

專業 創新 胸懷全球 Professional・Creative For The World

Convergence of Online Mirror Descent Algorithms

Yunwen Lei

Joint work with Professor Ding-Xuan Zhou (City University of Hong Kong).

Background

Gradient Descent

Consider optimization problem

$$\min_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^n \phi(y_i, \langle w, x_i \rangle) + r(w)$$

data fitting term regularizer

- examples $z_t = (x_t, y_t)$ drawn from measure ρ on $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- ▶ linear model $x \to \langle w, x \rangle$, loss function $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$
- **big data** era: large sample size *n*, dimension *d*

<u>Gradient Descent</u>: with step size $\{\eta_t\}$ and initial $w_1 \in \mathbb{R}^d$

$$w_{t+1} = w_t - \eta_t \nabla F(w_t), \quad t \in \mathbb{N}$$

- first-order method: only use information on gradients
- ▶ **Hilbert space**: w_t in primal space, $\nabla F(w_t)$ in dual space
- computationally expensive: gradient calculation requires going through all examples

Mirror Descent and Interpretation

- A primal space $(\mathcal{W}, \|\cdot\|)$ with its dual $(\mathcal{W}^*, \|\cdot\|_*)$
- A differentiable mirror map $\Psi : \mathcal{W} \to \mathbb{R}, \sigma$ -strongly convex

$$D_{\Psi}(w,\tilde{w}) := \Psi(w) - \underbrace{\left[\Psi(\tilde{w}) + \langle w - \tilde{w}, \nabla \Psi(\tilde{w}) \rangle\right]}_{2} \geq \frac{\sigma}{2} \|w - \tilde{w}\|^{2}$$

first-order approximation of $\Psi(w)$ at \tilde{w}

- $D_{\Psi}(w, \tilde{w})$ called the **Bregman distance** between w and \tilde{w}
- with step size $\{\eta_t\}$ (Nemirovsky and Yudin, 1983)

$$\nabla \Psi(w_{t+1}) = \nabla \Psi(w_t) - \eta_t \nabla F(w_t)$$

As a gradient descent in the dual space (Nemirovsky and Yudin, 1983)

- $\nabla \Psi$ maps $w_t \in \mathcal{W}$ to $\nabla \Psi(w_t) \in \mathcal{W}^*$
- ▶ performs gradient descent in W^* as $\nabla F(w_t) \in W^*$

use mirror map to capture **geometry** of problem by $(\mathcal{W}, \|\cdot\|)$

Mirror Descent and Interpretation

As a nonlinear subgradient method

(Beck and Teboulle, 2003)

$$w_{t+1} = \arg\min_{w \in \mathcal{W}} \underbrace{F(w_t) + \langle w - w_t, \nabla F(w_t) \rangle}_{\text{first-order approximation of } F(w) \text{ at } w_t} + \underbrace{\eta_t^{-1} D_{\Psi}(w, w_t)}_{\text{stabilizer}}$$

• if
$$\Psi(w) = \frac{1}{2} \|w\|_2^2$$
, $D_{\Psi}(w, w_t) = \frac{1}{2} \|w - w_t\|_2^2$, reduce to GD

use mirror map to induce **Bregman distance** instead of Euclidean distance

Typical choice of Ψ

•
$$\Psi(w) = \frac{1}{2} ||w||_p^2, p \in (1, 2]$$
, then

 $(\mathcal{W}, \|\cdot\|) = (\mathbb{R}^d, \|\cdot\|_p), \quad (\mathcal{W}^*, \|\cdot\|_*) = (\mathbb{R}^d, \|\cdot\|_{\frac{p}{p-1}})$

Banach space $(\mathbb{R}^d, \|\cdot\|_p)$ with $p = 1 + \frac{1}{\log d}$ is preferable in the sparse case, **logarithmic** dependence on *d*

Online Mirror Descent

Motivation

- examples (x_t, y_t) arrives sequentially from a measure ρ
- objective function

$$F(w) = \mathbb{E}_{Z}[f(w, Z)], f(w, Z) = \phi(\langle w, X \rangle, Y) + r(w)$$

Online Mirror Descent

$$\nabla \Psi(w_{t+1}) = \nabla \Psi(w_t) - \eta_t \nabla_w [f(w_t, z_t)], \qquad t \in \mathbb{N}.$$
(1)

