Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent

Yunwen Lei¹ and Yiming Ying²

¹University of Kaiserslautern ²University at Albany, State University of New York (SUNY)

yunwen.lei@hotmail.com yying@albany.edu

June, 2020

Overview

Population and Empirical Risks

• Training Dataset: $S = \{z_1 = (x_1, y_1), \dots, z_n = (x_n, y_n)\}$ with each example $z_i \in \mathcal{Z} = \mathcal{X} \times \mathcal{Y}$

- Parametric model $\mathbf{w} \in \Omega \subseteq \mathbb{R}^d$ for prediction
- Loss function: $f(\mathbf{w}; z)$ measure performance of \mathbf{w} on an example z
- Population risk: $F(\mathbf{w}) = \mathbb{E}_{z}[f(\mathbf{w}; z)]$ with best model

$$\mathbf{w}^* = \arg\min_{\mathbf{w}\in\Omega} F(\mathbf{w})$$

• Empirical risk: $F_{\mathcal{S}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{w}; z_i).$

Excess Generalization Error

Based on the training data S, a randomized algorithm denoted by A (e.g. SGD) outputs a model $A(S) \in \Omega$...

• Target of analysis: excess generalization error

$$\mathbb{E}[F(A(S)) - F(\mathbf{w}^*)] = \mathbb{E}\Big[\underbrace{F(A(S)) - F_S(A(S))}_{\text{estimation error}} + \underbrace{F_S(A(S)) - F_S(\mathbf{w}^*)}_{\text{optimization error}}\Big]$$

- Vast literature on optimization error: (Duchi et al., 2011; Bach and Moulines, 2011; Rakhlin et al., 2012; Shamir and Zhang, 2013; Orabona, 2014; Ying and Zhou, 2017; Lin and Rosasco, 2017; Pillaud-Vivien et al., 2018; Bassily et al., 2018; Vaswani et al., 2019; Mücke et al., 2019) and many others
- Algorithmic stability for studying estimation error: (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005; Rakhlin et al., 2005; Shalev-Shwartz et al., 2010; Hardt et al., 2016; Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018; Feldman and Vondrak, 2018) etc.

Uniform Stability Approach

Uniform Stability (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005)

A randomized algorithm A is ϵ -uniformly stable if, for any two datasets S and S' that differ by one example, we have

$$\sup_{z} \mathbb{E}_{\mathcal{A}}[f(\mathcal{A}(S);z) - f(\mathcal{A}(S');z)] \le \epsilon_{\text{uniform}}.$$
 (1)

• For G-Lipschitz, strongly smooth f, SGD with step size η_t informally we have

Generalization
$$\leq$$
 Uniform stability $\leq \frac{1}{n} \sum_{t=1}^{T} \eta_t G^2$.

• These assumptions are restrictive: they are not true for *q*-norm loss $f(\mathbf{w}; z) = |y - \langle \mathbf{w}, x \rangle|^q$ $(q \in [1,2])$ and hinge loss $(1 - y \langle \mathbf{w}, x \rangle)_+$ with $\mathbf{w} \in \mathbb{R}^d$.

Can we remove these assumptions and explain the real power of SGD?

Our Results

On-Average Model Stability

To handle the general setting, we propose a new concept of stability. Let $S = \{z_i : i = 1, ..., n\}$ and $\tilde{S} = \{\tilde{z}_i : i = 1, ..., n\}$, and for each *i*, let $S^{(i)} = \{z_1, ..., z_{i-1}, \tilde{z}_i, z_{i+1}, ..., z_n\}$.

On-Average Model Stability

We say a randomized algorithm $A: \mathcal{Z}^n \mapsto \Omega$ is on-average model ϵ -stable if

$$\mathbb{E}_{S,\widetilde{S},\mathcal{A}}\left[\frac{1}{n}\sum_{i=1}^{n}\|\mathcal{A}(S)-\mathcal{A}(S^{(i)})\|_{2}^{2}\right] \leq \epsilon^{2}.$$
(2)

• α -Hölder continuous gradients ($\alpha \in [0, 1]$)

$$\left\|\partial f(\mathbf{w},z) - \partial f(\mathbf{w}',z)\right\|_{2} \leq \|\mathbf{w} - \mathbf{w}'\|_{2}^{\alpha}.$$
(3)

 $\alpha=$ 0 means that f is Lipschitz and $\alpha=1$ means strongly smoothness.

