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Gradient Descent
Consider optimization problem

min
w∈Rd

F(w) = 1
n

n∑
i=1

φ(yi, 〈w, xi〉) + r(w)

data fitting term regularizer

I examples zt = (xt, yt) drawn from measure ρ on Z = X × Y
I linear model x→ 〈w, x〉, loss function φ : R× R→ R+

I big data era: large sample size n, dimension d

Gradient Descent: with step size {ηt} and initial w1 ∈ Rd

wt+1 = wt − ηt∇F(wt), t ∈ N

I first-order method: only use information on gradients
I Hilbert space: wt in primal space, ∇F(wt) in dual space
I computationally expensive: gradient calculation requires

going through all examples
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Mirror Descent and Interpretation

I A primal space (W, ‖ · ‖) with its dual (W∗, ‖ · ‖∗)
I A differentiable mirror map Ψ :W → R, σ-strongly convex

DΨ(w, w̃) := Ψ(w)− [Ψ(w̃) + 〈w− w̃,∇Ψ(w̃)〉]︸ ︷︷ ︸
first-order approximation of Ψ(w) at w̃

≥ σ

2
‖w−w̃‖2

I DΨ(w, w̃) called the Bregman distance between w and w̃
I with step size {ηt} (Nemirovsky and Yudin, 1983)

∇Ψ(wt+1) = ∇Ψ(wt)− ηt∇F(wt)

As a gradient descent in the dual space (Nemirovsky and Yudin, 1983)

I ∇Ψ maps wt ∈ W to ∇Ψ(wt) ∈ W∗

I performs gradient descent inW∗ as ∇F(wt) ∈ W∗

use mirror map to capture geometry of problem by (W, ‖ · ‖)
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Mirror Descent and Interpretation
As a nonlinear subgradient method (Beck and Teboulle, 2003)

wt+1 = arg min
w∈W

F(wt) + 〈w− wt,∇F(wt)〉︸ ︷︷ ︸
first-order approximation of F(w) at wt

+ η−1
t DΨ(w,wt)︸ ︷︷ ︸

stabilizer

I if Ψ(w) = 1
2‖w‖

2
2, DΨ(w,wt) = 1

2‖w− wt‖2
2, reduce to GD

use mirror map to induce Bregman distance instead of
Euclidean distance

Typical choice of Ψ

I Ψ(w) = 1
2‖w‖

2
p, p ∈ (1, 2], then

(W, ‖ · ‖) = (Rd, ‖ · ‖p), (W∗, ‖ · ‖∗) = (Rd, ‖ · ‖ p
p−1

)

Banach space (Rd, ‖ · ‖p) with p = 1 + 1
log d is preferable in

the sparse case, logarithmic dependence on d
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Online Mirror Descent

Motivation
I examples (xt, yt) arrives sequentially from a measure ρ
I objective function

F(w) = EZ[f (w,Z)], f (w,Z) = φ(〈w,X〉 ,Y) + r(w)

Online Mirror Descent

∇Ψ(wt+1) = ∇Ψ(wt)− ηt∇w[f (wt, zt)], t ∈ N. (1)

I an instantaneous regularized loss
f (w, zt) = φ(〈w, xt〉 , yt) + r(w) built upon arrival of zt

I computationally cheap: gradient calculation on an example
I cover stochastic setting by uniformly drawing zt in a sample
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Online Mirror Descent Algorithm—Instantiations

Online Gradient Descent: Ψ = Ψ2

wt+1 = wt − ηt∇w[f (wt, zt)].

Randomized Kaczmarz Algorithm:
Ψ = Ψ2, r(w) = 0, φ(a, y) = 1

2(a− y)2 (Lin and Zhou, 2015)

wt+1 = wt − ηt[〈wt, xt〉 − yt]xt.