- ► an instantaneous regularized loss $f(w, z_t) = \phi(\langle w, x_t \rangle, y_t) + r(w)$ built upon arrival of z_t
- computationally cheap: gradient calculation on an example
- cover stochastic setting by uniformly drawing z_t in a sample

Online Mirror Descent Algorithm—Instantiations

<u>Online Gradient Descent</u>: $\Psi = \Psi_2$

$$w_{t+1} = w_t - \eta_t \nabla_w [f(w_t, z_t)].$$

Randomized Kaczmarz Algorithm:

 $\Psi = \Psi_2, r(w) = 0, \phi(a, y) = \frac{1}{2}(a - y)^2$ (Lin and Zhou, 2015)

$$w_{t+1} = w_t - \eta_t [\langle w_t, x_t \rangle - y_t] x_t.$$

Online *p*-norm Algorithm: $\Psi = \Psi_p, p \in (1, 2]$ (Shalev-Shwartz et al., 2012)

$$\begin{cases} v_{t+1} = v_t - \eta_t \nabla_w [f(w_t, z_t)], \\ w_{t+1} = \|v_{t+1}\|_p^{2-p} (\operatorname{sgn}(v_{t+1}(i))|v_{t+1}(i)|)_{i=1}^d. \end{cases}$$

.

Objectives

Objectives

This study aims to address these questions:

What is the role of step sizes in the algorithm? necessary and sufficient conditions for the convergence of w_t to

 $w^* = \arg\min_{w \in \mathcal{W}} F(w)?$

- Can we establish both lower and upper bounds for convergence rates matching up to a constant factor?
- What is the essential difference between online mirror descent and its batch analog?

Main Results

Definitions

A differentiable function $f : \mathcal{W} \to \mathbb{R}$ is σ -strongly convex w.r.t $\| \cdot \|$ if $D_f(w, \tilde{w}) \ge \frac{\sigma}{2} \|w - \tilde{w}\|^2$, and *L*-strongly smooth w.r.t. $\| \cdot \|$ if $D_f(w, \tilde{w}) \le \frac{L}{2} \|w - \tilde{w}\|^2$.

Definition

We say $\nabla \Psi$ satisfies an **incremental condition** (of order 1) at infinity if there exists a constant $C_{\Psi} > 0$ s.t.

$$\|\nabla\Psi(w)\|_* \le C_{\Psi}(1+\|w\|), \qquad \forall w \in \mathcal{W}.$$
 (2)

- intuition: the dual norm of ∇Ψ(w) is bounded by a linear function of ||w||
- used to show the necessary condition for the convergence
- ► satisfied by strongly-smooth mirror maps and *p*-norm divergence Ψ_p

Definitions

Definition

We say the convexity of Ψ is controlled by that of *F* around w^* with a convex function $\Omega : [0, \infty) \to \mathbb{R}_+$ satisfying $\Omega(0) = 0$ and $\Omega(u) > 0$ for u > 0 if the pair (Ψ, F) satisfies

$$\langle w^* - w, \nabla F(w^*) - \nabla F(w) \rangle \ge \Omega \left(D_{\Psi}(w^*, w) \right), \quad \forall w \in \mathcal{W}.$$
 (3)

related to strong convexity

$$\langle w^* - w, \nabla F(w^*) - \nabla F(w) \rangle = D_F(w, w^*) + D_F(w^*, w).$$

- typical choices of Ω include $\Omega(u) = Cu^{\alpha}, \alpha \geq 1$.
 - ▶ strongly smooth Ψ , strongly convex *F*, (3) holds with $\Omega(u) = C_{\Psi,L}u$ for some $C_{\Psi,L} > 0$.
 - $\Psi = \Psi_p$, strongly convex *F*, (3) holds with $\Omega(u) = C_{\Psi,L}\Omega_p(u)$

$$\Omega_p(u) = \begin{cases} u + \frac{1}{\tau_p} - 1, & \text{if } u \ge 1, \\ \frac{1}{\tau_p} u^{\tau_p}, & \text{if } 0 \le u < 1, \end{cases} \qquad \tau_p := \frac{2}{\min\{p, 3 - p\}}.$$
(4)

Definitions

Abbildung: Plots of the convex function Ω_p with $p = \frac{4}{3}$ (red line), $p = \frac{3}{2}$ (blue line) and p = 2 (black line).