• If A is on-average model ϵ -stable,

$$\mathbb{E}\big[F(A(S)) - F_{S}(A(S))\big] = O\Big(\epsilon^{1+\alpha} + \epsilon\big(\mathbb{E}[F_{S}(A(S))]\big)^{\frac{\alpha}{1+\alpha}}\Big).$$
(4)

Can handle both Lipschitz functions and un-bounded gradient!

Case Study: Stochastic Gradient Descent

We study the on-average model stability ϵ_{T+1} of \mathbf{w}_{T+1} from SGD ...

SGD

for
$$t = 1, 2, ...$$
 to T do
 $i_t \leftarrow$ random index from $\{1, 2, ..., n\}$
 $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \partial f(\mathbf{w}_t; z_{i_t})$ for some step sizes $\eta_t > 0$
return \mathbf{w}_{T+1}

On-Average Model Stability for SGD

• If ∂f is α -Hölder continuous with $\alpha \in [0, 1]$, then

$$\epsilon_{T+1}^{2} = O\Big(\sum_{t=1}^{T} \eta_{t}^{\frac{2}{1-\alpha}} + \frac{1+T/n}{n} \Big(\sum_{t=1}^{T} \eta_{t}^{2}\Big)^{\frac{1-\alpha}{1+\alpha}} \Big(\sum_{t=1}^{T} \eta_{t}^{2} \mathbb{E}[F_{S}(\mathbf{w}_{t})]\Big)^{\frac{2\alpha}{1+\alpha}}\Big)$$

Weighted sum of risks (i.e. Σ^T_{t=1} η²_t ℝ[F_S(w_t)]) can be estimated using tools of analyzing optimization errors

Main Results for SGD

Our Key Message (Informal) Generalization \leq On-average model stability \leq Weighted sum of risks

Recall, for uniform stability with Lipschitz and smooth f, that

Generalization
$$\leq$$
 Uniform stability $\leq rac{1}{n}\sum_{t=1}^T \eta_t G^2$

Specifically, we have the following excess generalization bounds...

SGD with Smooth Functions

Let f be convex and strongly-smooth. Let $\bar{\mathbf{w}}_T = \sum_{t=1}^T \eta_t \mathbf{w}_t / \sum_{t=1}^T \eta_t$.

Theorem (Minimax optimal generalization bounds) Choosing $\eta_t = 1/\sqrt{T}$ and $T \asymp n$ implies that

$$\mathbb{E}\big[F(\bar{\mathbf{w}}_{T})\big] - F(\mathbf{w}^*) = O\big(1/\sqrt{n}\big).$$

Theorem (Fast generalization bounds under low noise) For low noise case $F(\mathbf{w}^*) = O(1/n)$, we can take $\eta_t = 1, T \asymp n$ and get

$$\mathbb{E}[F(\bar{\mathbf{w}}_T)] = O(1/n).$$

• We remove bounded gradient assumptions.

• We get the first-ever fast generalization bound O(1/n) by stability analysis.

SGD with Lipschitz Functions

Let f be convex and G-Lipschitz (Not necessarily smooth! e.g. the hinge loss.)

Our on-average model stability bounds can be simplified as

$$\epsilon_{T+1}^2 = O\Big(\Big(1 + T/n^2\Big)\sum_{t=1}^T \eta_t^2\Big).$$
 (5)

Key idea: gradient update is approximately contractive

$$\|\mathbf{w} - \eta \partial f(\mathbf{w}; z) - \mathbf{w}' + \eta \partial f(\mathbf{w}'; z)\|_2^2 \le \|\mathbf{w} - \mathbf{w}'\|_2^2 + O(\eta^2).$$
(6)

Theorem (Generalization bounds)

We can take $\eta_t = T^{-\frac{3}{4}}$ and $T \asymp n^2$ and get

$$\mathbb{E}[F(\bar{\mathbf{w}}_T)] - F(\mathbf{w}^*) = O(n^{-\frac{1}{2}}).$$

We get the first generalization bound $O(1/\sqrt{n})$ for SGD with non-differentiable functions based on stability analysis.

SGD with α -Hölder continuous gradients

Let f be convex and have α -Hölder continuous gradients with $\alpha \in (0, 1)$.

