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Background




Gradient Descent

Consider optimization problem
min F(w) = 13 o0, (w,x))  + r(w)
weRd i—1
data fitting term regularizer
» examples z, = (x,y;) drawn from measure pon 2 = X x )

» linear model x — (w,x), loss function ¢ : R x R — R4
» big data era: large sample size n, dimension d

Gradient Descent: with step size {n,} and initial w; € R?

Wip1 = wy — 1, VF(w;), teN

» first-order method: only use information on gradients

» Hilbert space: w, in primal space, VF(w;) in dual space

» computationally expensive: gradient calculation requires
going through all examples



Mirror Descent and Interpretation

v

A primal space (W, || - ||) with its dual OV*, | - [|)
A differentiable mirror map ¥ : WW — R, o-strongly convex

v

Dy(w,w) := W(w)— [W(W) + (w—w,VIW))] > %HW—VVII2

first-order approximation of ¥ (w) at w

v

Dy (w,w) called the Bregman distance between w and w
with step size {n,} (Nemirovsky and Yudin, 1983)

v

VU (wip1) = VU (wy) — n,VF(w)

As a gradient descent in the dual space (Nemirovsky and Yudin, 1983)
» VU maps w, € Wto VU (w,) € W*
» performs gradient descent in W* as VF(w,) € W*

use mirror map to capture geometry of problem by (W, || - ||) |




Mirror Descent and Interpretation
As a nonlinear subgradient method (Beck and Teboulle, 2003)

Wiy = arg vzlé% F(w;) + (w — wy, VF(wy)) +17t_1D\1,(w,w,)

first-order approximation of F(w) at w, stabilizer

> if U(w) = %HWH%, Dy (w,w;) = %Hw — W;H%, reduce to GD

use mirror map to induce Bregman distance instead of
Euclidean distance J

Typical choice of ¥
> U(w) = 5]wlz.p € (1,2], then

VD)= @S- D), OV ) = RS-l 2)

Banach space (R%, || - [|,) with p = 1 + 15 is preferable in
the sparse case, logarithmic dependence on d



Online Mirror Descent

Motivation
» examples (x;,y,) arrives sequentially from a measure p
» objective function

F(w) = Ez[f(w, Z2)].f (W, Z) = ¢((w, X) , ¥) + r(w)

Online Mirror Descent

VU (wii1) = VU (wi) = 0Vl (W, z0)], reN. (1)

» an instantaneous regularized loss

fw,z) = ¢({w,x;) ,y:) + r(w) built upon arrival of z,
» computationally cheap: gradient calculation on an example
» cover stochastic setting by uniformly drawing z; in a sample



Online Mirror Descent Algorithm—Instantiations

Online Gradient Descent: ¥ = U,

W1 = w — 0V [f(we, 2)]-

Randomized Kaczmarz Algorithm:
U =Ty, r(w) =0,¢(a,y) = 3(a—y)? (Lin and Zhou, 2015)

Wir1 = wp — N[ (We, Xe) — yi)xe.

Online p-norm Algorithm: ¥ = ¥, p € (1,2] (Shalev-Shwartz et al.,
2012)

Virr = Ve — 0 Vu[f (Wey 20)]
_ . N\ d
Wil = HV1+1H127 p(sgn(vt+1(l))]v,+1(z)\)izl.
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Objectives

This study aims to address these questions:
» What is the role of step sizes in the algorithm? necessary
and sufficient conditions for the convergence of w, to

* = arg min F(w)?
W gweW ()

» Can we establish both lower and upper bounds for
convergence rates matching up to a constant factor?

» What is the essential difference between online mirror
descent and its batch analog?




Main Results




Definitions

A differentiable function f : W — R is o-strongly convex w.r.t
|| - || if Dy(w, W) > %|lw — w||?, and L-strongly smooth w.r.t. || - ||
if Dy(w, W) < &[jw —w|%.