Online p-norm Algorithm: Ψ = Ψp, p ∈ (1, 2] (Shalev-Shwartz et al.,

2012) {
vt+1 = vt − ηt∇w[f (wt, zt)],

wt+1 = ‖vt+1‖2−p
p
(
sgn(vt+1(i))|vt+1(i)|

)d
i=1.
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Objectives
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Objectives

This study aims to address these questions:

I What is the role of step sizes in the algorithm? necessary
and sufficient conditions for the convergence of wt to

w∗ = arg min
w∈W

F(w)?

I Can we establish both lower and upper bounds for
convergence rates matching up to a constant factor?

I What is the essential difference between online mirror
descent and its batch analog?
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Main Results
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Definitions

A differentiable function f :W → R is σ-strongly convex w.r.t
‖ · ‖ if Df (w, w̃) ≥ σ

2 ‖w− w̃‖2, and L-strongly smooth w.r.t. ‖ · ‖
if Df (w, w̃) ≤ L

2‖w− w̃‖2.

Definition
We say ∇Ψ satisfies an incremental condition (of order 1) at
infinity if there exists a constant CΨ > 0 s.t.

‖∇Ψ(w)‖∗ ≤ CΨ(1 + ‖w‖), ∀w ∈ W. (2)

I intuition: the dual norm of ∇Ψ(w) is bounded by a linear
function of ‖w‖

I used to show the necessary condition for the convergence
I satisfied by strongly-smooth mirror maps and p-norm

divergence Ψp
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Definitions
Definition
We say the convexity of Ψ is controlled by that of F around w∗

with a convex function Ω : [0,∞)→ R+ satisfying Ω(0) = 0 and
Ω(u) > 0 for u > 0 if the pair (Ψ,F) satisfies

〈w∗ − w,∇F(w∗)−∇F(w)〉 ≥ Ω (DΨ(w∗,w)) , ∀w ∈ W. (3)

I related to strong convexity

〈w∗ − w,∇F(w∗)−∇F(w)〉 = DF(w,w∗) + DF(w∗,w).

I typical choices of Ω include Ω(u) = Cuα, α ≥ 1.
I strongly smooth Ψ, strongly convex F, (3) holds with

Ω(u) = CΨ,Lu for some CΨ,L > 0.
I Ψ = Ψp, strongly convex F, (3) holds with Ω(u) = CΨ,LΩp(u)

Ωp (u) =

{
u + 1

τp
− 1, if u ≥ 1,

1
τp

uτp , if 0 ≤ u < 1,
τp :=

2
min{p, 3− p}

.

(4)
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Definitions
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Abbildung: Plots of the convex function Ωp with p = 4
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Ω2 defined by (4) with p = 2 is a Huber loss! (Huber et al., 1964)
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Main Results—Positive Variances
Assumptions

I positive variances: infw∈W EZ [‖∇w[f (w,Z)]‖∗] > 0
I smoothness: f (·, z) is L-strongly smooth for a.e. z ∈ Z
I ∇Ψ continuous at w∗, satisfies incremental condition at∞
I pair (Ψ,F) meets (3) at w∗ with convex Ω : [0,∞)→ R+

Results: limt→∞ E[DΨ(w∗,wt)] = 0 if and only if

lim
t→∞

ηt = 0 and
∞∑

t=1

ηt =∞

Furthermore:
I If Ψ is strongly smooth and limt→∞ ηt = 0, then

E[DΨ(w∗,wT)] ≥ C̃
T − t0 + 1

, ∀T ≥ t0

I If Ω(u) = σFu and ηt = 4
(t+1)σF

, then E[DΨ(w∗,wT)] = O
( 1

T

)
.
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Main Results—Zero Variances
Assumptions

I zero variances: EZ [‖∇w[f (w∗,Z)]‖∗] = 0
I smoothness: f (·, z) is L-strongly smooth for a.e. z ∈ Z
I ∇Ψ continuous at w∗, satisfies incremental condition at∞
I pair (Ψ,F) meets (3) at w∗ with convex Ω : [0,∞)→ R+

I w1 6= w∗, ηt ≤ σΨ
(2+κ)L for some κ > 0

Results: limt→∞ E[DΨ(w∗,wt)] = 0 if and only if
∑∞

t=1 ηt =∞.