Key idea: gradient update is approximately contractive

$$\|\mathbf{w} - \eta \partial f(\mathbf{w}; z) - \mathbf{w}' + \eta \partial f(\mathbf{w}'; z)\|_2^2 \leq \|\mathbf{w} - \mathbf{w}'\|_2^2 + O(\eta^{\frac{2}{1-\alpha}}).$$

Theorem

• If
$$\alpha \geq 1/2$$
, we take $\eta_t = 1/\sqrt{T}$, $T \asymp$ n and get

$$\mathbb{E}[F(\bar{\mathbf{w}}_T)] - F(\mathbf{w}^*) = O(n^{-\frac{1}{2}}).$$

• If
$$lpha < 1/2$$
, we take $\eta_t = T^{rac{3lpha - 3}{2(2-lpha)}}$, $T symp n^{rac{2-lpha}{1+lpha}}$ and get

$$\mathbb{E}[F(\bar{\mathbf{w}}_T)] - F(\mathbf{w}^*) = O(n^{-\frac{1}{2}}).$$

Theorem (Fast Generalization bounds)
If
$$F(\mathbf{w}^*) = O(\frac{1}{n})$$
, we let $\eta_t = T^{\frac{\alpha^2 + 2\alpha - 3}{4}}$, $T \asymp n^{\frac{2}{1+\alpha}}$ and get $\mathbb{E}[F(\bar{\mathbf{w}}_T)] = O(n^{-\frac{1+\alpha}{2}})$.

SGD with Relaxed Convexity

We assume *f* is *G*-Lipschitz continuous.

Non-convex f but convex F_S

• stability bound: $\epsilon^2 \leq \frac{1}{n^2} \left(\sum_{t=1}^T \eta_t \right)^2 + \frac{1}{n} \sum_{t=1}^t \eta_t^2.$

 \bullet generalization bound: if $\eta_t = 1/\sqrt{T}$ and $T \asymp \textit{n},$ then

$$\mathbb{E}[F(\mathbf{\bar{w}}_T)] - F(\mathbf{w}^*) = O(1/\sqrt{n}).$$

Non-convex f but strongly-convex F_S $(\eta_t = 1/t)$

- stability bound: $\epsilon^2 \leq \frac{1}{nT} + \frac{1}{n^2}$.
- generalization bound: if $T \simeq n$, then

$$\mathbb{E}[F(\bar{\mathbf{w}}_T)] - F(\mathbf{w}^*) = O(1/n).$$

• example: least squares regression.

References I

- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pages 451–459, 2011.
- R. Bassily, M. Belkin, and S. Ma. On exponential convergence of sgd in non-convex over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.
- O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research, 2(Mar):499-526, 2002.
- Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that converge to global optima. In International Conference on Machine Learning, pages 744–753, 2018.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
- A. Elisseeff, T. Evgeniou, and M. Pontil. Stability of randomized learning algorithms. Journal of Machine Learning Research, 6 (Jan):55–79, 2005.
- V. Feldman and J. Vondrak. Generalization bounds for uniformly stable algorithms. In Advances in Neural Information Processing Systems, pages 9747–9757, 2018.
- M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient descent. In International Conference on Machine Learning, pages 1225–1234, 2016.
- Kuzborskij and C. Lampert. Data-dependent stability of stochastic gradient descent. In International Conference on Machine Learning, pages 2820–2829, 2018.
- J. Lin and L. Rosasco. Optimal rates for multi-pass stochastic gradient methods. Journal of Machine Learning Research, 18(1): 3375–3421, 2017.
- N. Mücke, G. Neu, and L. Rosasco. Beating sgd saturation with tail-averaging and minibatching. In Advances in Neural Information Processing Systems, pages 12568–12577, 2019.
- F. Orabona. Simultaneous model selection and optimization through parameter-free stochastic learning. In Advances in Neural Information Processing Systems, pages 1116–1124, 2014.
- L. Pillaud-Vivien, A. Rudi, and F. Bach. Statistical optimality of stochastic gradient descent on hard learning problems through multiple passes. In Advances in Neural Information Processing Systems, pages 8114–8124, 2018.
- A. Rakhlin, S. Mukherjee, and T. Poggio. Stability results in learning theory. Analysis and Applications, 3(04):397-417, 2005.

References II

- A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. In International Conference on Machine Learning, pages 449–456, 2012.
- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform convergence. Journal of Machine Learning Research, 11(Oct):2635–2670, 2010.
- O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization convergence results and optimal averaging schemes. In International Conference on Machine Learning, pages 71–79, 2013.
- S. Vaswani, F. Bach, and M. Schmidt. Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron. In International Conference on Artificial Intelligence and Statistics, pages 1195–1204, 2019.
- Y. Ying and D.-X. Zhou. Unregularized online learning algorithms with general loss functions. Applied and Computational Harmonic Analysis, 42(2):224—244, 2017.

Thank you!