Definition
We say VU satisfies an incremental condition (of order 1) at
infinity if there exists a constant Cy > 0 s.t.

IVIW)[l« < Co(1 +[wl),  Ywew. ()

» intuition: the dual norm of V¥ (w) is bounded by a linear
function of ||w/|

» used to show the necessary condition for the convergence

» satisfied by strongly-smooth mirror maps and p-norm
divergence ¥,



Definitions
Definition
We say the convexity of U is controlled by that of F around w*

with a convex function 2 : [0, 00) — R satisfying 2(0) = 0 and
Q(u) > 0 for u > 0 if the pair (U, F) satisfies

(W —w, VF(w*) = VF(w)) > Q(Dg(w*,w)), Ywe W. (3)

» related to strong convexity
(W —w, VF(w*) — VF(w)) = Dp(w,w") + Dp(w*, w).

» typical choices of Q2 include Q(u) = Cu®, a0 > 1.
» strongly smooth W, strongly convex F, (3) holds with
Q(u) = Cy Lu for some Cy . > 0.
» U =, strongly convex F, (3) holds with Q(u) = Cy Q) (u)

. ut -1, ifux1, - 2
p ) =93 1,7 ifO<u<l, 7 min{p,3 — p}’
(4)

Tp



Definitions
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Abbildung: Plots of the convex function €, with p = % (red line), p = 3

2
(blue line) and p = 2 (black line).

Q, defined by (4) with p = 2 is a Huber loss!  (Huber et al., 1964) J




Main Results—Positive Variances
Assumptions
» positive variances: inf,eyy Ez [[| Vi [f(w, Z)]||+] > 0
smoothness: f(-, z) is L-strongly smooth for a.e. z € Z
VWV continuous at w*, satisfies incremental condition at co
pair (U, F) meets (3) at w* with convex Q : [0,00) — R

vV v Y

Results: lim;_,o, E[Dy(w*, w;)] = 0 if and only if

(o]
tl_iglon, =0and Zm =0
=
Furthermore:
» If U is strongly smooth and lim,_,, n, = 0, then

C
E[Dy(w*, wr)] > ma VT > 19
» If Q(u) = opuand n, = m, then E[Dy (w*,wr)] = O (%) .



Main Results—Zero Variances
Assumptions
» zero variances: Ez [|Vw[f(w*, 2)]|l] =0
» smoothness: f(-, z) is L-strongly smooth for a.e.z € Z
» VU continuous at w*, satisfies incremental condition at co
» pair (¥, F) meets (3) at w* with convex Q : [0, 00) — R4
> wy Ewhn < (2+ iz for some k > 0

Results: lim, o E[Dg(w*,w;)] = 0 if and only if >°°, 7, = oo
Furthermore:

» I Q(u) = opuand n, = n < 57, then

T
(1_2%) Dy (w*w1)<E[Dg (w* wr)]< (1= ZE1) Dy (w* ).

o

for cases with zero variances, online mirror descent behaves
analogously to mirror descent!




Main Results—Almost Sure Convergence

Assumptions

» smoothness: f(-, z) is L-strongly smooth for a.e. z € Z
VWU continuous at w*, satisfies incremental condition at oo
pair (U, F) meets (3) at w* with convex Q : [0,00) — R

v

v

v

step size sequence satisfies

Zn, oo and Znt<oo

Results: {||w; — w*||?};eny converges to 0 almost surely




Main Results—Specific Applications

Assumptions—regularization scheme

v

R :=sup,cy [Ix]l« < oo, [ = [ -2
the loss function ¢ : R x R — R is £,-strongly smooth
regularized loss f(w,z) = ¢((w,x) ,y) + Allw||3 with A > 0

U is either a p-norm divergence ¥ = ¥, with 1 <p <2ora
strongly smooth mirror map

v

v

v

Strongly smooth loss functions:

v

least square: ¢(y,a) = (y — a)?