Furthermore:
I If Ω(u) = σFu and ηt ≡ η1 <

σΨ
2L , then

(
1− 2Lη1

σΨ

)T
DΨ(w∗,w1)≤E[DΨ(w∗,wT)]≤(1−σFη1

2 )
T

DΨ(w∗,w1).

for cases with zero variances, online mirror descent behaves
analogously to mirror descent!
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Main Results—Almost Sure Convergence

Assumptions
I smoothness: f (·, z) is L-strongly smooth for a.e. z ∈ Z
I ∇Ψ continuous at w∗, satisfies incremental condition at∞
I pair (Ψ,F) meets (3) at w∗ with convex Ω : [0,∞)→ R+

I step size sequence satisfies

∞∑
t=1

ηt =∞ and
∞∑

t=1

η2
t <∞

Results: {‖wt − w∗‖2}t∈N converges to 0 almost surely
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Main Results—Specific Applications

Assumptions—regularization scheme
I R := supx∈X ‖x‖∗ <∞, ‖ · ‖ = ‖ · ‖2

I the loss function φ : R× R→ R+ is `φ-strongly smooth
I regularized loss f (w, z) = φ(〈w, x〉 , y) + λ‖w‖2

2 with λ > 0
I Ψ is either a p-norm divergence Ψ = Ψp with 1 < p ≤ 2 or a

strongly smooth mirror map

Strongly smooth loss functions:
I least square: φ(y, a) = (y− a)2

I logistic loss: φ(y, a) = log(1 + exp(−ya))

I 2-norm hinge loss: φ(y, a) = max(0, 1− ya)2

I φ(a, y) = 1/(1 + eay)
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Main Results—Specific Applications

Results:
(a) Assume infw∈W EZ [‖∇w[f (w,Z)]‖∗] > 0. Then

limt→∞ E[‖wt − w∗‖2] = 0 if and only if limt→∞ ηt = 0 and∑∞
t=1 ηt =∞. Furthermore, if Ψ strongly smooth, then for

some T̃1, C̃ > 0 s.t. E[‖wT − w∗‖2] ≥ C̃T−1 for T ≥ T̃1. If
ηt = 4

(t+1)σ for some σ > 0, then E[‖wT − w∗‖2] = O(T−1).

(b) If EZ [‖∇w[f (w∗,Z)]‖∗] = 0 and for some κ > 0,
ηt ≤ σΨ

2(`φR2+λ)(2+κ)
. Then limt→∞ E[‖wt − w∗‖2] = 0 if and

only if
∑∞

t=1 ηt =∞. Furthermore, if Ψ is strongly smooth
and ηt ≡ η1 <

σΨ

4(`φR2+λ)
, then there exist c̃1, c̃2 ∈ (0, 1) s.t.

c̃T
1‖w1 − w∗‖2 ≤ E[‖wT − w∗‖2] ≤ c̃T

2‖w1 − w∗‖2, ∀T ∈ N.

(c) If the step size sequence satisfies
∑∞

t=1 ηt =∞ and∑∞
t=1 η

2
t <∞, then limt→∞ ‖wt − w∗‖ = 0 almost surely.
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Main Results—Specific Applications
Assumptions—no regularization

I R := supx∈X ‖x‖∗ <∞
I unregularized least squares: f (w, z) = 1

2(y− 〈w, x〉)2

I Ψ is either a p-norm divergence Ψ = Ψp with 1 < p ≤ 2 or a
strongly smooth mirror map

I ∇Ψ(w1) belonging to the range of C>X , CX := EZ[XX>]
I Define wρ = minw∈W

{
Ψ(w) : CXw = EZ[XY]

}
.

strongly smooth mirror map
I randomized Kaczmarz algorithm (Lin and Zhou, 2015)

Ψ(w) =
1
2
‖w‖2

2.

