w0 − ηv0

for t = 1, . . . ,ms − 1 do
5 draw a batch It ⊆ [n]

compute vt by either (26) or (27)
update wt+1 = wt − ηvt

6 set w̃s as wis , where is is drawn according to a distribution
on [ms]

7 choose the output from {w̃s} according to some strategy

Theorem 16. Let Assumptions 1, 2 and 3 hold. Let A be
either the SARAH in [3] or the Spider in [9]. We can take
Õ
(
min

{
σ3/ϵ3, n +

√
nL/ϵ2

})
stochastic gradient evalua-

tions to get a model A(S) with

E[∥∇F (A(S))∥2] = Õ
(
ϵ+

√
dE[L

1
2

S (A(S))]√
n

)
.

Remark 11. We now consider the iteration complexity of
these algorithms to achieve E[∥∇F (A(S))∥2] = Õ(

√
d/n).

For simplicity, we assume E[L
1
2

S (A(S))] ≲ 1. Taking
ϵ = O(

√
d/n), Theorem 15 shows SVRG requires O(n +

Ln
2
3 /ϵ2) = O(n + Ln

5
3 /d) stochastic gradient evaluations.

By comparison, Theorem 16 shows SARAH/Spider requires

Õ
(
min

{σ3

ϵ3
, n+

√
nL

ϵ2

})
= Õ

(
min

{n
3
2σ3

d
3
2

, n+n
3
2L/d

})
stochastic gradient evaluations, which are less than that of
SVRG. Furthermore, Theorem 7 shows that SGD requires
O(n2/(L2d2)) stochastic gradient evaluations to achieve
E[∥∇F (A(S))∥2] = Õ(

√
d/n), which is also larger than that

of SARAH/Spider. It should be mentioned that for SGD we
derive population gradient bounds with high probability, while
for stochastic variance reduced optimization we derive bounds
in expectation. Other than SARAH/Spider, a stochastic nested
variance-reduced gradient descent (SNVRG) was developed
for nonconvex optimization, which uses K+1 nested reference
points to build semi-stochastic gradients for further variance
reduction [10]. This algorithm also achieves the computational
complexity of order Õ

(
min

{
σ3/ϵ3, n+

√
nL/ϵ2

})
to achieve

the accuracy ϵ. Therefore, our analysis also implies similar
generalization bounds for SNVRG.

VI. PROOF ON STOCHASTIC GRADIENT DESCENT

In this section, we present the theoretical analysis of SGD.
We first consider general nonconvex problems in Section VI-A
and gradient-dominated problems in Section VI-B. Finally, we
consider SGD under a privacy constraint in Section VI-C.

A. Proof of Theorem 7

Below we present the proof of Theorem 7. By the elemen-
tary inequality (a+ b)2 ≤ 2(a2 + b2), we know

T∑
t=1

ηt∥∇F (wt)∥22=
T∑

t=1

ηt∥∇F (wt)−∇FS(wt)+∇FS(wt)∥22

≤ 2

T∑
t=1

ηt∥∇F (wt)−∇FS(wt)∥22+2

T∑
t=1

ηt∥∇FS(wt)∥22.

(28)

Proof of Theorem 7. It was shown in [18] that with probabil-
ity at least 1− δ/3

∥wt∥22 = Õ
(
(σ2 +G2

0)L
√
T log(1/δ)

)
, ∀t ∈ [T ]. (29)

Then, the L-smoothness of f implies

∥∇f(wt; z)∥2 = Õ((σ +G0)L
3
2T

1
4 log

1
2 (1/δ)) := G̃. (30)

Then, we can apply Theorem 1 with G = G̃ to derive
the following inequality with probability at least 1 − 2δ/3
simultaneously for all t ∈ [T ]

∥∥∇F (wt)−∇FS(wt)
∥∥
2
= Õ

(√dLS(wt)√
n

+

(σ +G0)L
3
2T

1
4 (d+ log 1/δ) log

1
2 (1/δ)

n

)
.

The following optimization error bound was shown in [18]
with probability at least 1− δ/3

1∑T
t=1 ηt

T∑
t=1

ηt∥∇FS(wt)∥22 = Õ
(L(σ2 +G2

0) log(1/δ)√
T

)
.

(31)
We combine the above two inequalities and Eq. (28) together,
and derive

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22 = Õ
(L(σ2 +G2

0) log(1/δ)√
T

+

d

n
∑T

t=1 ηt

T∑
t=1

ηtLS(wt)+
(σ2 +G2

0)L
3
√
Td2 log3(1/δ)

n2

)
.

(32)

By Assumption 2, we know

LS(wt) = Eit [∥∇f(wt; zit)−∇FS(wt)∥22] + ∥∇FS(wt)∥22
≤ σ2 + ∥∇FS(wt)∥22.

It then follows from Eq. (31) that

1∑T
t=1 ηt

T∑
t=1

ηtLS(wt) ≤ σ2 +
1∑T

t=1 ηt

T∑
t=1

ηt∥∇FS(wt)∥22

= Õ
(
σ2 + L(σ2+G2

0) log(1/δ)/
√
T
)
= Õ

(
σ2 log(1/δ)

)
.

We plug the above inequality back into Eq. (32) and get the
stated bound. The proof is completed.

Proof of Theorem 8. By the structure, we know that f is
L = (LℓB

2
ϕ)-smooth. By Eq. (29) and Theorem 3 with
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R = Õ
(
(σ2 + G2

0)
1
2

√
LℓBϕT

1
4 log

1
2 (1/δ)

)
, we derive the

following inequality with probability 1−2δ/3 simultaneously
for all t ∈ [T ]∥∥∥∇F (wt)−∇FS(wt)

∥∥∥
2
= Õ

(LℓB
2
ϕR log(1/δ)

n

+BϕLℓ

( 1

n
min
h∈N+

(
1 + r̃(wt)h+R2

∞∑
j=h+1

λj

)) 1
2
)
.

We combine it with Eq. (31) and derive

1∑T
t=1 ηt

T∑
t=1

ηt∥∇F (wt)∥22

= Õ
(LℓB

2
ϕ(σ

2 +G2
0) log(1/δ)√

T
+

L2
ℓB

4
ϕR

2 log2(1/δ)

n2
+

B2
ϕL

2
ℓ

n
∑T

t=1 ηt

T∑
t=1

ηt min
h∈N+

(
1 + r̃(wt)h+R2

∞∑
j=h+1

λj

))
.

The proof is completed.

B. Proof of Theorem 10
In this section, we prove Theorem 10 on excess population

risk bounds for SGD under the PL condition.

Proof of Theorem 10. According to the update (1), we know

∥wt∥2 ≤ G

T∑
k=1

ηk = G

T∑
k=1

2

µ(k + 1)
:= RT . (33)

According to Assumption 1, we know

F (wt+1) ≤ F (wt) + ⟨wt+1−wt,∇F (wt)⟩+
L

2
∥wt+1−wt∥22

= F (wt)− ηt⟨∇f(wt; zit),∇F (wt)⟩+
Lη2t ∥∇f(wt; zit)∥22

2
.

According to Assumption 3, we further get

F (wt+1) ≤ F (wt)−ηt⟨∇f(wt; zit)−∇FS(wt),∇F (wt)⟩

−ηt⟨∇FS(wt)−∇F (wt),∇F (wt)⟩−ηt∥∇F (wt)∥22+
Lη2tG

2

2
.

By the Schwarz’s inequality, we further get

F (wt+1) ≤ F (wt)− ηt⟨∇f(wt; zit)−∇FS(wt),∇F (wt)⟩

+
ηt
2
∥∇FS(wt)−∇F (wt)∥22 +

ηt
2
∥∇F (wt)∥22

− ηt∥∇F (wt)∥22 +
Lη2tG

2

2
.

It then follows from Assumption 6 that

F (wt+1) ≤ F (wt)−ηt⟨∇f(wt; zit)−∇FS(wt),∇F (wt)⟩+
ηt
2
∥∇FS(wt)−∇F (wt)∥22−µηt

(
F (wt)−F (w∗)

)
+
Lη2tG

2

2
.

Denote △t := F (wt)− F (w∗). The above inequality can be
reformulated as (1− µηt = 1− 2/(t+ 1))

△t+1 ≤
(
1− 2

t+ 1

)
△t−

2⟨∇f(wt; zit)−∇FS(wt),∇F (wt)⟩
µ(t+ 1)

+
1

µ(t+ 1)
∥∇FS(wt)−∇F (wt)∥22 +

2LG2

µ2(t+ 1)2
.

We multiply both sides by t(t+ 1) and get

t(t+1)△t+1≤(t−1)t△t−
2t⟨∇f(wt; zit)−∇FS(wt),∇F (wt)⟩

µ

+
t

µ
∥∇FS(wt)−∇F (wt)∥22 +

2LG2

µ2
.

Taking a summation of this inequality from t = 1 to T shows

T (T+1)△T+1 ≤
T∑

t=1

2t

µ
⟨∇FS(wt)−∇f(wt; zit),∇F (wt)⟩

+

T∑
t=1

t

µ
∥∇F (wt)−∇FS(wt)∥22 +

2LG2T

µ2
. (34)

Introduce the following martingale difference sequences

ξt :=
t

µ
⟨∇FS(wt)−∇f(wt; zit),∇F (wt)⟩, ∀t ∈ [T ].

According to Assumption 3, we know |ξt| ≤ 2G2t
µ and

therefore one can apply Lemma D.1 to derive the following
inequality with probability at least 1− δ/2

T∑
t=1

ξt ≤
2G2

µ

(
2

T∑
t=1

t2 log(2/δ)
) 1

2

≲
G2T

3
2 log1/2(1/δ)

µ
.

According to Eq. (3), we have the following inequality with
probability at least 1− δ/2

T∑
t=1

t∥∇F (w)−∇FS(w)∥22 = Õ
(T 2L̃T (d+ log(1/δ))

n

)
.

We plug the above two inequalities back into Eq. (34) and
derive the following inequality with probability at least 1− δ

T (T + 1)△T+1 = O
(G2T

3
2 log1/2(1/δ)

µ

)
+

Õ
(T 2L̃T (d+ log(1/δ))

nµ

)
+

2LG2T

µ2
.

This gives the stated bound.

C. Proofs on Differentially Private SGD

In this section, we present the proof on utility guarantees
of Algorithm 1. To this aim, we first introduce the following
lemma on the concentration behavior of elementary random
variables [59]. Let χ2(n) denote the chi-square distribution
with the degree of freedom being n.

Lemma 17 ([59]). Let X ∼ χ2(n). Then

P
{
X ≥ n+ 2

√
nt+ 2t

}
≤ exp(−t).

Proof of Theorem 12. According to Assumption 2 and the
i.i.d. property of it,j , we know

EBt

∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2
≤ σ2

m
. (35)
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By the L-smoothness of FS we know

FS(wt+1)≤FS(wt)+⟨wt+1−wt,∇FS(wt)⟩+
L

2
∥wt+1−wt∥22

= FS(wt)− η
〈 1

m

m∑
j=1

∇f(wt; zit,j ) +Gt,∇FS(wt)
〉

+
Lη2

2

∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j ) +Gt

∥∥∥2
2
.

By the standard inequality ∥a+b∥22 ≤ 2∥a∥22+2∥b∥22 we know∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j ) +Gt

∥∥∥2
2

≤ 2
∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2
+2∥∇FS(wt)+Gt∥22

≤2
∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2
+4∥∇FS(wt)∥22+4∥Gt∥22.

We combine the above two inequalities together and derive

FS(wt+1)

≤FS(wt)−η
〈 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt),∇FS(wt)
〉

− η⟨Gt,∇FS(wt)⟩−η∥∇FS(wt)∥22+Lη2
∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )

−∇FS(wt)
∥∥∥2
2
+ 2Lη2∥∇FS(wt)∥22 + 2Lη2∥Gt∥22. (36)

For any t ∈ [T ], we define

ξt =
〈
∇FS(wt)−

1

m

m∑
j=1

∇f(wt; zit,j ),∇FS(wt)
〉
,

ξ′t =
∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2

− EBt

∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2
.

It is clear that {ξt}, {ξ′t} are two martingale difference se-
quences. Taking a summation of Eq. (36) from t = 1 to t = T
and using Eq. (35), we get

FS(wT+1)≤FS(w1)+η

T∑
t=1

ξt−η

T∑
t=1

⟨Gt,∇FS(wt)⟩+Lη2
T∑

t=1

ξ′t

+
σ2Lη2T

m
+ (2Lη2 − η)

T∑
t=1

∥∇FS(wt)∥22 + 2Lη2
T∑

t=1

∥Gt∥22.

(37)

According to Assumption 3, we know

ξt − EBt
ξt = ξt ≤ 2G2 and |ξ′t − EBt

ξ′t| ≤ 4G2.

It then follows from the Schwarz’s inequality and Eq. (35) that

EBt
[(ξt − EBt

ξt)
2] = EBt

[ξ2t ] ≤ ∥∇FS(wt)∥22×

EBt

∥∥∥ 1

m

m∑
j=1

∇f(wt; zit,j )−∇FS(wt)
∥∥∥2
2
≤ σ2∥∇FS(wt)∥22

m
.

(38)

By Part (a) of Lemma D.1 we get the following inequality
with probability at least 1− δ/4

T∑
t=1

ξ′t ≤ 4G2
(
2T log(4/δ)

) 1
2

. (39)

According to Part (b) of Lemma D.1 and Eq. (38), we get the
following inequality with probability at least 1− δ/4

T∑
t=1

ξt ≤
ρσ2

∑T
t=1 ∥∇FS(wt)∥22
2G2m

+
2G2 log(4/δ)

ρ
.

Choosing ρ = min{G2m/(3σ2), 1} implies the following
inequality with probability at least 1− δ/4

T∑
t=1

ξt ≤
1

6

T∑
t=1

∥∇FS(wt)∥22 + 2G2 log
4

δ
max

{
1,

3σ2

G2m

}
.

(40)
Let ξ̃t = −⟨Gt,∇FS(wt)⟩. Then, it is clear that ξ̃t (condi-
tioned on ∇FS(wt)) is a Gaussian random variable with mean
0 and variance σ2

T ∥∇FS(wt)∥22. Therefore, we have

logEGt exp(ρξ̃t) ≤
ρ2σ2

T ∥∇FS(wt)∥22
2

.

We then apply Lemma D.1 (Part (c)) to derive the following
inequality with probability at least 1− δ/4

−
T∑

t=1

⟨Gt,∇FS(wt)⟩ ≤
ρσ2

T

2

T∑
t=1

∥∇FS(wt)∥22 +
log(4/δ)

ρ
.

Taking ρ = 1/(3σ2
T ) gives the following inequality

−η
T∑

t=1

⟨Gt,∇FS(wt)⟩ ≤
η

6

T∑
t=1

∥∇FS(wt)∥22+3σ2
T η log(4/δ).

