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Pairwise Learning

Data: S = {zi = (xi , yi )}ni=1 ∼ ρ defined on Z = X × Y

We learn a model hw : X 7→ Y or hw : X × X 7→ Y,w ∈ W

Pairwise loss: `(w; z , z ′) measures behavior of hw over z , z ′

Population risk and Empirical risk

R(w) = Ez,z̃

[
`(w; z , z̃)

]
, RS(w) =

1

n(n − 1)

∑
i,j∈[n]:i 6=j

`(w; zi , zj).

Algorithm: A : Zn 7→ W (output A(S) when applied to S)

We study generalization gap R(A(S))− RS(A(S))!



Algorithmic Stability

Uniform Stability

We say A : Zn 7→ W is γ-uniformly stable if for any training datasets S ,S ′ ∈ Zn

that differ by at most a single example

sup
z,z̃∈Z

∣∣`(A(S); z , z̃)− `(A(S ′); z , z̃)
∣∣ ≤ γ.

On-average stability

Let S = {z1, . . . , zn},S ′ = {z ′1, . . . , z ′n}. For any i < j let

Si,j =
{
z1, . . . , zi−1, z

′
i , zi+1, . . . , zj−1, z

′
j , zj+1, . . . , zn

}
. (1)

We say a deterministic algorithm A is γ-on-average stable if

1

n(n − 1)

∑
i,j∈[n]:i 6=j

ES,S′

[
`
(
A(Si,j); zi , zj

)
− `
(
A(S); zi , zj

)]
≤ γ.

(Bousquet and Elisseeff, 2002; Elisseeff et al., 2005; Shalev-Shwartz et al., 2010; Hardt et al.,

2016; Feldman and Vondrak, 2019)



Generalization by Stability

Generalization by Uniform Stability

If A : Zn 7→ W is γ-uniformly stable, then with high probability

|RS(A(S))− R(A(S))| = Õ
(
γ + n−1/2

)
.

Improves the existing bound O(
√
nγ + n−1/2) by a factor of

√
n (Agarwal and

Niyogi, 2009; Wang et al., 2019)

Uses novel decomposition to address dependency of n(n − 1) terms in RS

Generalization by On-average Stability

If A is γ-on-average stable, then

E
[
R(A(S))− RS(A(S))

]
≤ γ.



Application

Regularized Risk Minimization (RRM): with a regularizer r :W 7→ R

wS = arg min
w∈W

[
FS(w) :=

1

n(n − 1)

∑
i,j∈[n]:i 6=j

`(w; zi , zj) + r(w)
]
. (2)

SGD: at t-th iteration, SGD randomly selects (it , jt) and

wt+1 = wt − ηt`′(wt ; zit , zjt ).

Let w∗R = arg infw R(w) and A be RRM/SGD with appropriate parameters.

We get excess risk bound R(A(S))− R(w∗R) = O(n−1/2)

Existing stability analysis shows R(A(S))− R(w∗R) = O(n−1/4) (Agarwal and

Niyogi, 2009; Wang et al., 2019)

We remove bounded loss assumption (Bousquet et al., 2020)
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