I smoothed linearized Bregman iteration (Cai et al., 2009)

Ψ(ε,λ)(w) = λ

d∑
i=1

gε(w(i)) +
1
2
‖w‖2

2,

where gε(ξ) := ξ2

2ε for |ξ| ≤ ε and |ξ| − ε
2 for |ξ| > ε
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Main Results—Specific Applications

Results:
(a) Assume infw∈W [|Y − 〈w,X〉| ‖X‖∗] > 0. Then

limt→∞ E[‖wt − wρ‖2] = 0 if and only if limt→∞ ηt = 0 and∑∞
t=1 ηt =∞. Furthermore, if Ψ strongly smooth, then for

some T̃1, C̃ > 0 s.t. E[‖wT − wρ‖2] ≥ C̃T−1 for T ≥ T̃1. If
ηt = 4

(t+1)σ for some σ > 0, then E[‖wT − wρ‖2] = O(T−1).

(b) If EZ [|Y − 〈w,X〉| ‖X‖∗] = 0 and for some κ > 0,
ηt ≤ σΨ

(2+κ)R2 . Then limt→∞ E[‖wt − wρ‖2] = 0 if and only if∑∞
t=1 ηt =∞. Furthermore, if Ψ is strongly smooth and

ηt ≡ η1 <
σΨ

(2+κ)R2 , then there exist c̃1, c̃2 ∈ (0, 1) s.t.

c̃T
1‖w1 − wρ‖2 ≤ E[‖wT − wρ‖2] ≤ c̃T

2‖w1 − wρ‖2, ∀T ∈ N.

(c) If the step size sequence satisfies
∑∞

t=1 ηt =∞ and∑∞
t=1 η

2
t <∞, then limt→∞ ‖wt − wρ‖ = 0 almost surely.
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Discussions
Existing studies consider convergence of online gradient

descent algorithms

Euclidean space:
almost sure convergence studied under assumptions (Bottou, 1998)

inf
‖w−w∗‖2

2>ε
〈w−w∗,∇F(w)〉>0, ∀ε>0, ‖∇F(w)‖2

2≤A+B‖w−w∗‖2
2, ∀w∈W

Reproducing kernel Hilbert space:
sufficient conditions established for regression, classification
(Smale and Yao, 2006; Ying and Zhou, 2006)

Randomized Kaczmarz Algorithm: (Lin and Zhou, 2015)

I sufficient and necessary conditions established
I analysis only applies to least squares loss and Ψ = Ψ2

I require restrictions 0 < ηt < 2
I lower bounds ‖wt − w∗‖2

2 ≥ C̃t−2 not tight

Convergence of Online Mirror Descent Algorithms 22



Proof
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A key Identity

One-step progress of OMD in terms of the
excess Bregman distance DΨ(w∗,wt+1)− DΨ(w∗,wt)

Lemma

The following identity holds for t ∈ N

Ezt [DΨ(w∗,wt+1)]− DΨ(w∗,wt) = ηt 〈w∗ − wt,∇F(wt)〉
+ Ezt

[
DΨ(wt,wt+1)

]
. (5)

Idea of Analysis: control E[DΨ(w∗,wt+1)] from both above and
lower in terms of E[DΨ(w∗,wt)], using strong smooth of F,
strong convexity of Ψ and convexity of pair (Ψ,F)
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Positive Variances—Necessary Conditions

necessary condition: lim
t→∞

ηt = 0.

Denote σ := inf
w∈W

EZ [‖∇w[f (w,Z)]‖∗].