logistic loss: ¢(y,a) = log(1 + exp(—ya))
2-norm hinge loss: ¢(y,a) = max(0, 1 — ya)?
P(a,y) = 1/(1 4 €?)

v

v

v



Main Results—Specific Applications

Results:

(@) Assume inf,c)y Ez [||[V[f(w, 2)]]|«] > 0. Then
lim, o0 E[|w, — w*||?] = 0 if and only if lim,_,~, 17, = 0 and
Y2, ne = oo. Furthermore, if ¥ strongly smooth, then for
some Ty, C > 0 s.t. E[|lwr — w*||?] > CT~' for T > T;. If
= iy for some o > 0, then E[||jwy — w*[|*] = O(T ).

(b) HEZ[|Vwlf(w*,Z)]|l] =0 and for some x > 0,
ne < W Then lim,_, o E[||w, — w*|*] = 0 if and
only if >~ n, = oo. Furthermore, if ¥ is strongly smooth

andn, =n < m, then there exist ¢;,¢, € (0,1) s.t.

&t wi = wl? S E[lwr —w*|’] < &3 flwi —w'|?, VT €N.

(c) Ifthe step size sequence satisfies )7, 7, = co and
S m? < oo, then lim,_,o ||w; — w*|| = 0 almost surely.



Main Results—Specific Applications

Assumptions—no regularization
> R:=sup,y |x|[« < oo
» unregularized least squares: f(w,z) = (y — (w, x))?
» W is either a p-norm divergence ¥ = ¥, with 1 <p <2ora
strongly smooth mirror map
» VU (w;) belonging to the range of Cy ,Cy := Ez[XX ]
» Define  w, = min,ey {¥(w) : Cxw = Ez[XY]}.
strongly smooth mirror map

» randomized Kaczmarz algorithm (Lin and Zhou, 2015)
1 2
() = 5 lwl.

» smoothed linearized Bregman iteration (Cai et al., 2009)

d
€ . 1
N () =AY ge(w(i) + SIwl3,
i=1

where g.(¢) := & for |¢| < eand || — & for [¢] > €



Main Results—Specific Applications

Results:
(@) Assume inf,cpy [|Y — (w, X)|[|X]|+] > 0. Then
lim, o0 E[[lw; — w),|[?] = 0if and only if lim;—,c 7, = 0 and
> 2y e = oc. Furthermore, if\IJstrongly smooth, then for
some Tl,C > 0s.t. E[||lwr —w,|*] > CT " for T > T). If
0 = (z+l) for some o > 0, then E[||wr — w,|]*] = O(T~).
(b) IFEZ [\Y (w,X)| [|X||«] = 0 and for some x > 0,
M < g Then Timyoo E[[[w; — w,||?] = 0if and only if

Yo = 00. Furthermore, if U is strongly smooth and
=M< Gy )Rz’ then there exist ¢1,¢, € (0,1) s.t.

&l wi = woll> < Elwr — wpl®) < &llwi —wpl®, VT €N.

(c) If the step size sequence satisfies Y, 7, = co and
S m? < oo, then lim,_,o ||w; — w,|| = 0 almost surely.



Discussions

Existing studies consider convergence of online gradient
descent algorithms J

Euclidean space:
almost sure convergence studied under assumptions (Bottou, 1998)

inf | (w=—w* ,VF(w))>0, Ve>0, [|[VF(w)|3<A+B|w—w*[%, Ywew
waw*Hz>5

Reproducing kernel Hilbert space:
sufficient conditions established for regression, classification

(Smale and Yao, 2006; Ying and Zhou, 2006)
Randomized Kaczmarz Algorithm: (Lin and Zhou, 2015)

» sufficient and necessary conditions established

» analysis only applies to least squares loss and ¥ = ¥,
» require restrictions 0 < 7, < 2
» lower bounds |jw, — w*||? > Cr~2 not tight



