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Population and Empirical Risks

Training Dataset: S =
{
z1, . . . , zn

}
with each example zi ∈ Z

Parametric model w ∈ W ⊆ Rd for prediction

Loss function: f (w; z) measure performance of w on an example z

Population risk: F (w) = Ez [f (w; z)]

Empirical risk: FS(w) = 1
n

∑n
i=1 f (w; zi ).

Algorithm A : Zn 7→ W (output A(S) when applied to S)

We are interested in Excess Generalization Error F (A(S))− infw F (w)



Assumptions

Smoothness Assumption

We assume for all z ∈ Z, the differentiable function w 7→ f (w; z) is L-smooth

‖∇f (w; z)−∇f (w′; z)‖2 ≤ L‖w −w′‖2, ∀w,w′ ∈ W.

Polyak-Lojasiewicz (PL) Condition

We assume training errors are gradient-dominated (can be non-convex)

E
[
FS(w)− inf

w
FS(w)

]
≤ 1

2β
E
[
‖∇FS(w)‖2

2

]
, ∀w ∈ W. (1)

We do not require bounded gradient assumption as ‖∇f (w; z)‖2 ≤ G !



Main Results

Theorem (Generalization bounds)

Under PL condition and Smoothness Assumption

E
[
F (A(S))

]
− inf

w
F (w) ≤ infw FS(w)

nβ
+

FS(A(S))− infw FS(w)

β
.

FS(A(S))− infw FS(w) is the optimization error

It applies to any algorithm: SGD, SVRG, ADAM...

Optimization helps generalization: run A until optimization error ≤ 1/n

It significantly improves the existing results (Charles and Papailiopoulos, 2018)

E
[
F (A(S))

]
− inf

w
F (w) ≤ 1√

nβ
+

√
FS(A(S))− infw FS(w)

β
.

If infw FS(w) = 0, then it achieves bounds better than 1/(nβ)



Applications to Specific Algorithms

Algorithm Complexity for 1/(nβ)
SGD n

β2

RCD d log n
β

SVRG, SCSG
(
n + n

2
3 /β
)

log n
SARAH, SpiderBoost

(
n + 1/β2

)
log n

SNVRG
(
n +
√
n/β

)
log4 n

Iteration complexity for different optimization algorithms to get
E
[
F (A(S))

]
− infw F (w) ≤ 1/(nβ).

SGD: Stochastic Gradient Descent

RCD: Randomized Coordinate Descent (Nesterov, 2012)

SVRG: Stochastic Variance Reduction Gradient (Johnson and Zhang, 2013)

SARAH: StochAstic Recursive grAdient algoritHm (Nguyen et al., 2017)

SNVRG: Stochastic Nested Variance-Reduced Gradient descent (Zhou et al.,

2018)
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