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Pairwise Learning

Data: S = {zi = (xi , yi )}ni=1 ∼ ρ defined on Z = X × Y
We learn a model hw : X 7→ Y or hw : X × X 7→ Y,w ∈ W
Pairwise loss: f (w; z , z ′) measures behavior of hw over z , z ′

Population risk and Empirical risk

F (w) = Ez,z′
[
f (w; z , z ′)

]
, FS(w) =

1

n(n − 1)

∑
i,j∈[n]:i 6=j

f (w; zi , zj).

Risk Minimizer w∗ = arg minw∈W F (w)

Algorithm: A : Zn 7→ W (output A(S) when applied to S)

We are interested in studying the excess risk F (A(S))− F (w∗)!



Error Decomposition and SGD

Error decomposition:

E
[
F (A(S))− F (w∗)

]
= E

[
F (A(S))− FS(A(S))︸ ︷︷ ︸

estimation error

+FS(A(S))− FS(w∗)︸ ︷︷ ︸
optimization error

]

1 estimation error: difference between testing error and training error at A(S)

2 optimization error: difference between A(S) and w∗ measured by training error

Stochastic Gradient Descent (SGD)

SGD(S ,T , f , {ηt})

for t = 1, 2, . . . to T do
draw (it , jt) uniformly over all pairs {(i , j) : i , j ∈ [n], i 6= j}

wt+1 = wt − ηt∇f (wt ; zit , zjt ) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1



Definitions

Let g :W 7→ R (the following needs to hold for all w,w′ ∈ W).

Smoothness We say g is L-smooth if

‖∇g(w)−∇g(w′)‖2 ≤ L‖w − w′‖2.

Lipschitzness We say g is G -Lipschitz continuous if

|g(w)− g(w′)| ≤ G‖w − w′‖2.

Convexity We say g is convex if

g(w) ≥ g(w′) + 〈w − w′,∇g(w′)〉.



Algorithmic Stability and Generalization

Algorithmic Stability

Let S = {z1, . . . , zn},S ′ = {z ′1, . . . , z ′n} be independently drawn from ρ. We denote

Si =
{
z1, . . . , zi−1, z

′
i , zi+1, . . . , zn

}
, ∀i ∈ [n].

1 We say A is ε-uniformly stable if for any datasets S , S̃ ∈ Zn that differ by at most a
single example we have supz,z′∈Z

∣∣f (A(S); z , z ′)− f (A(S̃); z , z ′)
∣∣ ≤ ε.

2 We say A is on-average argument ε-stable if ES,S̃,A

[
1
n

∑n
i=1 ‖A(S)− A(Si )‖22

]
≤ ε2.

Connection Between Stability and Generalization

1 If A is on-average argument ε-stable and f is smooth, then in expectation we have

E[F (A(S))− FS(A(S))] = O(ε2 + ε
√

E[FS(A(S))]).

2 If A is ε-uniformly stable and σ2
0 := EZ ,Z ′,S

[(
f (A(S);Z ,Z ′)− f (w∗;Z ,Z ′)

)2]
, then

with high probability we have (Klochkov and Zhivotovskiy, 2021)

F (A(S))− FS(A(S))− F (w∗) + FS(w∗) = Õ
(
ε+

1

n
+

σ0√
n

)
.



SGD for Pairwise Learning: Convex and Smooth Cases

Stability Bounds
Let f be convex and L-smooth. Then SGD with T iterations is on-average argument
ε-stable with

ε2 = O
(1

n

T∑
t=1

η2tE[FS(wt)]
)
.

Excess Generalization Bounds
Let f be convex and L-smooth. Then for SGD with ηt = η and T � n we have

E[F (w̄T )− FS(w)] = O
(( 1

γ
+ γη2

)
E[FS(w)]

)
+ O

( 1

Tη
+
γη

n

)
, ∀γ ≥ 1.

1 We can choose η � 1/
√
T to get E[F (w̄T )]− F (w∗) = O(1/

√
n).

2 If F (w∗) = O(1/n), choosing η = 2/L yields E[F (w̄T )]− F (w∗) = O(1/n).

Our stability bounds involve training errors and get improved if training errors are small!



SGD for Pairwise Learning: Convex and Nonsmooth Cases

Stability and Excess Generalization Bounds
Let f be convex and G -Lipschitz. Then SGD with T iterations is ε-uniformly stable with

ε = O(
√
Tη). Furthermore, we can choose η � T−

3
4 and T � n2 to get

E[F (w̄T )]− F (w∗) = O(1/
√
n).

To achieve the desired bound O(1/
√
n), SGD requires O(n2) iterations for

nonsmooth problems

To decrease the computation cost, we develop Iterative Localized Algorithm for
Pairwise Learning (Feldman et al., 2020)



Iterative Localized Algorithm for Pairwise Learning

Iterative Localized Algorithm for Pairwise Learning

Input: initial point w0 = 0, parameter k = d 1
2

log2 ne
for i = 1, 2, . . . , k do

set Ti � ni = d n
2i
e, γi = 1

2i
√
n
, ηt = γi ni

t+1
,f̃ (w; z , z ′)= f (w; z , z ′) + 1

γi ni
‖w−wi−1‖22

draw a sample Si of size ni independently from ρ
apply SGD(Si ,Ti , f̃ , {ηt}) to minimize the following problem and get wi

F̃Si (w) :=
1

ni (ni − 1)

∑
z,z′∈Si :z 6=z′

f (w; z , z ′) +
1

γini
‖w − wi−1‖22. (1)

Excess Generalization Bounds

Let f be convex and Lipschitz. Then with high probability F (wk)− F (w∗) = Õ(1/
√
n).

Furthermore, it requires O(n) gradient computations.

The existing iterative localized algorithm works for pointwise learning and only leads
to bounds in expectation.

We derive the first Õ(1/
√
n) high-probability bounds with O(n) complexity based

on algorithmic stability.



SGD for Pairwise Learning: Nonconvex and Smooth Case

Learning Rates

Let f be smooth and the variance be bounded. Consider SGD with ηt = 1/
√
T and

T � n/d . With high probability 1
T

∑T
t=1 ‖∇F (wt)‖22 = O(

√
d/n).

For nonconvex problems, we consider a different error decomposition

‖∇F (wt)‖22 ≤ 2 ‖∇F (wt)−∇FS(wt)‖22︸ ︷︷ ︸
estimation error

+2 ‖∇FS(wt)‖22︸ ︷︷ ︸
optimization error

.

We show with high probability ‖wt‖2 ≤ RT := O(T
1
4 ) if t ≤ T .

We use uniform convergence of gradients to control estimation error

‖∇F (wt)−∇FS(wt)‖2 ≤ sup
w:‖w‖2≤RT

‖∇F (wt)−∇FS(wt)‖2 = O(RT

√
d/n).

With high probability, the optimization error satisfies

1

T

T∑
t=1

‖∇F (wt)‖22 = O
(√

Td/n + 1/
√
T
)
.
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