(41)
We know that

∑T
t=1 ∥Gt∥22/σ2

T ∼ χ2(Td), where χ2(Td)
means the chi-square distribution with the degree of freedom
Td. By Lemma 17, with probability at least 1− δ/4 we have

T∑
t=1

∥Gt∥22/σ2
T ≤ Td+ 2

√
Td log(4/δ) + 2 log(4/δ). (42)

We plug Eq. (39), (40), (41), (42) back into Eq. (37), and
derive the following inequality with probability at least 1− δ

FS(wT+1) ≤ FS(w1) + 2ηG2 log(4/δ)max{1, 3σ2/(G2m)}

+ 3ησ2
T log(4/δ)) + 4G2Lη2

(
2 log(4/δ)T

) 1
2

+
σ2Lη2T

m
+ (η/6 + η/6 + 2Lη2 − η)

T∑
t=1

∥∇FS(wt)∥22

+ 2Lη2σ2
T

(
Td+ 2

√
Td log(4/δ) + 2 log(4/δ)

)
.
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Since η ≤ 1/(12L), we further get the following inequality
with probability at least 1− δ

η

2

T∑
t=1

∥∇FS(wt)∥22 ≤ FS(w1) + 4G2Lη2
(
2 log(4/δ)T

) 1
2

+2ηG2 log(4/δ)max{1, 3σ2/(G2m)}+3ησ2
T log(4/δ))

+
σ2Lη2T

m
+ 2Lη2σ2

T

(
Td+ 2

√
Td log(1/δ) + 2 log(1/δ)

)
.

The proof is completed.

Proof of Theorem 13. According to Eq. (22), we know

wt+1 = − η

m

t∑
k=1

m∑
j=1

∇f(wk; zik,j
)− η

t∑
k=1

Gk.

It is clear that
∑t

k=1 Gk follows the Gaussian distribution
N(0, tσ2

T Id) and therefore

∥wt+1∥2 ≤ η

m

t∑
k=1

m∑
j=1

∥∇f(wk; zik,j
)∥2 + η∥N(0, tσ2

T Id)∥2

≤ ηtG+ η∥N(0, tσ2
T Id)∥2.

Let X ∼ N(0, tσ2
T Id). Then ∥X∥2/σ2

T ∼ χ2(td). According
to Lemma 17, we know

P{∥X∥2 ≥ σT (
√
td+

√
2a)}

≤ P{∥X∥22 ≥ σ2
T (td+ 2

√
tda+ 2a)} ≤ exp(−a).

That is, with probability at least 1− δ/(2T ) we have

∥N(0, tσ2
T Id)∥2 ≤ σT

(√
td+

√
2 log(2T/δ)

)
.

By the union bounds of probability, we know with probability
at least 1− δ/2 the following inequality holds for all t ∈ [T ]

∥wt+1∥2 ≤ ηTG+ησT

(√
Td+

√
2 log(2T/δ)

)
:= RT . (43)

According to Eq. (3), we get the following inequality with
probability at least 1− δ/4

η

T∑
t=1

∥∇F (wt)−∇FS(wt)∥22 = Õ
(η(d+log(1/δ))

n

T∑
t=1

LS(wt)
)
.

(44)
By Theorem 12, the following inequality holds with probabil-
ity at least 1− δ/4

η

T∑
t=1

∥∇FS(wt)∥22 = O
(
1 + η log(1/δ)(G2 + σ2

T )+

G2Lη2
(
T log(1/δ)

) 1
2 +

σ2Lη2T

m
+ Lη2σ2

TTd
)
. (45)

Let A be the event that Eq. (43), (44), (45) hold. Then we
know P{A} ≥ 1− δ, under which we use Eq. (28) and derive

η

T∑
t=1

∥∇F (wt)∥22

= Õ
(η(d+log(1/δ))

n

T∑
t=1

LS(wt)+1+η log(1/δ)(G2+σ2
T )

+G2Lη2
(
T log(1/δ)

) 1
2 +

σ2Lη2T

m
+ Lη2σ2

TTd
)
.

The proof is completed.

Proof of Corollary 14. According to Theorem 12, the follow-
ing inequality holds with probability at least 1− δ

1

T

T∑
t=1

∥∇FS(wt)∥22 ≲
1

Tη
+

log(1/δ)(G2+σ2
T )

T

+
G2Lη log

1
2 (1/δ)√

T
+

σ2Lη

m
+ Lησ2

T d.

Since m ≲
√
Tσ2/G2 and η = min

{ √
m

σ
√
LT

, 1√
TLdσT

}
, we

further get

1

T

T∑
t=1

∥∇FS(wt)∥22

≲
1

Tη
+

log(1/δ)(G2+σ2
T )

T
+

σ2Lη log
1
2 (1/δ)

m
+ Lησ2

T d

≲
G2 log(1/δ)

n2ϵ2
+

σ
√
L log

1
2 (1/δ)√

Tm
+

√
LdσT√
T

≲
G2 log(1/δ)

n2ϵ2
+

σ
√
L log

1
2 (1/δ)√

Tm
+

G
√

Ld log(1/δ)

nϵ
.

Since T ≥ n2ϵ2σ2

mdG2 , we know σ
√
L√

Tm
≤ G

√
Ld

nϵ and therefore
we get the stated bound Eq. (24). We now prove Eq. (25).
According to Theorem 13 and the above deductions, the
following inequality holds with probability at least 1− δ

1

T

T∑
t=1

∥∇F (wt)∥22 = Õ
( (d+ log(1/δ))

n

1

T

T∑
t=1

LS(wt)+

G2 log(1/δ)

n2ϵ2
+

G
√

Ld log(1/δ)

nϵ

)
.

The proof is completed.

VII. CONCLUSIONS

We study the generalization of stochastic optimization algo-
rithms for nonconvex problems via the uniform convergence
of gradients. Our uniform convergence rate incorporates the
2nd moment of the stochastic gradients of a particular model,
and is significantly better than the existing rates. We develop
high-probability bounds of the order Õ(d/n) for SGD with
nonconvex problems, which significantly improves the existing
bounds [18, 19]. We further remove the dependency on d for
problems with a structure. We show that improved bounds are
possible under further assumptions such as quasi-convexity or
PL condition. Finally, we extend our discussions to variance-
reduced variants and SGD under privacy constraints. Our
results show a linear speed up w.r.t. the batch size by exploiting
the smoothness assumption.

There remain several questions worthy of further discussion.
For example, our discussion requires a smoothness assump-
tion. It would be interesting to extend our analysis to relaxed
smoothness assumptions such as quasi-smoothness [60] and
Hölder continuity of gradients [26].



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

ACKNOWLEDGEMENTS

We are grateful to the editor and referees for the constructive
comments, which are very helpful for us to improve the
paper. The work is partially supported by the Research Grants
Council of Hong Kong [Project No. 22303723, 17302624].

REFERENCES

[1] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Review, vol. 60, no. 2,
pp. 223–311, 2018.

[2] R. Johnson and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” in Advances in
Neural Information Processing Systems, 2013, pp. 315–323.

[3] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH:
A novel method for machine learning problems using stochastic
recursive gradient,” in International Conference on Machine
Learning. JMLR. org, 2017, pp. 2613–2621.

[4] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums
with the stochastic average gradient,” Mathematical Program-
ming, vol. 162, no. 1-2, pp. 83–112, 2017.

[5] T. Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms,” in International Con-
ference on Machine Learning, 2004, pp. 919–926.

[6] W. Zhang, L. Zhang, Z. Jin, R. Jin, D. Cai, X. Li, R. Liang,
and X. He, “Sparse learning with stochastic composite opti-
mization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 6, pp. 1223–1236, 2017.

[7] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order
methods for nonconvex stochastic programming,” SIAM Journal
on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[8] S. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochas-
tic variance reduction for nonconvex optimization,” in Interna-
tional Conference on Machine Learning, 2016, pp. 314–323.

[9] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal
non-convex optimization via stochastic path-integrated differen-
tial estimator,” in Advances in Neural Information Processing
Systems, 2018, pp. 689–699.

[10] D. Zhou, P. Xu, and Q. Gu, “Stochastic nested variance reduc-
tion for nonconvex optimization,” Journal of Machine Learning
Research, vol. 21, no. 103, pp. 1–63, 2020.

[11] K. Huang, X. Li, and S. Pu, “Distributed stochastic optimization
under a general variance condition,” IEEE Transactions on
Automatic Control, 2024.

[12] S. Shalev-Shwartz and S. Ben-David, Understanding machine
learning: From theory to algorithms. Cambridge university
press, 2014.

[13] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize
better: Stability of stochastic gradient descent,” in International
Conference on Machine Learning, 2016, pp. 1225–1234.

[14] O. Bousquet and A. Elisseeff, “Stability and generalization,”
Journal of Machine Learning Research, vol. 2, no. Mar, pp.
499–526, 2002.

[15] P. Bartlett and S. Mendelson, “Rademacher and gaussian com-
plexities: Risk bounds and structural results,” Journal of Ma-
chine Learning Research, vol. 3, pp. 463–482, 2002.

[16] S. Mei, Y. Bai, and A. Montanari, “The landscape of empirical
risk for nonconvex losses,” The Annals of Statistics, vol. 46,
no. 6A, pp. 2747–2774, 2018.

[17] Y. Zhang, T. Liu, M. Long, and M. Jordan, “Bridging theory and
algorithm for domain adaptation,” in International Conference
on Machine Learning. PMLR, 2019, pp. 7404–7413.

[18] Y. Lei and K. Tang, “Learning rates for stochastic gradient
descent with nonconvex objectives,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 12, pp.
4505–4511, 2021.

[19] S. Li and Y. Liu, “High probability guarantees for nonconvex
stochastic gradient descent with heavy tails,” in International
Conference on Machine Learning. PMLR, 2022, pp. 12 931–
12 963.

[20] Z. Charles and D. Papailiopoulos, “Stability and generalization
of learning algorithms that converge to global optima,” in
International Conference on Machine Learning, 2018, pp. 744–
753.

[21] R. Bassily, V. Feldman, K. Talwar, and A. G. Thakurta, “Private
stochastic convex optimization with optimal rates,” in Advances
in Neural Information Processing Systems, 2019, pp. 11 279–
11 288.

[22] J. Li, X. Luo, and M. Qiao, “On generalization error bounds
of noisy gradient methods for non-convex learning,” in Inter-
national Conference on Learning Representations, 2020.

[23] W. Mou, L. Wang, X. Zhai, and K. Zheng, “Generalization
bounds of sgld for non-convex learning: Two theoretical view-
points,” in Conference on Learning Theory, 2018, pp. 605–638.

[24] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan,
“Learnability, stability and uniform convergence,” Journal of
Machine Learning Research, vol. 11, no. Oct, pp. 2635–2670,
2010.

[25] I. Kuzborskij and C. Lampert, “Data-dependent stability of
stochastic gradient descent,” in International Conference on
Machine Learning, 2018, pp. 2820–2829.

[26] Y. Lei and Y. Ying, “Fine-grained analysis of stability and
generalization for stochastic gradient descent,” in International
Conference on Machine Learning, 2020, pp. 5809–5819.

[27] R. Bassily, V. Feldman, C. Guzmán, and K. Talwar, “Stability
of stochastic gradient descent on nonsmooth convex losses,”
Advances in Neural Information Processing Systems, vol. 33,
2020.

[28] D. Richards and I. Kuzborskij, “Stability & generalisation of
gradient descent for shallow neural networks without the neural
tangent kernel,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[29] Y. Lei, “Stability and generalization of stochastic optimization
with nonconvex and nonsmooth problems,” in Annual Confer-
ence on Learning Theory, 2023.

[30] J. Lin, L. Rosasco, and D.-X. Zhou, “Iterative regularization
for learning with convex loss functions,” Journal of Machine
Learning Research, vol. 17, no. 77, pp. 1–38, 2016.

[31] Y. Lei, T. Hu, and K. Tang, “Generalization performance of
multi-pass stochastic gradient descent with convex loss func-
tions,” Journal of Machine Learning Research, vol. 22, pp. 1–
41, 2021.

[32] D. J. Foster, A. Sekhari, and K. Sridharan, “Uniform conver-
gence of gradients for non-convex learning and optimization,”
in Advances in Neural Information Processing Systems, 2018,
pp. 8759–8770.

[33] S. Zhang, Y. Hu, L. Zhang, and N. He, “Generalization bounds
of nonconvex-(strongly)-concave stochastic minimax optimiza-
tion,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2024, pp. 694–702.

[34] Y. Xu and A. Zeevi, “Towards optimal problem dependent
generalization error bounds in statistical learning theory,” Math-
ematics of Operations Research, 2024.

[35] F. Orabona, “A modern introduction to online learning,” arXiv
preprint arXiv:1912.13213, 2019.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[36] D. Davis and D. Drusvyatskiy, “Graphical convergence of sub-
gradients in nonconvex optimization and learning,” Mathematics
of Operations Research, vol. 47, no. 1, pp. 209–231, 2022.

[37] S. Li and Y. Liu, “Learning rates for nonconvex pairwise
learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 8, pp. 9996–10 011, 2023.

[38] D. Wang and J. Xu, “Differentially private empirical risk
minimization with smooth non-convex loss functions: A non-
stationary view,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 1182–1189.

[39] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari, “Com-
posite objective mirror descent,” in Conference on Learning
Theory, 2010, pp. 14–26.

[40] N. J. Harvey, C. Liaw, and S. Randhawa, “Simple and optimal
high-probability bounds for strongly-convex stochastic gradient
descent,” arXiv preprint arXiv:1909.00843, 2019.

[41] O. Shamir and T. Zhang, “Stochastic gradient descent for non-
smooth optimization convergence results and optimal averaging
schemes,” in International Conference on Machine Learning,
2013, pp. 71–79.

[42] L. Wang, B. Jayaraman, D. Evans, and Q. Gu, “Efficient
privacy-preserving stochastic nonconvex optimization,” in Un-
certainty in Artificial Intelligence. PMLR, 2023, pp. 2203–
2213.

[43] N. Srebro, K. Sridharan, and A. Tewari, “Smoothness, low noise
and fast rates,” in Advances in Neural Information Processing
Systems, 2010, pp. 2199–2207.

[44] L. Zhang, T. Yang, and R. Jin, “Empirical risk minimization
for stochastic convex optimization: O(1/n)-and O(1/n2)-type
of risk bounds,” in Conference on Learning Theory, 2017, pp.
1954–1979.

[45] P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou, “Adaptivity and
non-stationarity: Problem-dependent dynamic regret for online
convex optimization,” Journal of Machine Learning Research,
vol. 25, no. 98, pp. 1–52, 2024.

[46] V. Feldman, “Generalization of erm in stochastic convex opti-
mization: The dimension strikes back,” in Advances in Neural
Information Processing Systems, 2016, pp. 3576–3584.