Proof




A key Identity

One-step progress of OMD in terms of the
excess Bregman distance Dy (w*, wiy1) — Dy (w*, wy)

Lemma
The following identity holds fort € N

E, [Dy (W, wet1)] — Do (W™, we) = ne (W* — wy, VE(wy))
+E, [D‘I’(le Wt+l)]' (5)
Idea of Analysis: control E[Dg (w*, w;41)] from both above and

lower in terms of E[Dy (w*, w,)], using strong smooth of F,
strong convexity of ¥ and convexity of pair (¥, F)




Positive Variances—Necessary Conditions

necessary condition: lim 7, = 0.
11— 00

Denote o := inf Ez [||Vy[f(w,Z)]]+]-
wew

» with incremental condition and continuity of ¥ at w*, we
show

lim/— 00 E[Dgy (W*, W) ||+]=0 = limy— o0 E[|| VT (w;) =V T (w*)]|+]=0

» lim 7, = 0 then follows by
11— 00

0 < By [V [f (Wi, 2) ]| ] S[V @ (W) =V W (W) 4B, [V (wi1) = VW (w7) || ]




Positive Variances—Necessary Conditions
necessary condition: >~ 1, = oc.

» by Lg-strong smoothness of F and oy-strong convexity of
U, we get
* * 2 2L *
(W —wy, VF(w,)) > —Lp||lw" — w||” > —ED\I;(W RUAR

» this plugged into (5) gives (a = 2Lroy")

E[Dy(w*,wiy1)] = (1 — an)E[Dy (w*, wi)] 4 E[Dy (wi, wis1)].
(6)
» apply this inequality repeatedly gives

T

E[Dy (v, wr1)] Z exp (—2a Y m ) E[Du(w, wips1))
t:lo—‘rl



Positive Variances—Sufficient Conditions
by D,(w,w) = Dg=(Vg(Ww), Vg(w)) (¢* is Fenchel-conjugate)

D (wi,wiy1)=Dy= (V‘I’(Wm)»V‘I’(Wr))Sﬁ [V (wig1) =V (wi) 13

2
:zzlq, IV lf (weszo)] 13-

by L-strong smoothness of f(-,z), we derive (co-coercivity)
(V[ (wesz)1I12 <20V [ (we,2)] =V [f (W 2120 V[ (w* 2] 12
S2L(w* —wi, VF(w*) =V F(w0))+2[[Vu[f (w* 2] 12
plugged into one-step progress identity (5) gives
By (D (0 141 )] <Dy (w0 w0) = 3 (" =0y T F ()~ F () 2 e, [0 00% )2
<Dy (8 )= LDy (w* )b, b= Bz [V (v 2] ]
convexity of €2 further implies

A1 SA=BQA)+bI?,  Ar=E[Dy (w*,wr)]

convergence of A, follows by lim; o, 7, = 0and > 2, 7, = oco.



References |

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167-175, 2003.

L. Bottou. Online learning and stochastic approximations. On-line learning in neural networks, 17(9):142, 1998.

J.-F. Cai, S. Osher, and Z. Shen. Linearized bregman iterations for compressed sensing. Mathematics of
Computation, 78(267):1515-1536, 2009.

P. J. Huber et al. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):
73-101, 1964.

J. Lin and D.-X. Zhou. Learning theory of randomized Kaczmarz algorithm. Journal of Machine Learning
Research, 16:3341-3365, 2015.

A.-S. Nemirovsky and D.-B. Yudin. Problem complexity and method efficiency in optimization. John Wiley &
Sons, 1983.

S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends® in Machine
Learning, 4(2):107-194, 2012.

S. Smale and Y. Yao. Online learning algorithms. Foundations of computational mathematics, 6(2):145-170,
2006.

Y. Ying and D.-X. Zhou. Online regularized classification algorithms. IEEE Transactions on Information Theory,
52(11):4775-4788, 2006.




	Background
	Objectives
	Main Results
	Proof