Ω_2 defined by (4) with p = 2 is a Huber loss! (Huber et al., 1964)

Convergence of Online Mirror Descent Algorithms

Main Results—Positive Variances

Assumptions

- positive variances: $\inf_{w \in \mathcal{W}} \mathbb{E}_Z \left[\| \nabla_w [f(w, Z)] \|_* \right] > 0$
- ▶ smoothness: $f(\cdot, z)$ is *L*-strongly smooth for a.e. $z \in Z$
- $\nabla \Psi$ continuous at w^* , satisfies incremental condition at ∞
- ▶ pair (Ψ, F) meets (3) at w^* with convex $\Omega : [0, \infty) \to \mathbb{R}_+$

<u>Results</u>: $\lim_{t\to\infty} \mathbb{E}[D_{\Psi}(w^*, w_t)] = 0$ if and only if

$$\lim_{t\to\infty}\eta_t=0 \text{ and } \sum_{t=1}^{\infty}\eta_t=\infty$$

Furthermore:

• If Ψ is strongly smooth and $\lim_{t\to\infty} \eta_t = 0$, then

$$\mathbb{E}[D_{\Psi}(w^*, w_T)] \ge \frac{\tilde{C}}{T - t_0 + 1}, \quad \forall T \ge t_0$$

• If
$$\Omega(u) = \sigma_F u$$
 and $\eta_t = \frac{4}{(t+1)\sigma_F}$, then $\mathbb{E}[D_{\Psi}(w^*, w_T)] = O\left(\frac{1}{T}\right)$.

Main Results—Zero Variances

Assumptions

- zero variances: $\mathbb{E}_{Z}[\|\nabla_{w}[f(w^{*}, Z)]\|_{*}] = 0$
- ▶ smoothness: $f(\cdot, z)$ is *L*-strongly smooth for a.e. $z \in Z$
- $\nabla \Psi$ continuous at w^* , satisfies incremental condition at ∞
- ▶ pair (Ψ, F) meets (3) at w^* with convex $\Omega : [0, \infty) \to \mathbb{R}_+$

•
$$w_1 \neq w^*$$
, $\eta_t \leq \frac{\sigma_{\Psi}}{(2+\kappa)L}$ for some $\kappa > 0$

<u>**Results</u>**: $\lim_{t\to\infty} \mathbb{E}[D_{\Psi}(w^*, w_t)] = 0$ if and only if $\sum_{t=1}^{\infty} \eta_t = \infty$.</u>

Furthermore:

• If
$$\Omega(u) = \sigma_F u$$
 and $\eta_t \equiv \eta_1 < \frac{\sigma_\Psi}{2L}$, then

$$\left(1-\frac{2L\eta_1}{\sigma_{\Psi}}\right)^T D_{\Psi}(w^*,w_1) \leq \mathbb{E}[D_{\Psi}(w^*,w_T)] \leq \left(1-\frac{\sigma_F \eta_1}{2}\right)^T D_{\Psi}(w^*,w_1).$$

for cases with zero variances, online mirror descent behaves analogously to mirror descent!

Convergence of Online Mirror Descent Algorithms

Main Results—Almost Sure Convergence

Assumptions

- ▶ smoothness: $f(\cdot, z)$ is *L*-strongly smooth for a.e. $z \in Z$
- $\nabla \Psi$ continuous at w^* , satisfies incremental condition at ∞
- ▶ pair (Ψ, F) meets (3) at w^* with convex $\Omega : [0, \infty) \to \mathbb{R}_+$
- step size sequence satisfies

$$\sum_{t=1}^{\infty} \eta_t = \infty \quad \text{and} \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty$$

<u>**Results</u>**: $\{\|w_t - w^*\|^2\}_{t \in \mathbb{N}}$ converges to 0 almost surely</u>

Assumptions—regularization scheme

- $R := \sup_{x \in \mathcal{X}} \|x\|_* < \infty, \|\cdot\| = \|\cdot\|_2$
- ▶ the loss function $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ is ℓ_{ϕ} -strongly smooth
- ▶ regularized loss $f(w, z) = \phi(\langle w, x \rangle, y) + \lambda ||w||_2^2$ with $\lambda > 0$
- ▶ Ψ is either a *p*-norm divergence Ψ = Ψ_p with 1

Strongly smooth loss functions:

- least square: $\phi(y, a) = (y a)^2$
- ► logistic loss: $\phi(y, a) = \log(1 + \exp(-ya))$
- ► 2-norm hinge loss: $\phi(y, a) = \max(0, 1 ya)^2$