[47] P. Bartlett, O. Bousquet, and S. Mendelson, “Local Rademacher
complexities,” Annals of Statistics, vol. 33, no. 4, pp. 1497–
1537, 2005.

[48] I. Steinwart, D. R. Hush, C. Scovel et al., “Optimal rates for
regularized least squares regression.” in Conference on Learning
Theory, 2009, pp. 79–93.

[49] S. Mendelson and J. Neeman, “Regularization in kernel learn-
ing,” Annals of Statistics, vol. 38, no. 1, pp. 526–565, 2010.

[50] F. Bach, “Sharp analysis of low-rank kernel matrix approxima-
tions,” in Conference on Learning Theory, 2013, pp. 185–209.

[51] R. Gower, O. Sebbouh, and N. Loizou, “Sgd for structured
nonconvex functions: Learning rates, minibatching and inter-
polation,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2021, pp. 1315–1323.

[52] Y. Nesterov and B. T. Polyak, “Cubic regularization of newton
method and its global performance,” Mathematical Program-
ming, vol. 108, no. 1, pp. 177–205, 2006.

[53] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence
of gradient and proximal-gradient methods under the polyak-
łojasiewicz condition,” in European Conference on Machine
Learning, 2016, pp. 795–811.

[54] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh, “Spider-
boost and momentum: Faster variance reduction algorithms,” in
Advances in Neural Information Processing Systems, 2019, pp.
2403–2413.

[55] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural
networks with relu activation,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 597–607.

[56] C. Dwork, “Differential privacy: A survey of results,” in Inter-
national conference on theory and applications of models of
computation. Springer, 2008, pp. 1–19.

[57] J. Zhang, K. Zheng, W. Mou, and L. Wang, “Efficient private
ERM for smooth objectives,” in International Joint Conference
on Artificial Intelligence, 2017, pp. 3922–3928.

[58] Y. Zhou, X. Chen, M. Hong, Z. S. Wu, and A. Baner-
jee, “Private stochastic non-convex optimization: Adaptive al-
gorithms and tighter generalization bounds,” arXiv preprint
arXiv:2006.13501, 2020.

[59] B. Laurent and P. Massart, “Adaptive estimation of a quadratic
functional by model selection,” Annals of Statistics, pp. 1302–
1338, 2000.

[60] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clip-
ping accelerates training: A theoretical justification for adaptiv-
ity,” in International Conference on Learning Representations,
2019.

Yunwen Lei received the Ph.D. degree from the
Wuhan University, Wuhan, China, in 2014. He is
currently an Assistant Professor at the Department
of Mathematics, The University of Hong Kong. His
research interests include machine learning, learning
theory and stochastic optimization. He has pub-
lished papers in prestigious journals and confer-
ence proceedings, including IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE
Transactions on Information Theory, Journal of Ma-
chine Learning Research, COLT, ICLR, ICML and

NeurIPS. He is an associate editor for Machine Learning, Transactions on
Machine Learning Research, IEEE Transactions on Neural Networks and
Learning Systems, and an area chair for NeurIPS, ICLR and AISTATS.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Supplemental Material for “Towards Better
Generalization Bounds of Stochastic Optimization

for Nonconvex Learning”
Yunwen Lei

Abstract

In the Supplemental Material, we prove some theoretical results stated in the main text. The Supplemental Material consists
of six parts: the proofs on the upper bounds of uniform convergence, the proofs on dimension-free bounds, the proofs on the
lower bounds of the uniform convergence, the proofs of SGD for quasi-weak convex problems, the proofs for stochastic variance
reduced optimization, and the proofs of a concentration inequality for an empirical process.

A. PROOF ON UPPER BOUNDS OF UNIFORM CONVERGENCE

A. Definitions and Classical Lemmas

The uniform convergence depends on the complexity of functions. Two classical complexity measures of function classes
are Rademacher complexities and covering numbers.

Definition 1 (Rademacher complexity). Let F = {f : Z 7→ R} be a function class. Let ϵ1, . . . , ϵn be independent Rademacher
variables with P{ϵi = 1} = P{ϵi = −1} = 1/2. We define the empirical Rademacher complexity as follows

RS(F) =
1

n
Eϵ sup

f∈F

n∑
i=1

ϵif(zi).

Definition 2 (Covering number). Let (G, d) be a metric space and set F ⊆ G. For any ϵ > 0, a set F△ ⊂ F is called an
ϵ-cover of F if for every f ∈ F we can find an element g ∈ F△ satisfying d(f, g) ≤ ϵ. The covering number N (ϵ,F , d) is
the cardinality of the minimal ϵ-cover of F :

N (ϵ,F , d) := min
{
|F△| : F△ is an ϵ-cover of F

}
.

Dudley’s entropy integral provides a connection between these two complexity measures. We consider the refined entropy
integral in Srebro et al. (2010).

Lemma A.1 (Dudley’s entropy integral). Let F = {f : Z 7→ R} be a function class with supf∈F dS(f, 0) ≤ D and
S = {z1, . . . , zn}, where dS is a pseudometric on F defined as follows

dS(f, g) :=
( 1

n

n∑
i=1

(f(zi)− g(zi))2
) 1

2

.

Then, there holds

RS(F) ≤ inf
α≥0

{
4α+ 12

∫ D

α

√
logN (r,F , dS)

n
dr

}
.

The following classical result gives estimates on the covering numbers of a Euclidean ball.

Lemma A.2 (Pisier 1999). Define the metric d2(w,w′) := ∥w −w′∥2 over ball BR. Then logN (r,BR, d2) ≤ d log(3R/r).

The following lemma gives a Bernstein inequality for random variables taking values in a Hilbert space.

Lemma A.3 (Smale and Zhou 2007). Let H be a Hilbert space with the norm ∥ · ∥ and let ξ be a random variables with
values in H . Assume ∥ξ∥ ≤ M̃ <∞ almost surely. Denote σ2(ξ) = E[∥ξ∥2]. Let {ξi}ni=1 be n independent draws of ξ. Then,
for any δ ∈ (0, 1), with probability at least 1− δ we have∥∥∥ 1

n

n∑
i=1

(ξi − E[ξi])
∥∥∥ ≤ 2M̃ log(2/δ)

n
+

(2σ2(ξ) log(2/δ)

n

) 1
2

.

The following lemma gives the self-bounding property of a smooth and nonnegative function.

0000–0000/00$00.00 © 2021 IEEE
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Lemma A.4 (Srebro et al. 2010). If for all z, the function w 7→ f(w; z) is nonnegative and L-smooth, then ∥∇f(w; z)∥22 ≤
2Lf(w; z).

Our analysis requires to estimate some integrals, and the following two lemmas are useful.

Lemma A.5. Let a > 0. Then ∫ ∞

a

exp(−x2)dx ≤
√
π exp(−a2)

2
.

Proof. A standard result about Gaussian integral shows that∫ a

0

exp(−x2)dx ≥
√
π

2

(
1− exp(−a2)

) 1
2 .

It then follows from
∫∞
0

exp(−x2)dx =
√
π/2 that∫ ∞

a

exp(−x2)dx =

√
π

2
−
∫ a

0

exp(−x2)dx ≤
√
π

2

(
1−

(
1− exp(−a2)

) 1
2

)
=

√
π

2

1−
(
1− exp(−a2)

)
1 +

(
1− exp(−a2)

) 1
2

≤
√
π exp(−a2)

2
.

The proof is completed.

Lemma A.6. Let a, b > 0. Then ∫ b

0

log
1
2 (a/ϵ)dϵ ≤ b log

1
2 (a/b) + 2−1b

√
π.

Proof. Let x = log
1
2 (a/ϵ), we know ϵ = a exp(−x2). It then follows from integrating by parts that∫ b

0

log
1
2 (a/ϵ)dϵ = a

∫ log
1
2 (a/b)

∞
xd exp(−x2) = ax · exp(−x2)

∣∣log 1
2 (a/b)

∞ − a
∫ log

1
2 (a/b)

∞
exp(−x2)dx

= a log
1
2 (a/b) exp(− log(a/b)) + a

∫ ∞

log
1
2 (a/b)

exp(−x2)dx ≤ b log
1
2 (a/b) +

a
√
π

2
exp(− log(a/b)),

where we have used Lemma A.5. The proof is completed.

B. Bounds on Square Norm of Gradients

In this subsection, we present results on relating LS(w) to L(w), which are defined as follows

LS(w) :=
1

n

n∑
i=1

∥∇f(w; zi)∥22, L(w) := Ez[∥∇f(w; z)∥22]. (A.1)

This connection is illustrated below.

Lemma A.7. Let Assumptions 1, 3 hold. For any x > 0, with probability at least 1 − 2 exp(−x) the following inequalities
hold simultaneously for any w ∈ BR

LS(w)− 2L(w) ≲
G2d log(LR/G)

n
+
G2(x+ log log n)

n
,

L(w)− 2LS(w) ≲
G2d log(LR/G)

n
+
G2(x+ log log n)

n
.

(A.2)

To prove Lemma A.7, we introduce the following lemma to be proved in Section F, which is a variant of Theorem 6.1
in Bousquet (2002).

Definition 3 (Sub-root function). We say ϕ : [0,∞) 7→ [0,∞] is a sub-root function if it is non-decreasing, not identically
zero and r 7→ ϕ(r)/

√
r is non-increasing. The fixed point of ϕ is the unique point r∗ such that ϕ(r∗) = r∗.

Lemma A.8. Let F be a class of functions that map Z to [0, b]. Let ϕn be a sub-root function such that

Eϵ

[
sup

f∈F : 1n
∑n

i=1 f(zi)≤r

1

n

n∑
i=1

ϵif(zi)
]
≤ ϕn(r),
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where ϵi are Rademacher variables. Define r∗n as the solution of the equation ϕn(r) = r, and denote r0 = b(x+6 log log n)/n.
Then for any x > 0, with probability at least 1− 2 exp(−x), the following inequalities hold simultaneously for all f ∈ F

1

n

n∑
i=1

f(zi) ≤ 2Ez[f(z)] + 108r∗n + 20r0 + 38
√
r0r∗n, (A.3)

Ez[f(z)] ≤
2

n

n∑
i=1

f(zi) + 106r∗n + 48r0. (A.4)

Proof of Lemma A.7. For any w, we introduce f̃w(z) := ∥∇f(w; z)∥22, and

F̃R =
{
z 7→ f̃w(z) : w ∈ BR

}
, F̃R,r =

{
z 7→ f̃w(z) : w ∈ BR, LS(w) ≤ r

}
.

We define a metric d̃S over F̃R by

d̃S(f̃w, f̃w′) =
( 1

n

n∑
i=1

(
∥∇f(w; zi)∥22 − ∥∇f(w′; zi)∥22

)2) 1
2

.

For any w,w′ ∈ W with LS(w) ≤ r, LS(w
′) ≤ r, we know

d̃2S(f̃w, f̃w′) =
1

n

n∑
i=1

(
∥∇f(w; zi)∥2 − ∥∇f(w′; zi)∥2

)2(∥∇f(w; zi)∥2 + ∥∇f(w′; zi)∥2
)2

≤ 2

n

n∑
i=1

∥∇f(w; zi)−∇f(w′; zi)∥22
(
∥∇f(w; zi)∥22 + ∥∇f(w′; zi)∥22

)
≤ 2L2∥w −w′∥22

n

n∑
i=1

(
∥∇f(w; zi)∥22 + ∥∇f(w′; zi)∥22

)
= 2L2∥w −w′∥22(LS(w) + LS(w

′)) ≤ 4L2∥w −w′∥22r,

where we have used (a+ b)2 ≤ 2a2 + 2b2. That is, d̃S(f̃w, f̃w′) ≤ 2Lr
1
2 ∥w −w′∥2. It then follows from Lemma A.2 that

logN
(
ϵ, F̃R,r, d̃S

)
≤ logN

(
ϵ/(2Lr

1
2 ), BR, d2

)
≤ d log

(
6LRr

1
2 ϵ−1

)
.

Note that for any w with LS(w) ≤ r, we have

d̃2S(f̃w, 0) =
1

n

n∑
i=1

∥∇f(w; zi)∥42 ≤
G2

n

n∑
i=1

∥∇f(w; zi)∥22 = G2LS(w) ≤ G2r.

It then follows from Lemma A.1 and Lemma A.6 that

RS(F̃R,r) ≤
12
√
d√
n

∫ G
√
r

0

log
1
2
(
6LRr

1
2 ϵ−1

)
dϵ ≤ 12

√
d√
n

(
G
√
r log

1
2 (6LR/G) + 2−1G

√
rπ

)
:= ϕn(r). (A.5)

It is clear that ϕn is a sub-root function and the fixed-point r∗n is

r∗n =
122G2d

n

(
log

1
2 (6LR/G) + 2−1

√
π
)2

≲
G2d log(LR/G)

n
.

The stated bounds then follow directly from Lemma A.8 with F = F̃R and b = G2. The proof is completed.

C. Proof of Theorem 1

Proof of Theorem 1. Let ϵ > 0 and {w1, . . . ,wm} be an ϵ-cover of BR under the metric d2(w,w′) = ∥w − w′∥2. Then,
Lemma A.2 shows that

logm ≤ d log(3R/ϵ). (A.6)

We now consider any j ∈ [n] and define ξi = ∇f(wj ; zi). Then, it is clear that ∥ξi∥2 ≤ G. Furthermore, by the definition of
L we know

Ezi [∥ξi∥22] = Ezi [∥∇f(wj ; zi)∥22] = L(wj).

We then apply Lemma A.3 and get the following inequality with probability at least 1− δ/m∥∥∇FS(wj)−∇F (wj)
∥∥
2
=

∥∥∥ 1
n

( n∑
i=1

ξi − Ezi [ξi]
)∥∥∥

2
≤ 2G log(2m/δ)

n
+

(2L(wj) log(2m/δ)

n

) 1
2

≤
2G

(
log(2/δ) + d log(3R/ϵ)

)
n

+
(2L(wj)

(
log(2/δ) + d log(3R/ϵ)

)
n

) 1
2

.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

By the union bounds of probability, with probability at least 1−δ the following inequality holds simultaneously for all j ∈ [m]∥∥∇FS(wj)−∇F (wj)
∥∥
2
≤

2G
(
log(2/δ) + d log(3R/ϵ)

)
n

+
(2L(wj)

(
log(2/δ) + d log(3R/ϵ)

)
n

) 1
2

. (A.7)

For any w ∈ BR, by the construction of {w1, . . . ,wm}, we know there exists an j ∈ [m] such that ∥w − wj∥2 ≤ ϵ and
therefore∥∥∇FS(w)−∇F (w)

∥∥
2
≤

∥∥∇FS(wj)−∇F (wj)
∥∥
2
+

∥∥(∇FS(wj)−∇F (wj)
)
−

(
∇FS(w)−∇F (w)

)∥∥
2

≤
∥∥∇FS(wj)−∇F (wj)

∥∥
2
+ ∥∇FS(wj)−∇FS(w)∥2 + ∥∇F (wj)−∇F (w)∥2

≤
∥∥∇FS(wj)−∇F (wj)

∥∥
2
+ 2L∥w −wj∥ ≤

∥∥∇FS(wj)−∇F (wj)
∥∥
2
+ 2Lϵ

≤
2G

(
log(2/δ) + d log(3R/ϵ)

)
n

+
(2L(wj)

(
log(2/δ) + d log(3R/ϵ)

)
n

) 1
2

+ 2Lϵ, (A.8)

where we have used Eq. (A.7) in the last step. By the standard inequality (a+ b)2 ≤ 2(a2 + b2), we know

L(wj) = Ez[∥∇f(wj ; z)∥22] ≤ 2Ez

[
∥∇f(wj ; z)−∇f(w; z)∥22

]
+ 2Ez[∥∇f(w; z)∥22]

≤ 2L2∥wj −w∥22 + 2L(w) ≤ 2L2ϵ2 + 2L(w).