I with incremental condition and continuity of Ψ at w∗, we
show

limt→∞ E[DΨ(w∗,wt)‖∗]=0 =⇒ limt→∞ E[‖∇Ψ(wt)−∇Ψ(w∗)‖∗]=0

I lim
t→∞

ηt = 0 then follows by

ηtσ≤ηtEzt [‖∇w[f (wt,zt)]‖∗]≤‖∇Ψ(wt)−∇Ψ(w∗)‖∗+Ezt [‖∇Ψ(wt+1)−∇Ψ(w∗)‖∗]
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Positive Variances—Necessary Conditions
necessary condition:

∑∞
t=1 ηt =∞.

I by LF-strong smoothness of F and σΨ-strong convexity of
Ψ, we get

〈w∗ − wt,∇F(wt)〉 ≥ −LF‖w∗ − wt‖2 ≥ −2LF

σΨ
DΨ(w∗,wt).

I this plugged into (5) gives (a = 2LFσ
−1
Ψ )

E[DΨ(w∗,wt+1)] ≥ (1− aηt)E[DΨ(w∗,wt)] + E[DΨ(wt,wt+1)].
(6)

I apply this inequality repeatedly gives

E[DΨ(w∗,wT+1)] ≥ exp
(
− 2a

T∑
t=t0+1

ηt

)
E[DΨ(w∗,wt0+1)].
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Positive Variances—Sufficient Conditions
by Dg(w, w̃) = Dg∗(∇g(w̃),∇g(w)) (g∗ is Fenchel-conjugate)

DΨ(wt,wt+1)=DΨ∗ (∇Ψ(wt+1),∇Ψ(wt))≤ 1
2σΨ
‖∇Ψ(wt+1)−∇Ψ(wt)‖2

∗

=
η2

t
2σΨ
‖∇w[f (wt,zt)]‖2

∗.

by L-strong smoothness of f (·, z), we derive (co-coercivity)

‖∇w[f (wt,zt)]‖2
∗≤2‖∇w[f (wt,zt)]−∇w[f (w∗,zt)]‖2

∗+2‖∇w[f (w∗,zt)]‖2
∗

≤2L〈w∗−wt,∇F(w∗)−∇F(wt)〉+2‖∇w[f (w∗,zt)]‖2
∗

plugged into one-step progress identity (5) gives

Ezt [DΨ(w∗,wt+1)]≤DΨ(w∗,wt)− ηt
2 〈w
∗−wt,∇F(w∗)−∇F(wt)〉+

η2
t

σΨ
Ezt

[
‖∇w[f (w∗,zt)]‖2

∗

]
≤DΨ(w∗,wt)− ηt

2 Ω(DΨ(w∗,wt))+bη2
t , b:= 1

σΨ
EZ

[
‖∇w[f (w∗,Z)]‖2

∗

]
convexity of Ω further implies

At+1≤At− ηt
2 Ω(At)+bη2

t , At:=E[DΨ(w∗,wt)]

convergence of At follows by limt→∞ ηt = 0 and
∑∞

t=1 ηt =∞.
Convergence of Online Mirror Descent Algorithms 27



References I

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

L. Bottou. Online learning and stochastic approximations. On-line learning in neural networks, 17(9):142, 1998.

J.-F. Cai, S. Osher, and Z. Shen. Linearized bregman iterations for compressed sensing. Mathematics of
Computation, 78(267):1515–1536, 2009.

P. J. Huber et al. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):
73–101, 1964.

J. Lin and D.-X. Zhou. Learning theory of randomized Kaczmarz algorithm. Journal of Machine Learning
Research, 16:3341–3365, 2015.

A.-S. Nemirovsky and D.-B. Yudin. Problem complexity and method efficiency in optimization. John Wiley &
Sons, 1983.

S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

S. Smale and Y. Yao. Online learning algorithms. Foundations of computational mathematics, 6(2):145–170,
2006.

Y. Ying and D.-X. Zhou. Online regularized classification algorithms. IEEE Transactions on Information Theory,
52(11):4775–4788, 2006.

Convergence of Online Mirror Descent Algorithms 28


	Background
	Objectives
	Main Results
	Proof

