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Population and Empirical Risks

@ Training Dataset: S = {21, e ,z,,} with each example z; € Z

@ Parametric model w € W C RY for prediction

@ Loss function: f(w;z) measure performance of w on an example z
@ Population risk: F(w) = E,[f(w; z)]

@ Empirical risk: Fs(w) =137 f(w;z).

@ Algorithm A: Z" — W (output A(S) when applied to S)

We are interested in Excess Generalization Error F(A(S)) — infy F(w)




Assumptions

Smoothness Assumption

We assume for all z € Z, the differentiable function w — f(w; z) is L-smooth

[VF(w; z) — VF(W;2)|]2 < L[jw —w'|[2, VYw,w € W.

Polyak-Lojasiewicz (PL) Condition

We assume training errors are gradient-dominated (can be non-convex)

B[Fs(w) ~ inf Fs(w)] < 5oE[IVFs(w)lE]. v e W,

(1)

We do not require bounded gradient assumption as | Vf(w; z)[|2 < G!




Main Results

Theorem (Generalization bounds)

Under PL condition and Smoothness Assumption

infw Fs(w) n Fs(A(S)) — infy, Fs(w)

E[F(A(S))] ~ inf F(w) < == 2 :

Fs(A(S)) — infy Fs(w) is the optimization error
It applies to any algorithm: SGD, SVRG, ADAM...

@ Optimization helps generalization: run A until optimization error < 1/n

It significantly improves the existing results (Charles and Papailiopoulos, 2018)

— infy Fs(w)
5 .

MHMﬂﬂqum<Q%+¢%MGD

@ If infy Fs(w) = 0, then it achieves bounds better than 1/(nf)



Applications to Specific Algorithms

Algorithm Complexity for 1/(np)
SGD =
RCD ghen
SVRG, SCSG (n+n3/B)logn
SARAH, SpiderBoost (n+1/8%) logn
SNVRG (n+/n/B)log" n

Iteration complexity for different optimization algorithms to get
E[F(A(S))] —infy F(w) < 1/(np).

SGD: Stochastic Gradient Descent

RCD: Randomized Coordinate Descent

SVRG: Stochastic Variance Reduction Gradient
SARAH: StochAstic Recursive grAdient algoritHm

SNVRG: Stochastic Nested Variance-Reduced Gradient descent
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