By Lemma A.7, we further get the following inequality with probability at least 1− δ

L(wj) ≲ L2ϵ2 + LS(w) +
G2d log(LR/G)

n
+
G2(log 1/δ + log log n)

n
.

We plug the above inequality back into Eq. (A.8) and derive the following inequality with probability at least 1 − 2δ
simultaneously for all w ∈ BR (we use the assumption log log n ≲ d log(LR/G))∥∥∇FS(w)−∇F (w)

∥∥
2
≲
G
(
log(1/δ) + d log(R/ϵ)

)
n

+(
Lϵ+

√
LS(w) +

G
√
d log

1
2 (LR/G) +G log

1
2 (1/δ)√

n

)( log(1/δ) + d log(R/ϵ)

n

) 1
2

+ Lϵ.

We choose ϵ = 1/n and derive∥∥∇FS(w)−∇F (w)
∥∥
2
≲
G
(
log(1/δ) + d log(Rn)

)
n

+
L

n

+
(
L/n+

√
LS(w) +

G
√
d log

1
2 (LR/G) +G log

1
2 (1/δ)√

n

)( log(1/δ) + d log(Rn)

n

) 1
2

.

Since L ≲ Gd ≲ Gn, we know d log(LR/G) + log(1/δ) ≲ log(1/δ) + d log(Rn) and therefore get the stated bound. The
proof is completed.

Remark A.1. In the proof, we conduct the localization analysis to study the convergence of ∇f(w; z) to its expectation. In
the literature, some works considered the excess loss f(w; z)−f(w∗; z) or the excess gradient ∇f(w; z)−∇f(w∗; z) in their
localization analysis (Bartlett et al., 2005; Zhang et al., 2017). Their motivation is to use a Bernstein-type condition. Indeed,
the analysis in Bartlett et al. (2005) considers the following Bernstein condition

Ez[(f(w; z)− f(w∗; z))2] ≲ F (w)− F (w∗), (A.9)

while the analysis in Zhang et al. (2017) considers the Bernstein condition in Eq. (5). Typically, one requires a convexity
assumption to satisfy these Bernstein conditions. For example, the paper (Bartlett et al., 2006) introduces the modulus of
convexity to show Eq. (A.9), while the paper (Zhang et al., 2017) uses the convexity of w 7→ f(w; z) to show Eq. (5). As we
consider nonconvex problems, we do not have these Bernstein conditions. This explains why we conduct the analysis directly
on f instead of the excess gradient z 7→ ∇f(w; z)−∇f(w∗; z).

B. PROOF OF THEOREM 3
The following lemma is the Talagrand’s inequality to control the uniform deviation between expectation and empirical

average by incorporating the variance information (Bartlett et al., 2005). Let Var[X] denote the variance of a random variable
X .

Lemma B.1 (Bartlett et al. 2005). Let F be a class of functions that map Z into [−b, b]. Assume there is some r > 0 such
that Var[f(Z)] ≤ r for any f ∈ F . Then for any δ ∈ (0, 1) with probability at least 1− δ we have

sup
f∈F

(
EZ [f(Z)]−

1

n

n∑
i=1

f(zi)
)
≤ 4E

[
RS(F)

]
+
(2r log(2/δ)

n

) 1
2

+
8b log(2/δ)

3n
.
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The following lemma shows that the Gaussian complexity can be bounded by covering numbers from below.

Lemma B.2 (Sudakov minoration inequality (Ledoux and Talagrand, 1991)). Let F be a class of real-valued functions,
S = {z1, . . . , zn} and gi be a sequence of N(0, 1) Gaussian random variables. Then

Eg

[
sup
f∈F

∑
i∈[n]

gif(zi)
]
≥
√
n sup

ϵ>0
ϵ log

1
2 N (ϵ,F , dS),

where dS(f, g) =
(
1
n

∑n
i=1(f(zi)− g(zi))2

) 1
2 .

The following lemma provides covering number estimates for linear function classes.

Lemma B.3 (Zhang 2002). If ∥ϕ(x)∥2 ≤ Bϕ, then for any ϵ > 0, we have

logN
(
ϵ, {x← ⟨ϕ(x),w⟩ : ∥w∥2 ≤ R}, dS,∞

)
≤

36R2B2
ϕ

ϵ2
log2

(
6n+ 8BϕR/ϵ

)
,

where dS,∞(f, g) = maxi∈[n] |f(xi)− g(xi)|.

The following lemma provides a contraction property for Rademacher complexities. It also holds for Gaussian complexities,
i.e., with ϵi replaced by standard normal random variables gi.

Lemma B.4 (Contraction Lemma (Bartlett and Mendelson, 2002)). Suppose τ : R 7→ R is G-Lipschitz in the sense that
|τ(t)− τ(t̃)| ≤ G|t− t̃|. Then the following inequality holds for any F

Eϵ sup
f∈F

n∑
i=1

ϵiτ
(
f(xi)

)
≤ GEϵ sup

f∈F

n∑
i=1

ϵif(xi).

The following lemma provides estimates on vector Rademacher complexities for functions with a structure.

Lemma B.5. Suppose f takes the form f(w; z) = ℓ(y, ⟨w, ϕ(x)⟩), where ϕ : X 7→ W is a feature map and ℓ : R2 7→ R+.
Assume a 7→ ℓ(y, a) is Gℓ-Lipschitz continuous and Lℓ-smooth for all y. Then

1

n
Eϵ sup

w∈W

∥∥∥ n∑
i=1

ϵi∇f(w; zi)
∥∥∥
2
≤ 12√

n

+
(24√2BϕLℓ

n
Eg

[
sup
w∈W

n∑
i=1

gi⟨w, ϕ(xi)⟩
]
+

144
√
2BϕV̂W log

1
2
2

(
6n+ 8

√
nBϕGℓ

)
√
n

)
log(GℓBϕ

√
n/3),

where V̂W = supw∈W

(
1
n

∑n
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2) 1
2

.

Proof. For any w ∈ W,v ∈ B1, define

hw,v(z) = ⟨∇f(w; z),v⟩ = ℓ′(y, ⟨w, ϕ(x)⟩)⟨ϕ(x),v⟩.

The following inequality was developed in Lei and Tang (2021)
n∑

i=1

(
hw,v(zi)− hw′,v′(zi)

)2
≤ 2

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)− ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2⟨ϕ(xi),v⟩2 + 2

n∑
i=1

(
ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2(⟨ϕ(xi),v⟩ − ⟨ϕ(xi),v′⟩
)2

≤ 2B2
ϕ

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)− ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2
+ 2

( n∑
i=1

(
ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2)(
max
i∈[n]

(
⟨ϕ(xi),v⟩ − ⟨ϕ(xi),v′⟩

)2)
,

where we used |⟨ϕ(x),v⟩| ≤ Bϕ. For any f, g, define the following metrics

dS(f, g) :=
( 1

n

n∑
i=1

(f(zi)− g(zi))2
) 1

2

, dS,∞(f, g) := max
i∈[n]

∣∣f(zi)− g(zi)∣∣. (B.1)

Then, we have

dS
(
hw,v, hw′,v′

)
≤
√
2BϕdS(h

(1)
w , h

(1)
w′ ) +

√
2
( 1

n

n∑
i=1

(
ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2) 1
2

dS,∞(h(2)v , h
(2)
v′ ),
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where we introduce
h(1)w (z) := ℓ′(y, ⟨w, ϕ(x)⟩) and h(2)v (x) = ⟨ϕ(x),v⟩. (B.2)

That is, to build an ϵ-cover of
{
z 7→ hw,v(z) : w ∈ W,v ∈ B1

}
w.r.t. the metric dS , it suffices to build an ϵ/(2

√
2Bϕ)-cover

of
{
z 7→ ℓ′(y, ⟨w, ϕ(x)⟩)

}
w.r.t. the metric dS , and also an ϵ/(2

√
2V̂W)-cover of

{
x 7→ ⟨ϕ(x),v⟩ : v ∈ B1

}
w.r.t. the metric

dS,∞. Note the latter two function classes are indexed by w and v, respectively. Therefore, we have

logN
(
ϵ,
{
z 7→ hw,v(z) : w ∈ W,v ∈ B1

}
, dS

)
≤

logN
(
ϵ/(2
√
2Bϕ),

{
z 7→ ℓ′(y, ⟨w, ϕ(x)⟩) : w ∈ W

}
, dS

)
+ logN

(
ϵ/(2
√
2V̂W),

{
x 7→ ⟨ϕ(x),v⟩ : v ∈ B1

}
, dS,∞

)
. (B.3)

By Lemma B.2, we know

log
1
2 N

(
ϵ,
{
z 7→ ℓ′(y, ⟨w, ϕ(x)⟩) : w ∈ W

}
, dS

)
≤ 1√

nϵ
Eg

[
sup
w∈W

n∑
i=1

giℓ
′(yi, ⟨w, ϕ(xi)⟩)

]
.

By Lemma B.3, we know

log
1
2 N

(
ϵ,
{
x 7→ ⟨ϕ(x),v⟩ : v ∈ B1

}
, dS,∞

)
≤

6Bϕ log
1
2
2

(
6n+ 8Bϕ/ϵ

)
ϵ

.

We plug the above two inequalities back into Eq. (B.3) and derive

log
1
2 N

(
ϵ,
{
z 7→ hw,v(z) : w ∈ W,v ∈ B1

}
, dS

)
≤ 2
√
2Bϕ√
nϵ

Eg

[
sup
w∈W

n∑
i=1

giℓ
′(yi, ⟨w, ϕ(xi)⟩)

]
+

12
√
2BϕV̂W log

1
2
2

(
6n+ 16

√
2BϕV̂W/ϵ

)
ϵ

≤ 2
√
2BϕLℓ√
nϵ

Eg

[
sup
w∈W

n∑
i=1

gi⟨w, ϕ(xi)⟩
]
+

12
√
2BϕV̂W log

1
2
2

(
6n+ 16

√
2BϕV̂W/ϵ

)
ϵ

,

where the last inequality follows from the contraction principle for Gaussian complexity together with the Lℓ-Lipschitz
continuity of ℓ′ (Lemma B.4). Note that |hw,v(z)| ≤ Gℓ∥ϕ(x)∥2∥v∥2 ≤ GℓBϕ. Therefore, we can apply Lemma A.1 with
α = 3/

√
n to derive the following inequality

1

n
Eϵ sup

w∈W,v∈B1

n∑
i=1

ϵihw,v(zi)

≤ 12√
n
+

12√
n

∫ GℓBϕ

3/
√
n

(2√2BϕLℓ√
nϵ

Eg

[
sup
w∈W

n∑
i=1

gi⟨w, ϕ(xi)⟩
]
+

12
√
2BϕV̂W log

1
2
2

(
6n+ 8

√
nBϕV̂W

)
ϵ

)
dϵ

≤ 12√
n
+
(24√2BϕLℓ

n
Eg

[
sup
w∈W

n∑
i=1

gi⟨w, ϕ(xi)⟩
]
+

144
√
2BϕV̂W log

1
2
2

(
6n+ 8

√
nBϕV̂W

)
√
n

)∫ GℓBϕ

3/
√
n

1

ϵ
dϵ.

The proof is completed by noting that
∫ GℓBϕ

3/
√
n

1
ϵdϵ = log(GℓBϕ

√
n/3) and V̂W ≤ Gℓ.

The following lemma provides estimates on the local Gaussian complexity for linear function classes (Bartlett et al., 2005).
The original estimate considers Rademacher variables. It can be directly checked from the proof that it also holds for Gaussian
variables.

Lemma B.6 (Bartlett et al. 2005). Let V (w) = EZ [⟨w, ϕ(x)⟩2]. Let (λi)i be the eigenvalue of the operator v 7→ EX [⟨v, ϕ(X)⟩ϕ(X)]
arranged in a nonincreasing order. Then

1

n
E
[

sup
w:V (w)≤r,∥w∥≤R

n∑
i=1

gi⟨w, ϕ(xi)⟩
]
≤

( 2

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

,

where gi are standard Gaussian random variables.

The following lemma is standard and we omit the proof for brevity.

Lemma B.7. Let a, b ≥ 0. If x2 ≤ ax+b, then x2 ≤ a2+2b. On the other hand, if x = a+
√
b for a, b ≥ 0, then ax+b ≤ x2.
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Theorem B.8. Suppose f takes the form f(w; z) = ℓ(y, ⟨w, ϕ(x)⟩), where ϕ : X 7→ W is a feature map and ℓ : R2 7→ R+.
Assume a 7→ ℓ(y, a) is Lℓ-smooth for all y. Let Bℓ = (EY (ℓ

′(Y, 0))2)
1
2 , supx ∥ϕ(x)∥2 ≤ Bϕ and δ ∈ (0, 1). Let V (w) =

EX [⟨w, ϕ(X)⟩2]. With probability at least 1− δ we have

sup
w∈BR:V (w)≤r

∥∥∥∇F (w)−∇FS(w)
∥∥∥
2
= Õ

(
BϕLℓ

( 1

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

+
LℓB

2
ϕR log(1/δ)

n
+Bϕ(Bℓ+Lℓ

√
r)
( log(1/δ)

n

) 1
2
)
.

Proof. Due to the Lℓ-smoothness of ℓ, we know the following inequality for any w ∈ BR

|ℓ′(y, ⟨w, ϕ(x)⟩)| ≤ |ℓ′(y, 0)|+ Lℓ|⟨w, ϕ(x)⟩| ≤ |ℓ′(y, 0)|+ Lℓ∥w∥2∥ϕ(x)∥ ≤ |ℓ′(y, 0)|+ LℓRBϕ.