•
$$\phi(a, y) = 1/(1 + e^{ay})$$

Results:

- (a) Assume $\inf_{w \in \mathcal{W}} \mathbb{E}_Z \left[\|\nabla_w [f(w, Z)]\|_* \right] > 0$. Then
 - $\lim_{t\to\infty} \mathbb{E}[\|w_t w^*\|^2] = 0 \text{ if and only if } \lim_{t\to\infty} \eta_t = 0 \text{ and}$ $\sum_{t=1}^{\infty} \eta_t = \infty. \text{ Furthermore, if } \Psi \text{ strongly smooth, then for}$ some $\tilde{T}_1, \tilde{C} > 0 \text{ s.t. } \mathbb{E}[\|w_T - w^*\|^2] \ge \tilde{C}T^{-1} \text{ for } T \ge \tilde{T}_1. \text{ If}$ $\eta_t = \frac{4}{(t+1)\sigma} \text{ for some } \sigma > 0, \text{ then } \mathbb{E}[\|w_T - w^*\|^2] = O(T^{-1}).$
- (b) If $\mathbb{E}_{Z}[\|\nabla_{w}[f(w^{*}, Z)]\|_{*}] = 0$ and for some $\kappa > 0$, $\eta_{t} \leq \frac{\sigma_{\Psi}}{2(\ell_{\phi}R^{2}+\lambda)(2+\kappa)}$. Then $\lim_{t\to\infty} \mathbb{E}[\|w_{t} - w^{*}\|^{2}] = 0$ if and only if $\sum_{t=1}^{\infty} \eta_{t} = \infty$. Furthermore, if Ψ is strongly smooth and $\eta_{t} \equiv \eta_{1} < \frac{\sigma_{\Psi}}{4(\ell_{\phi}R^{2}+\lambda)}$, then there exist $\tilde{c}_{1}, \tilde{c}_{2} \in (0, 1)$ s.t.

$$\tilde{c}_1^T \|w_1 - w^*\|^2 \le \mathbb{E}[\|w_T - w^*\|^2] \le \tilde{c}_2^T \|w_1 - w^*\|^2, \quad \forall T \in \mathbb{N}.$$

(c) If the step size sequence satisfies $\sum_{t=1}^{\infty} \eta_t = \infty$ and $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, then $\lim_{t\to\infty} ||w_t - w^*|| = 0$ almost surely.

Assumptions-no regularization

- $\blacktriangleright R := \sup_{x \in \mathcal{X}} \|x\|_* < \infty$
- unregularized least squares: $f(w, z) = \frac{1}{2}(y \langle w, x \rangle)^2$
- ▶ Ψ is either a *p*-norm divergence Ψ = Ψ_p with 1
- $\nabla \Psi(w_1)$ belonging to the range of $\mathcal{C}_X^{\top}, \mathcal{C}_X := \mathbb{E}_Z[XX^{\top}]$
- Define $w_{\rho} = \min_{w \in \mathcal{W}} \{ \Psi(w) : \mathcal{C}_X w = \mathbb{E}_Z[XY] \}.$

strongly smooth mirror map

randomized Kaczmarz algorithm

(Lin and Zhou, 2015)

$$\Psi(w) = \frac{1}{2} \|w\|_2^2.$$

smoothed linearized Bregman iteration

(Cai et al., 2009)

$$\Psi^{(\epsilon,\lambda)}(w) = \lambda \sum_{i=1}^d g_\epsilon(w(i)) + \frac{1}{2} \|w\|_2^2,$$

where
$$g_{\epsilon}(\xi) := \frac{\xi^2}{2\epsilon}$$
 for $|\xi| \le \epsilon$ and $|\xi| - \frac{\epsilon}{2}$ for $|\xi| > \epsilon$

Results:

(a) Assume inf_{w∈W} [|Y - ⟨w, X⟩| ||X||_{*}] > 0. Then lim_{t→∞} E[||w_t - w_ρ||²] = 0 if and only if lim_{t→∞} η_t = 0 and ∑[∞]_{t=1} η_t = ∞. Furthermore, if Ψ strongly smooth, then for some T̃₁, C̃ > 0 s.t. E[||w_T - w_ρ||²] ≥ C̃T⁻¹ for T ≥ T̃₁. If η_t = 4/(t+1)σ for some σ > 0, then E[||w_T - w_ρ||²] = O(T⁻¹).
(b) If E_Z [|Y - ⟨w, X⟩| ||X||_{*}] = 0 and for some κ > 0, η_t ≤ σ_Ψ/(2+κ)R². Then lim_{t→∞} E[||w_t - w_ρ||²] = 0 if and only if ∑[∞]_{t=1} η_t = ∞. Furthermore, if Ψ is strongly smooth and η_t ≡ η₁ < σ_Ψ/(2+κ)R², then there exist c̃₁, c̃₂ ∈ (0, 1) s.t.