Therefore, ℓ is Gℓ-Lipschitz continuous in BR with Gℓ ≲ LℓBϕR. For any w,v with V (w) ≤ r, ∥v∥2 ≤ 1, we know the
variance of z 7→ ⟨∇f(w; z),v⟩ satisfies

VarZ
[
⟨∇f(w;Z),v⟩

]
≤ EZ [⟨∇f(w;Z),v⟩2] ≤ EZ [∥∇f(w;Z)∥22∥v∥22] ≤ EZ [∥∇f(w;Z)∥22]
= EZ

[
|ℓ′(Y, ⟨w, ϕ(X)⟩)|2∥ϕ(X)∥22

]
≤ B2

ϕEZ

[
|ℓ′(Y, ⟨w, ϕ(X)⟩)|2

]
≤ 2B2

ϕ(EY [(ℓ
′(Y, 0))2] + L2

ℓEZ [⟨w, ϕ(X)⟩2]) ≤ 2B2
ϕ(B

2
ℓ + L2

ℓr), (B.4)

where we have used the inequality |ℓ′(y, a)| ≤ |ℓ′(y, 0)| + Lℓ|a − 0| due to the smoothness of ℓ and the standard inequality
(a+ b)2 ≤ 2a2 + 2b2. Furthermore, there holds

|⟨∇f(w;Z),v⟩| ≤ ∥∇f(w;Z)∥2∥v∥2 ≤ |ℓ′(Y, ⟨w, ϕ(X)⟩)|∥ϕ(X)∥2 ≤ GℓBϕ.

We can apply Lemma B.1 to show the following inequality with probability at least 1− δ

sup
w∈BR:V (w)≤r

∥∥∥∇F (w)−∇FS(w)
∥∥∥
2
= sup

w∈BR:V (w)≤r,∥v∥2≤1

〈
EZ [∇f(w;Z)]− 1

n

n∑
i=1

∇f(w; zi),v
〉

≤ 4E
[
RS

({
z 7→ ⟨∇f(w; z),v⟩ : w ∈ BR, V (w) ≤ r, ∥v∥2 ≤ 1

})]
+ 2Bϕ(Bℓ + Lℓ

√
r)
( log(2/δ)

n

) 1
2

+
8GℓBϕ log(2/δ)

3n

=
4

n
E sup

w∈BR,V (w)≤r,∥v∥2≤1

n∑
i=1

ϵi⟨∇f(w; zi),v⟩+ 2Bϕ(Bℓ + Lℓ

√
r)
( log(2/δ)

n

) 1
2

+
8GℓBϕ log(2/δ)

3n

=
4

n
E sup

w∈BR:V (w)≤r

∥∥∥ n∑
i=1

ϵi∇f(w; zi)
∥∥∥
2
+ 2Bϕ(Bℓ + Lℓ

√
r)
( log(2/δ)

n

) 1
2

+
8GℓBϕ log(2/δ)

3n
. (B.5)

By Lemma B.5 and Lemma B.6, we know

1

n
E sup

w∈BR:V (w)≤r

∥∥∥ n∑
i=1

ϵi∇f(w; zi)
∥∥∥
2

≤
24
√
2BϕLℓ log(GℓBϕ

√
n/3)E

[
sup

w∈BR:V (w)≤r

∑n
i=1 gi⟨w, ϕ(xi)⟩

]
n

+
12+144

√
2BϕE[V̂r] log

1
2
2

(
6n+8

√
nBϕGℓ

)
log(GℓBϕ

√
n/3)

√
n

≤ 48BϕLℓ log(GℓBϕ

√
n/3)

( 1

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

+
12+144

√
2BϕE[V̂r] log

1
2
2

(
6n+8

√
nBϕGℓ

)
log(GℓBϕ

√
n/3)

√
n

,

(B.6)

where we introduce

V̂r := sup
w∈BR:V (w)≤r

( 1

n

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2) 1
2

.

We now estimate E[V̂r]. By the standard symmetrization trick (Bartlett et al., 2005), we can relate the uniform deviation by
Rademacher complexity as follows

E
[

sup
w∈BR:V (w)≤r

( 1

n

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2−EZ

[(
ℓ′(y, ⟨w, ϕ(x))

)2])] ≤ 2E
[

sup
w∈BR:V (w)≤r

1

n

n∑
i=1

ϵi
(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2]
.

(B.7)
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For any w,w′ ∈ BR with V (w) ≤ r, V (w′) ≤ r, we know

1

n

n∑
i=1

((
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2 − (
ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2)2

=
1

n

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩) + ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2(
ℓ′(yi, ⟨w, ϕ(xi)⟩)− ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2

≤ 1

n

n∑
i=1

(
ℓ′(yi, ⟨w, ϕ(xi)⟩) + ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2

max
i∈[n]

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)− ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2

≤ 4V̂ 2
r max

i∈[n]

(
ℓ′(yi, ⟨w, ϕ(xi)⟩)− ℓ′(yi, ⟨w′, ϕ(xi)⟩)

)2

≤ 4V̂ 2
r L

2
ℓ max
i∈[n]
|⟨w, ϕ(xi)⟩ − ⟨w′, ϕ(xi)⟩|2,

where the last second inequality follows from the definition of V̂r and the inequality (a + b)2 ≤ 2a2 + 2b2. It then follows
that (recall the definition of h(1)w , h

(2)
w in Eq. (B.2) and the definition of dS,∞ in Eq. (B.1))

dS((h
(1)
w )2, (h

(1)
w′ )

2) ≤ 2V̂rLℓdS,∞(h(2)w , h
(2)
w′ )

and therefore

logN
(
ϵ, {(h(1)w )2 : w ∈ BR : V (w) ≤ r}, dS

)
≤ N

(
ϵ/(2V̂rLℓ), {h(2)w : w ∈ BR : V (w) ≤ r}, dS,∞

)
≤

144V̂ 2
r L

2
ℓR

2B2
ϕ

ϵ2
log2

(
6n+ 16V̂rLℓRBϕ/ϵ

)
,

where we have used Lemma B.3 on covering numbers for linear function classes. Lemma A.1 with α = 3/
√
n and |h(1)w (z)| ≤

Gℓ then imply that

Eϵ

[
sup

w∈BR:V (w)≤r

1

n

n∑
i=1

ϵi
(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2] ≤ 12√
n
+

144V̂rLℓRBϕ log
1
2
2

(
6n+ 6

√
nV̂rLℓRBϕ

)
√
n

∫ G2
ℓ

3/
√
n

1

ϵ
dϵ

≤ 12√
n
+

144V̂rLℓRBϕ log
1
2
2

(
6n+ 6

√
nGℓLℓRBϕ

)
log(G2

ℓ

√
n/3)

√
n

.

We combine this inequality and Eq. (B.7) and derive

E[V̂ 2
r ] ≤ sup

w∈BR:V (w)≤r

EZ

[(
ℓ′(Y, ⟨w, ϕ(X))

)2]
+ 2E

[
sup

w∈BR:V (w)≤r

1

n

n∑
i=1

ϵi
(
ℓ′(yi, ⟨w, ϕ(xi)⟩)

)2]
≤ 2(B2

ℓ + L2
ℓr) +

24√
n
+

288(E[V̂ 2
r ])

1
2LℓRBϕ log

1
2
2

(
6n+ 6

√
nGℓLℓRBϕ

)
log(G2

ℓ

√
n/3)

√
n

,

where the last step is due to Eq. (B.4). The above inequality is a quadratic inequality of
(
E[V̂ 2

r ]
) 1

2 . We can apply Lemma B.7
to show that

E[V̂ 2
r ] ≲ B2

ℓ + L2
ℓr +

1√
n
+
L2
ℓR

2B2
ϕ log2

(
n+
√
nGℓLℓRBϕ

)
log22(G

2
ℓ

√
n)

n
.

We plug the above inequality back into Eq. (B.6), and derive that

1

n
E sup

w∈BR:V (w)≤r

∥∥∥ n∑
i=1

ϵi∇f(w; zi)
∥∥∥
2
= Õ

(
BϕLℓ

( 1

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

+
Bϕ√
n

(
Bℓ + Lℓ

√
r +

LℓBϕR√
n

))
.

We plug the above inequality back into Eq. (B.5) and derive the following inequality with probability at least 1− δ

sup
w∈BR:V (w)≤r

∥∥∥∇F (w)−∇FS(w)
∥∥∥
2
=

Õ
(
BϕLℓ

( 1

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

+
LℓB

2
ϕR

n
+Bϕ(Bℓ + Lℓ

√
r)
( log(1/δ)

n

) 1
2

+
GℓBϕ log(1/δ)

n

)
.

The proof is completed by noting that Gℓ ≲ LℓRBϕ.

To conduct a localization analysis, we require the following uniform localized convergence argument developed in Xu and
Zeevi (2024) based on the peeling trick. While the original statement holds for the uniform convergence of function values, it
is direct to extend their argument to the uniform convergence of gradients. Recall that a ∨ b = max{a, b}.
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Lemma B.9 (Uniform localized convergence argument (Xu and Zeevi, 2024)). For a function class F = {fw : w ∈ W}
and the functional Ṽ : W 7→ [0, R̃], assume there is a function ψ(r; δ), which is non-decreasing w.r.t. r and satisfies that
∀δ ∈ (0, 1),∀r ∈ [0, R̃], with probability at least 1− δ

sup
w∈W:Ṽ (w)≤r

∥∥ 1
n

n∑
i=1

∇fw(zi)− EZ [∇fw(Z)]
∥∥
2
≤ ψ(r; δ).

Then, given any δ ∈ (0, 1) and r0 ∈ (0, R̃], with probability at least 1− δ, for all w ∈ W∥∥ 1
n

n∑
i=1

∇fw(zi)− EZ [∇fw(Z)]
∥∥
2
≤ ψ

(
2Ṽ (w) ∨ r0; δ/ log2(2R̃/r0)

)
. (B.8)

Proof of Theorem 3. We define

ψ(r, δ) := C̃
(
BϕLℓ

( 1

n
min
h∈N

(
rh+R2

∞∑
j=h+1

λj

)) 1
2

+
LℓB

2
ϕR log(1/δ)

n
+Bϕ(Bℓ + Lℓ

√
r)
( log(1/δ)

n

) 1
2
)
,

where C̃ is a constant which only has a logarithmic dependency on R,n and other parameters. Then, by Theorem B.8, ψ
satisfies the condition in Eq. (B.8) with Ṽ = V . Therefore, we can apply Lemma B.9 with Ṽ = V, R̃ = supw∈BR

V (w) and
r0 = 1/n to derive the following inequality uniformly for all w ∈ BR∥∥∥∇F (w)−∇FS(w)

∥∥∥
2
≤ C̃

(
BϕLℓ

( 1

n
min
h∈N

(
2(V (w) ∨ 1/n)h+R2

∞∑
j=h+1

λj

)) 1
2

+
LℓB

2
ϕR log(log2(2R̃n)/δ)

n
+

Bϕ(Bℓ + Lℓ

√
2(V (w) ∨ 1/n))

( log(log2(2R̃n)/δ)
n

) 1
2
)
.

The stated bound then follows since Bϕ(Bℓ + Lℓ

√
2(V (w) ∨ 1/n))n−

1
2 is not the dominating term if we restrict h ≥ 1.

Proof of Theorem 5. By the polynomial decay, we know

r̃(w)h+R2
∞∑

j=h+1

λj ≤ r̃(w)h+ βR2
∞∑

j=h+1

j−p

≤ r̃(w)h+ βR2

∫ ∞

h

x−pdx = r̃(w)h+ βR2h1−p(p− 1)−1.

We can choose h =
⌈(

βR2

r̃(w)

) 1
p
⌉
. Then, we have

r̃(w)h ≲ r̃(w)
( βR2

r̃(w)

) 1
p

= r̃(w)1−
1
p β

1
pR

2
p

βR2h1−p

p− 1
≤ βR2

p− 1

( βR2

r̃(w)

) 1−p
p

=
r̃(w)1−

1
pR

2
p β

1
p

p− 1
.

It then follows that

min
h∈N

{
r̃(w)h+R2

∞∑
j=h+1

λj

}
≲
pr̃(w)1−

1
p β

1
pR

2
p

p− 1
.

We then plug this bound into Theorem 3 to get the stated bound.

C. LOWER BOUNDS OF UNIFORM CONVERGENCE

A. Proof of Proposition 6

In this subsection, we prove Proposition 6 on lower bounds on the uniform convergence of gradients. To this aim, we first
introduce a concentration inequality called the McDiarmid’s inequality.

Lemma C.1 (McDiarmid’s inequality (McDiarmid, 1989)). Let X1, . . . , Xn be independent random variables and g : Xn 7→ R.
Assume for any index i and x1, . . . , xn, x′i ∈ X we have∣∣g(x1, . . . , xi−1, xi, xi+1, . . . , xn)− g(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∣∣ ≤ ci, (C.1)

where ci ≥ 0, i ∈ [n]. Then, for any a > 0 we have

Pr
{
g(X1, . . . , Xn)− E[g(X1, . . . , Xn)] ≤ −a

}
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.
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Proof of Proposition 6. Since σ′(t) = t+, we know

∇f(w;x) =


σ′(w1x)x

...
σ′(wd−1x)x
−σ′(wdx)x

 =


(w1x)+x

...
(wd−1x)+x
−(wdx)+x


Then, we have

∇FS(w)−∇F (w)=


1
n

∑n
i=1(w1xi)+xi − EX [(w1X)+X]

...
1
n

∑n
i=1(wd−1xi)+xi−EX [(wd−1X)+X]

− 1
n

∑n
i=1(wdxi)+xi + EX [(wdX)+X]

 .

We choose w1 = . . . = wd−1 = v ∈ [−1, 1] and wd = 0. It is clear that w ∈ BR and (wdx)+ = 0 for any x. It then follows
that

∥∇FS(w)−∇F (w)∥2 = (d− 1)
1
2

∣∣∣ 1
n

n∑
i=1

(vxi)+xi − EX [(vX)+X]
∣∣∣

and therefore

sup
w∈BR

∥∇FS(w)−∇F (w)∥2 ≥ (d− 1)
1
2 sup
v:|v|≤1

∣∣∣ 1
n

n∑
i=1

(vxi)+xi − EX [(vX)+X]
∣∣∣

= (d− 1)
1
2 sup
v:|v|≤1

∣∣∣ 1
n

( ∑
i∈I+

(vxi)+xi +
∑
i∈I−

(vxi)+xi

)
− EX [(vX)+X]

∣∣∣,
where I+ = {i ∈ [n] : xi = 1} and I− = {i ∈ [n] : xi = −1}. For any i ∈ I+ we know (vxi)+xi = v+, and for any i ∈ I−
we know (vxi)+xi = −(−v)+. Furthermore, we know

EX [(vX)+X] =
1

2

(
v+ − (−v)+

)
=

1

2
v.

It then follows that (|I| denotes the cardinality of a set I)

sup
w∈BR

∥∇FS(w)−∇F (w)∥2 ≥ (d− 1)
1
2 sup
v:|v|≤1

∣∣∣ 1
n

(
|I+|v+ − |I−|(−v)+

)
− v

2

∣∣∣
≥ (d− 1)

1
2

∣∣∣ 1
n

(
|I+|1+ − |I−|(−1)+

)
− 1

2

∣∣∣
= (d− 1)

1
2

∣∣∣ |I+|
n
− 1

2

∣∣∣, (C.2)

where we have taken v = 1 in the second inequality. We now give bounds on Kn :=
∣∣ |I+|

n −
1
2

∣∣. Let ϵi = 2I[xi=1] − 1, where
I[·] denotes the indicator function, i.e., taking values 1 if the argument is true, and 0 otherwise. Then it is clear that ϵi is a
Rademache variable, i.e., taking values in {±1} with the same probability. We know

n∑
i=1

ϵi = 2

n∑
i=1

I[xi=1] − n = 2|I+| − n.

It then follows that Kn = 1
2n

∣∣∑n
i=1 ϵi

∣∣ and

E[Kn] =
1

2n
E
[∣∣∣ n∑

i=1

ϵi

∣∣∣] ≥ 1

2
√
2n
, (C.3)

where we have used the Khitchine-Kahane inequality Eϵ|
∑n

i=1 ϵi| ≥ 2−
1
2n

1
2 (Haagerup, 1981). Define g(ϵ1, . . . , ϵn) =

1
2n

∣∣∑n
i=1 ϵi

∣∣. It is clear that for any ϵ1, . . . , ϵn, ϵ′i, we have∣∣∣∣∣ n∑
j=1

ϵj
∣∣− ∣∣ ∑

j∈[n]:j ̸=i

ϵj + ϵ′i
∣∣∣∣∣ ≤ ∣∣∣ ∑

j∈[n]:j ̸=i

ϵj + ϵi −
∑

j∈[n]:j ̸=i

ϵj − ϵ′i
∣∣∣ ≤ 2.

Therefore, g satisfies the bounded increment condition in Eq. (C.1) with ci = 1
n . By Lemma C.1 with a = 1

4
√
2n

and ci = 1
n ,

we know

Pr
{
g(ϵ1, . . . , ϵn)− E[g(ϵ1, . . . , ϵn)] ≤ −

1

4
√
2n

}
≤ exp

(
− 2

(4
√
2n)2

∑n
i=1 n

−2

)
= exp

(
− 1

16

)
.
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Therefore, with probability at least 1− exp(−1/16), we know Kn − E[Kn] > − 1
4
√
2n

, which implies

Kn = E[Kn] +
(
Kn − E[Kn]

)
≥ 1

2
√
2n
− 1

4
√
2n

=
1

4
√
2n
,

where we have used Eq. (C.3). This together with Eq. (C.2) implies the stated bound with probability at least 1−exp(−1/16).

B. Lower Bounds in Expectation

In this subsection, we give lower bounds for the uniform convergence in expectation. We first consider a general f , and
present lower bounds in terms of covering numbers. For any f we define f̃(w; z) = f(w; z) − Ez[f(w; z)]. We consider
covering numbers w.r.t. the following distance metric

d̂S((w,v), (w
′,v′)) =

( 1

n

∑
i∈[n]

(⟨∇f̃(w; zi),v⟩ − ⟨∇f̃(w′; zi),v
′⟩)2

) 1
2

over the function class
FW,B1

=
{
z 7→ ⟨∇f̃(w; z),v⟩ : w ∈ W,v ∈ B1

}
.

Eq. (C.4) below shows that the uniform convergence of gradients can be bounded by E
[
supw∈W ∥

∑
i∈[n] ϵi∇f̃(w; zi)∥2

]
from below, which, according to Eq. (C.5) can be further bounded by covering numbers from below.

Lemma C.2 (Lower bounds in expectation). Let S = {zi : i ∈ [n]} ⊂ Z . Let {ϵi, i ∈ [n]} be independent Rademacher
variables (i.e., ϵi take values in {±1} with the same probability). Then

ES

[
sup
w∈W

∥∥∥∇FS(w)−∇F (w)
∥∥∥
2

]
≥ 1

2n
ES,ϵ

[
sup
w∈W

∥
∑
i∈[n]

ϵi∇f̃(w; zi)∥2
]
. (C.4)

Furthermore, there holds

Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
≥
√
n supϵ>0

{
ϵ log

1
2 N (ϵ,FW,B1

, d̂S)
}

2 log
1
2 (n)

. (C.5)

Remark C.1 (Upper bounds in expectation). Since f̃(w; z) = f(w; z)− EZ [f(w;Z)], we know

EZ [f̃(w;Z)]− 1

n

n∑
i=1

f̃(w; zi) = EZ′

[
f(w;Z ′)− EZ [f(w;Z)]

]
− 1

n

n∑
i=1

(
f(w; zi)− EZ [f(w;Z)]

)
=

1

n

n∑
i=1

(
EZ [f(w;Z)]− f(w; zi)

)
= EZ [f(w;Z)]− 1

n

n∑
i=1

f(w; zi).

It then follows that (by taking gradients)

ES

[
sup
w∈W

∥∥∥EZ [∇f(w;Z)]− 1

n

n∑
i=1

∇f(w; zi)
∥∥∥
2

]
= ES

[
sup
w∈W

∥∥∥EZ [∇f̃(w;Z)]− 1

n

n∑
i=1

∇f̃(w; zi)
∥∥∥
2

]
.

By the standard symmetrization trick (Bartlett et al., 2005), we know

ES

[
sup
w∈W

∥∥∥EZ [∇f̃(w;Z)]− 1

n

n∑
i=1

∇f̃(w; zi)
∥∥∥
2

]
≤ 2

n
E
[
sup
w∈W

∥∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥∥
2

]
.

We combine the above two inequalities together and derive

ES

[
sup
w∈W

∥∥∥EZ [∇f(w;Z)]− 1

n

n∑
i=1

∇f(w; zi)
∥∥∥
2

]
≤ 2

n
E
[
sup
w∈W

∥∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥∥
2

]
. (C.6)

Furthermore, by Lemma A.1 we get

Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
= Eϵ

[
sup

w∈W,v∈B1

〈 n∑
i=1

ϵi∇f̃(w; zi),v
〉]

≤ inf
α

{
4nα+ 12

√
n

∫ D̃

α

log
1
2 N (ϵ,FW,B1

, d̂S)dϵ
}
, (C.7)
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where D̃ = supw∈W
(
1
n

∑n
i=1 ∥∇f̃(w; zi)∥22

) 1
2 .

Remark C.2 (Tightness of bounds in expectation). Eq. (C.6) shows E
[
supw

∥∥∇FS(w)−∇F (w)
∥∥
2

]
≤ 2

nE
[
supw

∥∥∑n
i=1 ϵi∇f̃(w; zi)

∥∥
2

]
.

This shows that the lower bound in Eq. (C.4) is tight up to a constant factor of 4. Furthermore, by Eq. (C.7), we have the
following inequality for any α > 0

Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
≤ 4nα+ 12

√
n

∫ D̃

α

ϵ−1ϵ log
1
2 N (ϵ,FW,B1

, d̂S)dϵ (C.8)

≤ 4nα+ 12
√
n

∫ D̃

α

ϵ−1 sup
ϵ′>0

{
ϵ′ log

1
2 N (ϵ′,FW,B1

, d̂S)
}
dϵ

≤ 4nα+ 12
√
n sup

ϵ′>0

{
ϵ′ log

1
2 N (ϵ′,FW,B1

, d̂S)
}∫ D̃

α

ϵ−1dϵ

= 4nα+ 12
√
n sup

ϵ>0

{
ϵ log

1
2 N (ϵ,FW,B1 , d̂S)

}
log(D̃/α). (C.9)

We take α = n−
1
2 sup

ϵ>0

{
ϵ log

1
2 N (ϵ,FW,B1

, d̂S)
}

and derive that

Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
= Õ

(√
n sup

ϵ>0

{
ϵ log

1
2 N (ϵ,FW,B1

, d̂S)
})
, (C.10)

which matches the lower bound in Eq. (C.5) up to a logarithmic factor and justifies the tightness of our lower bound.

We now prove Lemma C.2. To this aim, we introduce the following lemma as an extension of the contraction principle for
Rademacher complexities.

Lemma C.3. Let a1, . . . , an ∈ R and F be a class of real-valued functions. Let S = {z1, . . . , zn} and ϵi be a sequence of
Rademacher random variables. Then

Eϵ sup
f∈F

∥∥∥ ∑
i∈[n]

aiϵi∇f(zi)
∥∥∥
2
≤ max

i∈[n]
|ai|Eϵ sup

f∈F

∥∥∥ ∑
i∈[n]

ϵi∇f(zi)
∥∥∥
2
.

Proof. We know

Eϵ sup
f∈F

∥∥∥ ∑
i∈[n]

aiϵi∇f(zi)
∥∥∥
2
= Eϵ sup

f∈F,v∈B1

〈 ∑
i∈[n]

aiϵi∇f(zi),v
〉
≤ max

i∈[n]
|ai|Eϵ sup

f∈F,v∈B1

〈 ∑
i∈[n]

ϵi∇f(zi),v
〉

= max
i∈[n]
|ai|Eϵ sup

f∈F

∥∥∥ ∑
i∈[n]

ϵi∇f(zi)
∥∥∥
2
,

where we have used the contraction principle of Rademacher complexities (Bartlett and Mendelson, 2002)

Eϵ sup
g∈G

∑
i∈[n]

aiϵig(zi) ≤ max
i∈[n]
|ai|Eϵ sup

g∈G

∑
i∈[n]

ϵig(zi).

The proof is completed.

Proof of Lemma C.2. Let S′ = {z′1, . . . , z′n} be independently drawn from ρ. By the Jensen’s inequality, we know

ES,ϵ

[
sup
w∈W

∥
∑
i∈[n]

ϵi∇f̃(w; zi)∥2
]
= ES,ϵ

[
sup
w∈W

∥∥∥ ∑
i∈[n]

ϵi
(
∇f(w; zi)− Ez[∇f(w; z)]

)∥∥∥
2

]
= ES,ϵ

[
sup
w∈W

∥∥∥ ∑
i∈[n]

ϵi∇f(w; zi)−
∑
i∈[n]

ϵiEz′
i
[∇f(w; z′i)]

∥∥∥
2

]
≤ ES,S′,ϵ

[
sup
w∈W

∥∥∥ ∑
i∈[n]

ϵi∇f(w; zi)−
∑
i∈[n]

ϵi∇f(w; z′i)
∥∥∥
2

]
= ES,S′

[
sup
w∈W

∥∥∥ ∑
i∈[n]

∇f(w; zi)−
∑
i∈[n]

∇f(w; z′i)
∥∥∥
2

]
,
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where we have used the symmetry between S and S′ in the last identity. By the triangle inequality, we further know

ES,ϵ

[
sup
w∈W

∥
∑
i∈[n]

ϵi∇f̃(w; zi)∥2
]

≤ ES

[
sup
w∈W

∥∥∥ ∑
i∈[n]

∇f(w; zi)− nEz∇f(w; z)
∥∥∥
2

]
+ ES′

[
sup
w∈W

∥∥∥ ∑
i∈[n]

∇f(w; z′i)− nEz∇f(w; z)
∥∥∥
2

]
= 2ES

[
sup
w∈W

∥∥∥ ∑
i∈[n]

∇f(w; zi)− nEz∇f(w; z)
∥∥∥
2

]
.

This shows the first inequality. We now prove the second inequality. Let g1, . . . , gn be independent N(0, 1) random variables.
Furthermore, by the Jensen’s inequality we have (note |gi|ϵi has the same distribution of gi)

Eg

[
sup
w∈W

∥∥ n∑
i=1

gi∇f̃(w; zi)
∥∥
2

]
= Eϵ,g

[
sup
w∈W

∥∥ n∑
i=1

|gi|ϵi∇f̃(w; zi)
∥∥
2

]
≤ Eg max

i∈[n]
|gi|Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
,

where we have used Lemma C.3. Since Eg maxi∈[n] |gi| ≤ 2 log
1
2 (n), we get

Eϵ

[
sup
w∈W

∥∥ n∑
i=1

ϵi∇f̃(w; zi)
∥∥
2

]
≥ 1

2 log
1
2 (n)

Eg

[
sup
w∈W

∥∥ n∑
i=1

gi∇f̃(w; zi)
∥∥
2

]
=

1

2 log
1
2 (n)

Eg

[
sup

w∈W,v∈B1

〈 n∑
i=1

gi∇f̃(w; zi),v
〉]

=
1

2 log
1
2 (n)

Eg

[
sup

w∈W,v∈B1

n∑
i=1

gi
〈
∇f̃(w; zi),v

〉]
≥

√
n

2 log
1
2 (n)

sup
ϵ>0

{
ϵ log

1
2 N (ϵ,FW,B1

, d̂S)
}
,

where in the last step we have used Lemma B.2. The proof is completed.

We now present explicit lower and upper bounds on the uniform convergence of gradients for a specific function class of
the form in Eq. (8), where we can give dimension-independent bounds. Note Eq. (C.11) holds if R is sufficiently large. The
above upper and lower bounds in Eq. (C.12) match up to constant factors.

Proposition C.4. Let f(w; z) = 1
2 (w

⊤x− y)2. If

RE
∥∥∥ ∑

i∈[n]

ϵi(xix
⊤
i − E[XX⊤])

∥∥∥
op
≥ 2

∥∥∥ n∑
i=1

ϵi
(
EZ [Y X − yixi]

)∥∥∥
2
, (C.11)

then
R√
n
E
[∥∥∥ 1
n

n∑
i=1

(xix
⊤
i − E[XX⊤])2

∥∥∥ 1
2

op

]
≲ ES

[
sup
w∈W

∥∥∥∇FS(w)−∇F (w)
∥∥∥
2

]
≲
R supx ∥x∥22√

n
. (C.12)

To prove Proposition C.4, we require the following lemma on lower bounds for operator norm of random matrices.

Lemma C.5 (Tropp 2016). Let A1, . . . , An ∈ Rd1×d2 be n symmetric matrices. Then

E
[∥∥∥ ∑

i∈[n]

ϵiAi

∥∥∥
op

]
≥

(1
8

∥∥∥ n∑
i=1

A2
i

∥∥∥
op

) 1
2

+
maxi ∥Ai∥op

8
,

where ∥ · ∥op denotes the operator norm of a matrix.

Proof of Proposition C.4. For f(w; z) = 1
2 (w

⊤x− y)2, we know

∇f̃(w; z) = xx⊤w − yx− EZ [XX
⊤w − Y X] = (xx⊤ − E[XX⊤])w + EZ [Y X − yx].
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Therefore, there holds

Eϵ sup
w∈BR

∥∥∥ ∑
i∈[n]

ϵi∇f̃(w; z)
∥∥∥
2
= Eϵ sup

w∈BR

∥∥∥ ∑
i∈[n]

ϵi(xix
⊤
i − E[XX⊤])w +

∑
i∈[n]

ϵiEZ [Y X − yixi]
∥∥∥
2

≥ Eϵ sup
w∈BR

∥∥∥ ∑
i∈[n]

ϵi(xix
⊤
i − E[XX⊤])w

∥∥∥
2
− Eϵ

∥∥∥ n∑
i=1

ϵi
(
EZ [Y X − yixi]

)∥∥∥
2

= REϵ

∥∥∥ ∑
i∈[n]

ϵi(xix
⊤
i − E[XX⊤])

∥∥∥
op
− Eϵ

∥∥∥ n∑
i=1

ϵi
(
EZ [Y X − yixi]

)∥∥∥
2
.