$$\tilde{c}_1^T \|w_1 - w_\rho\|^2 \le \mathbb{E}[\|w_T - w_\rho\|^2] \le \tilde{c}_2^T \|w_1 - w_\rho\|^2, \quad \forall T \in \mathbb{N}.$$

(c) If the step size sequence satisfies $\sum_{t=1}^{\infty} \eta_t = \infty$ and $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, then $\lim_{t\to\infty} ||w_t - w_\rho|| = 0$ almost surely.

Discussions

Existing studies consider convergence of online gradient descent algorithms

Euclidean space:

almost sure convergence studied under assumptions (Bottou, 1998)

 $\inf_{\|w-w^*\|_2^2 > \epsilon} \langle w-w^*, \nabla F(w) \rangle > 0, \ \forall \epsilon > 0, \quad \|\nabla F(w)\|_2^2 \le A + B \|w-w^*\|_2^2, \ \forall w \in \mathcal{W}$

Reproducing kernel Hilbert space:

sufficient conditions established for regression, classification

(Smale and Yao, 2006; Ying and Zhou, 2006)

Randomized Kaczmarz Algorithm:

(Lin and Zhou, 2015)

- sufficient and necessary conditions established
- analysis only applies to least squares loss and $\Psi = \Psi_2$
- require restrictions $0 < \eta_t < 2$
- lower bounds $||w_t w^*||_2^2 \ge \widetilde{C}t^{-2}$ not tight

Proof

A key Identity

One-step progress of OMD in terms of the excess Bregman distance $D_{\Psi}(w^*, w_{t+1}) - D_{\Psi}(w^*, w_t)$

Lemma

The following identity holds for $t \in \mathbb{N}$

$$\mathbb{E}_{z_t}[D_{\Psi}(w^*, w_{t+1})] - D_{\Psi}(w^*, w_t) = \eta_t \langle w^* - w_t, \nabla F(w_t) \rangle + \mathbb{E}_{z_t}[D_{\Psi}(w_t, w_{t+1})].$$
(5)

Idea of Analysis: control $\mathbb{E}[D_{\Psi}(w^*, w_{t+1})]$ from both above and lower in terms of $\mathbb{E}[D_{\Psi}(w^*, w_t)]$, using strong smooth of *F*, strong convexity of Ψ and convexity of pair (Ψ, F)

Positive Variances—Necessary Conditions

<u>necessary condition</u>: $\lim_{t \to \infty} \eta_t = 0.$ Denote $\sigma := \inf_{w \in \mathcal{W}} \mathbb{E}_Z [\|\nabla_w [f(w, Z)]\|_*].$

• with incremental condition and continuity of Ψ at w^* , we show

$$\lim_{t\to\infty} \mathbb{E}[D_{\Psi}(w^*, w_t)\|_*] = 0 \Longrightarrow \lim_{t\to\infty} \mathbb{E}[\|\nabla \Psi(w_t) - \nabla \Psi(w^*)\|_*] = 0$$

•
$$\lim_{t\to\infty}\eta_t = 0$$
 then follows by

 $\eta_t \sigma \leq \eta_t \mathbb{E}_{z_t}[\|\nabla_w[f(w_t, z_t)]\|_*] \leq \|\nabla \Psi(w_t) - \nabla \Psi(w^*)\|_* + \mathbb{E}_{z_t}[\|\nabla \Psi(w_{t+1}) - \nabla \Psi(w^*)\|_*]$

Positive Variances—Necessary Conditions

necessary condition: $\sum_{t=1}^{\infty} \eta_t = \infty$.

 by L_F-strong smoothness of F and σ_Ψ-strong convexity of Ψ, we get

$$\langle w^* - w_t, \nabla F(w_t) \rangle \ge -L_F \|w^* - w_t\|^2 \ge -\frac{2L_F}{\sigma_\Psi} D_\Psi(w^*, w_t).$$