By Eq. (C.11) and Lemma C.5, we get

E sup
w∈BR

∥∥∥ ∑
i∈[n]

ϵi∇f̃(w; z)
∥∥∥
2
≥ 2−1RE

∥∥∥ ∑
i∈[n]

ϵi(xix
⊤
i − E[XX⊤])

∥∥∥
op
≥ RE

[( 1

32

∥∥∥ n∑
i=1

(xix
⊤
i − E[XX⊤])2

∥∥∥
op

) 1
2
]
.

Furthermore, the analysis in Lei and Tang (2021) shows that

1

n
E sup

w∈BR

∥∥∥ ∑
i∈[n]

ϵi∇f̃(w; z)
∥∥∥
2
≲
R supx ∥x∥22√

n
.

We combine the above two inequalities together, and derive

R√
n
E
[∥∥∥ 1
n

n∑
i=1

(xix
⊤
i − E[XX⊤])2

∥∥∥ 1
2

op

]
≲

1

n
E sup

w∈BR

∥∥∥ ∑
i∈[n]

ϵi∇f̃(w; z)
∥∥∥
2
≲
R supx ∥x∥22√

n
.

The proof is completed by noting Eq. (C.6) and Eq. (C.4) together.

In this subsection, we consider bounds in expectation. As a comparison, we develop bounds with high probability in the
main text. The following lemma shows that one can transfer bounds with high probability to bounds in expectation.

Lemma C.6. Let X be a non-negative random variable and a > 0. Suppose that for any δ ∈ (0, 1), with probability at least
1− δ, X < a log(1/δ). Then, E[X] ≤ a.

Proof. Let t = a log(1/δ). Then, we have δ = exp(−t/a). The assumption then shows that Pr{X ≥ t} ≤ exp(−t/a). It then
follows that

E[X] =

∫ ∞

0

Pr{X ≥ t}dt ≤
∫ ∞

0

exp(−t/a)dt = a

∫ ∞

0

exp(−t/a)d(t/a)

= a

∫ ∞

0

exp(−t)dt = −a
∫ ∞

0

d exp(−t) = a.

The proof is completed.

Based on Lemma C.6, we can directly transfer the high-probability bounds to bounds in expectation. For example, in
Theorem 1, we show with probability at least 1− δ that

sup
w∈BR

∥∇FS(w)−∇F (w)
∥∥
2
≲ log(1/δ)

(Gd log(Rn)
n

+
(LS(w)d log(Rn))

n

) 1
2
)
.

Then, Lemma C.6 shows that

E
[

sup
w∈BR

∥∇FS(w)−∇F (w)
∥∥
2

]
≲
Gd log(Rn)

n
+

(LS(w)d log(Rn))

n

) 1
2

.

D. PROOF OF THEOREM 9

In this section, we prove Theorem 9. In our proof, we require to apply concentration inequalities for martingale difference
sequences. In Lemma D.1, we present concentration inequalities for real-valued martingales. Part (a) is the classical Azuma-
Hoeffding inequality for martingales with bounded increments (Hoeffding, 1963), while Part (b) and Part (c) are Bernstein-type
inequalities where the concentration behavior is better quantified in terms of the variance (Zhang, 2005).

Lemma D.1. Let z1, . . . , zn be a sequence of independent random variables. Consider a sequence of functionals ξk(z1, . . . , zk), k =
1, . . . , n.
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(a) Assume that |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ we have
n∑

k=1

ξk −
n∑

k=1

Ezk [ξk] ≤
(
2

n∑
k=1

b2k log
1

δ

) 1
2

. (D.1)

(b) Let σ2
n =

∑n
k=1 Ezk

[(
ξk−Ezk [ξk]

)2]
be the conditional variance. Assume that ξk−Ezk [ξk] ≤ b for each k. Let ρ ∈ (0, 1]

and δ ∈ (0, 1). With probability at least 1− δ we have
n∑

k=1

ξk −
n∑

k=1

Ezk [ξk] ≤
ρσ2

n

b
+
b log 1

δ

ρ
. (D.2)

(c) Let ρ > 0. With probability at least 1− δ we have
n∑

k=1

ξk ≤
1

ρ

n∑
k=1

logEzk exp(ρξk) +
log(1/δ)

ρ
.

Lemma D.2 is the Pinelis-Bernstein inequality for martingale difference sequences in a Hilbert space (Tarres and Yao, 2014).

Lemma D.2. Let {ξk}k∈N be a martingale difference sequence in Rd. Suppose that almost surely ∥ξk∥2 ≤ B and
t∑

k=1

E[∥ξk∥22|ξ1, . . . , ξk−1] ≤ σ2
t .

Then, for any δ ∈ (0, 1), the following inequality holds with probability at least 1− δ

max
1≤j≤t

∥∥ j∑
k=1

ξk
∥∥
2
≤ 2

(B
3
+ σt

)
log(2/δ).

We now present the proof of Theorem 9.

Proof of Theorem 9. By Eq. (1) and Assumption 3, we know

∥wt∥2 =
∥∥∥ t−1∑

k=1

ηk∇f(wk; zik)
∥∥∥
2
≤

t−1∑
k=1

ηkG. (D.3)

Define

RT =
(
4∥w∗∥22 + 2G2

T∑
t=1

η2t

) 1
2

+ 16
(2Gη1

3
+ σ

( T∑
t=1

η2t
) 1

2

)
log(4/δ) + 8GC̃

√
d log(R′

Tn) + log(1/δ)

n

T∑
t=1

ηt (D.4)

and R′
T = G

∑T
t=1 ηt, where C̃ is a constant independent of n, T, L,G and d (to be defined later). According to Eq. (1) and

Assumption 3, we know

∥wt+1 −w∗∥22 = ∥wt −w∗∥22 + η2t ∥∇f(wt; zit)∥22 + 2ηt⟨w∗ −wt,∇f(wt; zit)⟩
≤ ∥wt −w∗∥22 + η2tG

2 + 2ηt⟨w∗ −wt,∇f(wt; zit)⟩.

It then follows that

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 + η2tG
2 + 2ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩

+ 2ηt⟨w∗ −wt,∇FS(wt)−∇F (wt)⟩+ 2ηt⟨w∗ −wt,∇F (wt)⟩.

According to Assumption 5, we further get

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 + η2tG
2 + 2ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩

+ 2ηt⟨w∗ −wt,∇FS(wt)−∇F (wt)⟩+ 2ηtα(F (w
∗)− F (wt)).

It then follows that

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 + η2tG
2 + 2ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩

+ 2ηt∥w∗ −wt∥2∥∇FS(wt)−∇F (wt)∥2 + 2ηtα(F (w
∗)− F (wt)).
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We take a summation of the above inequality and get

∥wT+1 −w∗∥22 + 2α

T∑
t=1

ηt(F (wt)− F (w∗)) ≤ ∥w∗∥22 +G2
T∑

t=1

η2t

+ 2

T∑
t=1

ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩+ 2

T∑
t=1

ηt∥w∗ −wt∥2∥∇FS(wt)−∇F (wt)∥2. (D.5)

We define two random variable sequences

ξt = ηt⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩I∥wt∥2≤RT
,

ξ′t = ηt∥w∗ −wt∥2∥∇FS(wt)−∇F (wt)∥2I∥wt∥2≤RT
, t = 1, 2, . . . , T,

where IA is the indicator function for an event A, i.e., IA = 1 if A holds and 0 otherwise. It is clear that {ξt} is a martingale
difference sequence

Eit [ξt] = ηtI∥wt∥2≤RT
Eit

[
⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩

]
= 0.

Assumption 2 implies

Eit [(ξt − Eit [ξt])
2] = η2t I∥wt∥2≤RT

Eit

[
⟨w∗ −wt,∇f(wt; zit)−∇FS(wt)⟩2

]
≤ η2t I∥wt∥2≤RT

∥w∗ −wt∥22Eit

[
∥∇f(wt; zit)−∇FS(wt)∥22

]
≤ η2t

(
RT + ∥w∗∥2

)2
σ2.

Furthermore, Assumption 3 implies

|ξt| ≤ ηt∥w∗ −wt∥2∥∇f(wt; zit)−∇FS(wt)∥2I∥wt∥2≤RT

≤ 2Gηt∥w∗ −wt∥2I∥wt∥2≤RT
≤ 2Gηt(∥w∗∥2 +RT ).

According to Lemma D.2, we derive the following inequality with probability at least 1− δ/2 (ηt is nonincreasing)

max
t∈[T ]

t∑
k=1

ξk ≤ 2
(2Gη1(∥w∗∥2 +RT )

3
+

(
RT + ∥w∗∥2

)
σ
( T∑
t=1

η2t
) 1

2

)
log(4/δ). (D.6)

Furthermore, Theorem 1 and Eq. (3) imply the following inequality with probability at least 1 − δ/2 simultaneously for all
t ∈ [T ] (note ∥wt∥2 ≤ R′

T for t ∈ [T ] by Eq. (D.3))
t∑

k=1

ξ′t ≤ C̃G
√
d log(R′

Tn) + log(1/δ)

n

t∑
k=1

ηk∥w∗ −wk∥2I∥wk∥2≤RT
≤ C̃G(∥w∗∥2 +RT )

√
d log(R′

Tn) + log(1/δ)

n

t∑
k=1

ηk,

(D.7)

where C̃ is a universal constant independent of n, d, L,G and T . Let A be the event that both Eq. (D.6) and (D.7) hold
for t ∈ [T ]. The above discussions imply that P(A) ≥ 1 − δ. We now assume the event A happens and use mathematical
induction to prove ∥wt∥2 ≤ RT under this condition. The case t = 1 is clear since w1 is the zero vector. We now assume
maxk∈[t] ∥wk∥2 ≤ RT and we want to prove ∥wt+1∥2 ≤ RT . Since I∥wk∥2≤RT

= 1 for k ∈ [t] we know

ξk = ηk⟨w∗ −wk,∇f(wk; zik)−∇FS(wk)⟩,
ξ′k = ηk∥w∗ −wk∥2∥∇FS(wk)−∇F (wk)∥2, k ∈ [t].

It then follows from Eq. (D.5) that (T replaced by t)

∥wt+1 −w∗∥22 ≤ ∥w∗∥22 +G2
t∑

k=1

η2k + 2

t∑
k=1

ξk + 2

t∑
k=1

ξ′k.

It then follows from ∥wt+1∥22 ≤ 2∥w∗∥22 + 2∥wt+1 −w∗∥22 that

∥wt+1∥22 ≤ 4∥w∗∥22 + 2G2
t∑

k=1

η2k + 4

t∑
k=1

ξk + 4

t∑
k=1

ξ′k.
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We can plug Eq. (D.6) and Eq. (D.7) back into the above inequality and get

∥wt+1∥22 ≤ 4∥w∗∥22 + 2G2
t∑

k=1

η2k + 8
(2Gη1(∥w∗∥2 +RT )

3
+
(
RT + ∥w∗∥2

)
σ
( T∑
t=1

η2t
) 1

2

)
log(4/δ)

+ 4C̃G(∥w∗∥2 +RT )

√
d log(R′

Tn) + log(1/δ)

n

t∑
k=1

ηk.

Since ∥w∗∥2 ≤ RT , we further get

∥wt+1∥22 ≤ 4∥w∗∥22 + 2G2
t∑

k=1

η2k + 16RT

(2Gη1
3

+ σ
( T∑
t=1

η2t
) 1

2

)
log(4/δ) + 8C̃GRT

√
d log(R′

Tn) + log(1/δ)

n

T∑
t=1

ηt.

Note the right hand side of the above inequality is a linear function of RT . For the RT defined in Eq. (D.4), we know the
right hand side of the above inequality is smaller than R2

T (by Lemma B.7). This proves the case for k = t+ 1 and finishes
the proof of showing maxt∈[T ] ∥wt∥2 ≤ RT .

Under the event of A, we have ∥wt∥2 ≤ RT . It follows from (D.5), (D.6) and (D.7) that

2α

T∑
t=1

ηt(F (wt)− F (w∗)) ≤ ∥w∗∥22 +G2
T∑

t=1

η2t + 2

T∑
t=1

ξt + 2

T∑
t=1

ξ′t

≤ ∥w∗∥22 +G2
T∑

t=1

η2t + 4
(2Gη1(∥w∗∥2 +RT )

3
+

(
RT + ∥w∗∥2

)
σ
( T∑
t=1

η2t
) 1

2

)
log(4/δ)

+ 2C̃G(∥w∗∥2 +RT )

√
d log(R′

Tn) + log(1/δ)

n

T∑
t=1

ηt ≤ R2
T .

According to our definition of RT , we know

R2
T ≲ ∥w∗∥22 +G2

T∑
t=1

η2t log
2(1/δ) +

G2(d log(R′
Tn) + log(1/δ))

n

( T∑
t=1

ηt

)2

.

This gives Eq. (20).
For ηt ≍ 1/

√
T we have

∑T
t=1 η

2
t ≲ 1 and

∑T
t=1 ηt ≍

√
T . It then follows that

α
( T∑

t=1

ηt

)−1 T∑
t=1

ηt(F (wt)− F (w∗)) ≲
∥w∗∥22∑T

t=1 ηt
+
G2

∑T
t=1 η

2
t log

2(1/δ)∑T
t=1 ηt

+
G2(d log(R′

Tn) + log(1/δ))
∑T

t=1 ηt
n

≲
∥w∗∥22√

T
+
G2 log2(1/δ)√

T
+
G2(d log(R′

Tn) + log(1/δ))
√
T

n
.

This gives the stated bound and finishes the proof.

E. PROOF ON STOCHASTIC VARIANCE REDUCED OPTIMIZATION

In this section, we prove Theorem 15 and Theorem 16 on bounds of stochastic variance reduced optimization algorithms.

Proof of Theorem 15. To achieve the empirical accuracy E[∥∇FS(A(S))∥2] = O(ϵ), it was shown that SVRG requires T̃ =
O(n+ Ln

2
3 /ϵ2) stochastic gradient evaluations (Reddi et al., 2016). According to Assumption 3, we know ∥vt∥2 ≤ 3G and

therefore ∥A(S)∥2 ≤ 3GT̃ ≲ Gn+GLn
2
3 /ϵ2. Eq. (3) then implies

E
[∥∥∇F (A(S))−∇FS(A(S))

∥∥
2

]
= Õ

(√dE[L 1
2

S (A(S))]√
n

)
It then follows that

E
[∥∥∇F (A(S))∥∥

2

]
≤ E

[∥∥∇FS(A(S))
∥∥
2

]
+ E

[∥∥∇F (A(S))−∇FS(A(S))
∥∥
2

]
= ϵ+ Õ

(√dE[L 1
2

S (A(S))]√
n

)
.