- ► this plugged into (5) gives $(a = 2L_F \sigma_{\Psi}^{-1})$ $\mathbb{E}[D_{\Psi}(w^*, w_{t+1})] \ge (1 - a\eta_t)\mathbb{E}[D_{\Psi}(w^*, w_t)] + \mathbb{E}[D_{\Psi}(w_t, w_{t+1})].$ (6)
- apply this inequality repeatedly gives

$$\mathbb{E}[D_{\Psi}(w^*, w_{T+1})] \ge \exp\Big(-2a\sum_{t=t_0+1}^T \eta_t\Big)\mathbb{E}[D_{\Psi}(w^*, w_{t_0+1})].$$

Positive Variances—Sufficient Conditions

by $D_g(w, \tilde{w}) = D_{g^*}(\nabla g(\tilde{w}), \nabla g(w))$ (g* is Fenchel-conjugate)

$$D_{\Psi}(w_{t}, w_{t+1}) = D_{\Psi} * (\nabla \Psi(w_{t+1}), \nabla \Psi(w_{t})) \leq \frac{1}{2\sigma_{\Psi}} \|\nabla \Psi(w_{t+1}) - \nabla \Psi(w_{t})\|_{*}^{2}$$
$$= \frac{\eta_{t}^{2}}{2\sigma_{\Psi}} \|\nabla_{w}[f(w_{t}, z_{t})]\|_{*}^{2}.$$

by *L*-strong smoothness of $f(\cdot, z)$, we derive (co-coercivity)

$$\begin{aligned} \|\nabla_{w}[f(w_{t},z_{t})]\|_{*}^{2} \leq & 2\|\nabla_{w}[f(w_{t},z_{t})] - \nabla_{w}[f(w^{*},z_{t})]\|_{*}^{2} + 2\|\nabla_{w}[f(w^{*},z_{t})]\|_{*}^{2} \\ \leq & 2L\langle w^{*} - w_{t}, \nabla F(w^{*}) - \nabla F(w_{t}) \rangle + 2\|\nabla_{w}[f(w^{*},z_{t})]\|_{*}^{2} \end{aligned}$$

plugged into one-step progress identity (5) gives

$$\begin{split} \mathbb{E}_{zt}[D_{\Psi}(w^{*},w_{t+1})] \leq & D_{\Psi}(w^{*},w_{t}) - \frac{\eta_{t}}{2} \langle w^{*} - w_{t}, \nabla F(w^{*}) - \nabla F(w_{t}) \rangle + \frac{\eta_{t}^{2}}{\sigma_{\Psi}} \mathbb{E}_{zt} \left[\| \nabla_{w}[f(w^{*},z_{t})] \|_{*}^{2} \right] \\ \leq & D_{\Psi}(w^{*},w_{t}) - \frac{\eta_{t}}{2} \Omega(D_{\Psi}(w^{*},w_{t})) + b\eta_{t}^{2}, \quad b := \frac{1}{\sigma_{\Psi}} \mathbb{E}_{Z} \left[\| \nabla_{w}[f(w^{*},Z)] \|_{*}^{2} \right] \end{split}$$

convexity of Ω further implies

$$A_{t+1} \leq A_t - \frac{\eta_t}{2} \Omega(A_t) + b\eta_t^2, \quad A_t := \mathbb{E}[D_{\Psi}(w^*, w_t)]$$

convergence of A_t follows by $\lim_{t\to\infty} \eta_t = 0$ and $\sum_{t=1}^{\infty} \eta_t = \infty$.

References I

- A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.
- L. Bottou. Online learning and stochastic approximations. On-line learning in neural networks, 17(9):142, 1998.
- J.-F. Cai, S. Osher, and Z. Shen. Linearized bregman iterations for compressed sensing. Mathematics of Computation, 78(267):1515–1536, 2009.
- P. J. Huber et al. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1): 73–101, 1964.
- J. Lin and D.-X. Zhou. Learning theory of randomized Kaczmarz algorithm. Journal of Machine Learning Research, 16:3341–3365, 2015.
- A.-S. Nemirovsky and D.-B. Yudin. Problem complexity and method efficiency in optimization. John Wiley & Sons, 1983.
- S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.
- S. Smale and Y. Yao. Online learning algorithms. Foundations of computational mathematics, 6(2):145–170, 2006.
- Y. Ying and D.-X. Zhou. Online regularized classification algorithms. IEEE Transactions on Information Theory, 52(11):4775–4788, 2006.