The proof is completed.
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Proof of Theorem 16. To achieve the empirical accuracy E[∥∇FS(A(S))∥2] = O(ϵ), it was shown that Spider/SARAH requires
T̃ = Õ

(
min

{
σ3/ϵ3, n +

√
nL/ϵ2

})
stochastic gradient evaluations (Nguyen et al., 2017; Fang et al., 2018). According to

Assumption 3, we know ∥vt∥2 ≤ 3G and therefore ∥A(S)∥2 ≤ 3GT̃ ≲ Gn+
√
nGL/ϵ2. Eq. (3) then implies

E
[∥∥∇F (A(S))−∇FS(A(S))

∥∥
2

]
= Õ

(√dE[L 1
2

S (A(S))]√
n

)
.

It then follows that

E
[∥∥∇F (A(S))∥∥

2

]
≤ E

[∥∥∇FS(A(S))
∥∥
2

]
+ E

[∥∥∇F (A(S))−∇FS(A(S))
∥∥
2

]
= ϵ+ Õ

(√dE[L 1
2

S (A(S))]√
n

)
.

The proof is completed.

F. PROOF OF LEMMA A.8

In this section, we prove Lemma A.8. To this aim, we introduce several necessary lemmas. The following two lemmas
show the uniform deviation of an empirical process in terms of local Rademacher complexities. For simplicity, for a function
f : Z 7→ R and S = {z1, . . . , zn}, we denote

Pnf =
1

n

n∑
i=1

f(zi), Pf = Ez[f(z)].

Lemma F.1 (Lemma 6.1 in Bousquet (2002)). Let F be a class of functions that map Z to [a, b]. Assume there exists some
r > 0 such that for every f ∈ F , we have Pf2 ≤ r. Then, for every x > 0, with probability at least 1− 3 exp(−x)

sup
f∈F

∣∣Pf − Pnf | ≤ 6RS(F) +
√
2rx/n+

16(b− a)x
3n

.

Lemma F.2 (Lemma 6.2 in Bousquet (2002)). Let F be a class of functions that map Z to [a, b]. Let Fk be a sequence of
subsets of F such that supf∈Fk

Pf2 ≤ Kδk, where δk = (b− a)2−k and K > 0. For any δ > 0, denote

x(δ) = 2 log
( π√

2
log2

2(b− a)
δ

)
. (F.1)

Then for all x > 0, with probability at least 1− exp(−x), simultaneously for all k ≥ 0 and all f ∈ Fk∣∣Pf − Pnf
∣∣ ≤ 6RS(Fk) +

√
2Kδk(x+ x(δk))

n
+

16(b− a)(x+ x(δk))

3n
.

We now present the proof of Lemma A.8, which follows closely from Section 6.2 in Bousquet (2002). For a sub-root
function ϕ with the fixed point r∗, we have that ϕ(rr∗) ≤

√
rr∗ for any r ≥ r∗. We will use this property several times in

the following proof.

Proof of Lemma A.8. Eq. (A.4) was proved in Bousquet (2002). We only prove Eq. (A.3). For any k ≥ 0, denote δk = b2−k

and introduce
Fk =

{
f ∈ F : δk+1 < Pf ≤ δk

}
.

It is clear that Pf2 ≤ bPf ≤ bδk for any f ∈ Fk, k ≥ 0. According to Lemma F.2, with probability at least 1 − exp(−x),
simultaneously for all k ≥ 0 and for all f ∈ Fk∣∣Pf − Pnf

∣∣ ≤ 6RS(Fk) +

√
2bδk(x+ x(δk))

n
+

16b(x+ x(δk))

3n
, (F.2)

where x(δ) is defined in Eq. (F.1). Now we always assume that Eq. (F.2) holds, which happens with probability 1− exp(−x).
Introduce the notation

Uk = δk + 6RS(Fk) +

√
2bδk(x+ x(δk))

n
+

16b(x+ x(δk))

3n
.

Then for any f ∈ Fk, we have Pnf ≤ Uk, which implies Fk ⊆ {f ∈ F : Pnf ≤ Uk} and therefore

Eϵ

[
sup
f∈Fk

1

n

n∑
i=1

ϵif(zi)
]
≤ Eϵ

[
sup

f :Pnf≤Uk

1

n

n∑
i=1

ϵif(zi)
]
.

This together with the definition of Uk implies

Uk ≤ δk + 6ϕn(Uk) +

√
2bδk(x+ x(δk))

n
+

16b(x+ x(δk))

3n
.
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Let k0 be the largest number such that δk0
> b/n, from which we know δk0

≤ 2b/n. We now consider two cases. In the
first case, we consider any k < k0. For these k, we know δk ≥ 2δk0 > 2b/n and therefore (n ≥ 5) (Bousquet, 2002)

x(δk) ≤ 2 log(π/
√
2 log2 n) ≤ 6 log log n.

If Uk > r∗n, the property of sub-root function then implies ϕn(Uk) ≤
√
Ukr∗n. It then follows that

Uk ≤ δk + 6ϕn(Uk) +
√
2δkr0 + 16r0/3 ≤ δk + 6

√
Ukr∗n +

√
2δkr0 + 16r0/3.

Solving this quadratic inequality of
√
Uk then gives (Lemma B.7 with x =

√
Uk)

Uk ≤ 36r∗n + 2δk +
√
8δkr0 + 32r0/3 := rn(δk).

In the other case that Uk ≤ r∗n, the above inequality still holds. Therefore, we can apply Eq. (F.2) to derive that for all k ≤ k0
and f ∈ Fk

|Pf − Pnf | ≤ 6Eϵ

[
sup

f :Pnf≤rn(δk)

1

n

n∑
i=1

ϵif(zi)
]
+
√

2δkr0 + 16r0/3

≤ 6ϕn(rn(δk)) +
√
2δkr0 + 16r0/3 ≤ 6ϕn(rn(2Pf)) +

√
2δkr0 + 16r0/3

≤ 6
√
r∗nrn(2Pf) +

√
2δkr0 + 16r0/3 ≤ 6

√
r∗n

(
36r∗n + 4Pf + 4

√
Pfr0 + 32r0/3

) 1
2

+
√
2δkr0 + 16r0/3

≤ 6
√
r∗n

(
36r∗n + 8Pf + 35r0/3

) 1
2

+ 2
√
Pfr0 + 16r0/3 ≤ 2

√
Pf

(
6
√
2r∗n +

√
r0
)
+ 6

√
r∗n

(
36r∗n + 35r0/3

) 1
2

+ 16r0/3,

where we have used the fact that δk ≤ 2Pf for f ∈ Fk in the second inequality and the fact ϕn(rn(2Pf)) ≤
√
r∗nrn(2Pf)

due to the sub-root property. It then follows that

Pnf ≤ Pf + 2
√
Pf

(
6
√

2r∗n +
√
r0
)
+ 6

√
r∗n

(
36r∗n + 35r0/3

) 1
2

+ 16r0/3,

which further implies (note 12
√
2 + 6

√
12 ≤ 38)

Pnf ≤ Pf + Pf +
(
6
√

2r∗n +
√
r0
)2

+ 36r∗n + 6
√

12r0r∗n + 16r0/3

≤ 2Pf + 72r∗n + r0 + 12
√
2r∗nr0 + 36r∗n + 6

√
12r0r∗n + 7r0 ≤ 2Pf + 108r∗n + 10r0 + 38

√
r0r∗n.

In the second case, we consider k ≥ k0. Then Pf ≤ 2b/n for any f ∈ Fk. Then we introduce

F̃ =
{
f ∈ F : Pf ≤ 2b/n

}
.

For any f ∈ F̃ , we have Pf2 ≤ bPf ≤ 2b2/n. We then apply Lemma F.1 to derive the following inequality with probability
at least 1− 3 exp(−x′)

sup
f∈F̃

∣∣Pf − Pnf | ≤ 6RS(F̃) +
√
4b2x′/n2 +

16bx′

3n
. (F.3)

We always assume Eq. (F.3) holds, which happens with probability at least 1− 3 exp(−x′). It then follows that

Pnf ≤
2b

n
+ 6RS(F̃) +

√
4b2x′/n2 +

16bx′

3n
:= Ũ .

That is, F̃ ⊆ {f ∈ F : Pnf ≤ Ũ} and therefore (x′ ≥ 1)

Ũ ≤ 2b

n
+ 6Eϵ

[
sup

f :Pnf≤Ũ

1

n

n∑
i=1

ϵif(zi)
]
+
√

4b2x′/n2 +
16bx′

3n
≤ 2b

n
+ 6ϕn(Ũ) +

8bx′

n
.

If Ũ ≤ r∗n, then we have Pnf ≤ r∗n by the definition of Ũ . Otherwise, we have ϕn(Ũ) ≤
√
r∗nŨ (by sub-root property) and

therefore
Ũ ≤ 6

√
r∗nŨ +

8bx′ + 2b

n
.

We solve the above quadratic inequality of
√
Ũ and derive Ũ ≤ 36r∗n + 16bx′+4b

n (Lemma B.7 with x =
√
Ũ ). That is,

Pnf ≤ 36r∗n +
16bx′ + 4b

n
, ∀f ∈ Ũ .

We then combine the above two cases, and choose x′ = x + log 3 and derive the stated bound with probability at least
1− exp(−x). The proof is completed.
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G. PROBLEM CASES WITH BOUNDED GRADIENTS

In this section, we provide some special problem cases where Assumption 3 holds.

A. Shallow Neural Networks
Let ϕ : R 7→ R be an activation function. Suppose that there exists a Gϕ > 0 such that |ϕ′(a)| ≤ Gϕ for all a ∈ R. Examples

of such activation functions include the ReLU function and the sigmoid function. Consider shallow neural networks with the
form

Φ(W;x) =
1√
m

m∑
j=1

ajϕ(⟨w(j), x⟩),

where m is the number of nodes in the hidden layer, aj ∈ {−1, 1} indicates the connection weight between the j-th node in
the hidden layer to the node in the output layer, and w(j) ∈ Rd denotes the connection weight between the jth hidden node
and the nodes in the input layer. Let ℓ : R× Y 7→ R+ with |ℓ′(a, y)| ≤ Gℓ for any a ∈ R and y. Examples of such ℓ include
the logistic loss and the Huber’s loss. Consider the following loss function

f(W; z) = ℓ(Φ(W;x), y).

Assume that ∥x∥2 ≤ 1 for all x ∈ X . Then, we know

∇Φ(W;x) =
1√
m

 a1ϕ
′(⟨w(1), x⟩)x

...
amϕ

′(⟨w(m), x⟩)x

 ,

from which we know

∥∇Φ(W;x)∥2F =
1

m

m∑
j=1

(
ϕ′(⟨w(j), x⟩)

)2∥x∥22 ≤ G2
ϕ,

where ∥ · ∥F denotes the Frobenius norm. By chain rule, we know ∇f(W; z) = ℓ′(Φ(W;x), y)∇Φ(W;x) and therefore

∥∇f(W; z)∥2 ≤ |ℓ′(Φ(W;x), y)|∥∇Φ(W;x)∥F ≤ GϕGℓ.

Therefore, Assumption 3 holds with G = GϕGℓ.

B. Robust Regression
For robust regression, we often consider loss functions of the form f(w; z) = ℓ(y − ⟨w, x⟩), where ℓ : R 7→ R+ is a

potentially nonconvex function to improve robustness. A typical example is the Tukey’s biweight loss, which is defined as

ℓ(a) =

{
1− (1− a2/a20)3, if |a| ≤ a0
1, otherwise,

where a0 > 0 is a hyperparameter. It is clear that for any |a| ≤ a0 we have

ℓ′(a) =
6a

a20

(
1− a2

a20

)2

=⇒ |ℓ′(a)| ≤ 6a

a20
≤ 6

a0
.

If we assume ∥x∥2 ≤ 1, then for any w and z we have

∥∇f(w; z)∥2 = |ℓ′(y − ⟨w, x⟩)|∥x∥2 ≤ 6/a0.

That is, Assumption 3 holds with G = 6/a0.

C. Generalized Linear Models
For generalized linear models, we consider loss functions of the form f(w; z) =

(
ℓ(w⊤x) − y

)2
, where ℓ : R 7→ R is

a link function. Generalized linear models have shown superior performance as compared to convex formulations in some
applications. Standard choices of ℓ include the sigmoid link ℓ(a) = (1 + exp(−a))−1 and the probit link ℓ(a) = Φ(a), where
Φ is the Gaussian cumulative distribution function. Now we show that under the assumption ∥x∥2 ≤ 1, |y| ≤ 1 and the choice
ℓ(a) = (1 + exp(−a))−1, Assumption 3 holds. Indeed, we have

|ℓ(a)| = (1 + exp(−a))−1 ≤ 1

and
ℓ′(a) = − − exp(−a)

(1 + exp(−a))2
=⇒ |ℓ′(a)| = exp(−a)

(1 + exp(−a))2
≤ exp(−a)

(2 exp(−a/2))2
=

1

4
.

It then follows that
∥∇f(w; z)∥2 = 2

∣∣ℓ(w⊤x)− y
∣∣∣∣ℓ′(w⊤x)

∣∣∥x∥2 ≤ 1.

That is, Assumption 3 holds with G = 1.
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L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH: A novel method for machine learning problems using stochastic recursive

gradient,” in International Conference on Machine Learning. JMLR. org, 2017, pp. 2613–2621.
C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator,”

in Advances in Neural Information Processing Systems, 2018, pp. 689–699.


	Introduction
	Related Work
	Problem Formulation
	Uniform Convergence of Gradients
	Upper Bounds
	Dimension-independent Bounds 
	Lower Bounds

	Generalization Analysis
	Stochastic Gradient Descent
	Differentially Private SGD
	Stochastic Variance Reduced Optimization

	Proof on Stochastic Gradient Descent
	Proof of Theorem 7
	Proof of Theorem 10
	Proofs on Differentially Private SGD

	Conclusions
	Biographies
	Yunwen Lei

	suppr3.pdf
	Proof on Upper Bounds of Uniform Convergence
	Definitions and Classical Lemmas
	Bounds on Square Norm of Gradients
	Proof of Theorem 1

	Proof of Theorem 3
	Lower Bounds of Uniform Convergence
	Proof of Proposition 6
	Lower Bounds in Expectation

	Proof of Theorem 9
	Proof on Stochastic Variance Reduced Optimization
	Proof of Lemma A.8
	Problem Cases with Bounded Gradients
	Shallow Neural Networks
	Robust Regression
	Generalized Linear Models



