Generalization Guarantee of SGD for Pairwise Learning
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Pairwise Learning

Data: S = {z = (x;,yi)}/-1 ~ p defined on Z =X x Y
We learn a model hy : X — Y or hy : X X X —»Y,weW

Pairwise loss: f(w;z,z") measures behavior of hy over z,z’

Population risk and Empirical risk

ﬁ Z f(w; zi, zj).

iJ€E[nl:i#i

F(w) =E, . [f(w;z,Z))], Fs(w)=

Risk Minimizer w* = arg minwew F(w)

Algorithm: A: Z" — W (output A(S) when applied to S)

We are interested in studying the excess risk F(A(S)) — F(w*)!




Error Decomposition and SGD

Error decomposition:

E[F(A(S)) — F(w")] = E| F(A(S)) = Fs(A(S)) + Fs(A(S)) = Fs(w")]

estimation error optimization error

@ estimation error: difference between testing error and training error at A(S)

@ optimization error: difference between A(S) and w* measured by training error

Stochastic Gradient Descent (SGD)

SGD(S, T,f,{n:})

fort=1,2,...to T do
draw (¢, j:) uniformly over all pairs {(i,j) : i,j € [n],i # j}

Wi = we — 0V F(we; zi,, 2j,) for some step sizes 7 > 0

return wr; or an average of wi, ..., W74




Definitions

Let g : W — R (the following needs to hold for all w,w’ € W).

Smoothness We say g is L-smooth if
[Veg(w) — Vgw)ll2 < Lllw — w'[|>.
Lipschitzness We say g is G-Lipschitz continuous if
lg(w) — g(w')] < Gllw —w[l2.
Convexity We say g is convex if

g(w) > g(w') + (w —w', Vg(w')).



Algorithmic Stability and Generalization

Algorithmic Stability

Let S={z1,...,2z.},S = {z,..., 2z} be independently drawn from p. We denote

Si= {Zly" .,Z,'fl,z,',,Zile,- 0o 72/7}5 Vi e [n]

@ We say A is c-uniformly stable if for any datasets S, S € Z" that differ by at most a
single example we have sup, ..z |F(A(S); z,2') — f(A(S);z,Z')| < e

n

@ We say A is on-average argument e-stable if E; ¢ , [1 S AS) — A(S,)||§] <€

vy

Connection Between Stability and Generalization
© If Ais on-average argument e-stable and f is smooth, then in expectation we have

E[F(A(S)) — Fs(A(S)] = O(€" + e /E[Fs(A(S)))).

Q@ If Ais c-uniformly stable and 03 := Ez 7 s[(f(A(S); Z,Z") — f(w*; Z, Z'))2], then
with high probability we have (Klochkov and Zhivotovskiy, 2021)

FIA(S)) — Fs(A(S)) — F(w") + Fs(w") = O (e + 1 + ”7)




SGD for Pairwise Learning: Convex and Smooth Cases

Stability Bounds

Let f be convex and L-smooth. Then SGD with T iterations is on-average argument

e-stable with
1=
@ = 0= Y mElFs(we)]).
t=1

Excess Generalization Bounds

Let f be convex and L-smooth. Then for SGD with n: =7 and T < n we have

E[F(w7) — Fs(w)] = o((% + P )ElFs(w)]) + o(%7 +20), vy > 1

@ We can choose 17 < 1/v/T to get E[F(W7)] — F(w*) = O(1/+/n).
Q If F(w*) = O(1/n), choosing nn = 2/L yields E[F(w7)] — F(w*) = O(1/n).

Our stability bounds involve training errors and get improved if training errors are small! J




SGD for Pairwise Learning: Convex and Nonsmooth Cases

Stability and Excess Generalization Bounds

Let f be convex and G-Lipschitz. Then SGD with T iterations is e-uniformly stable with
€= O(ﬁn). Furthermore, we can choose 7 =< T=%and T = n?to get

E[F(Wr)] — F(w") = O(1/V/n).

@ To achieve the desired bound O(1/+/n), SGD requires O(n?) iterations for
nonsmooth problems

@ To decrease the computation cost, we develop Iterative Localized Algorithm for

Pairwise Learning (Feldman et al., 2020)



lterative Localized Algorithm for Pairwise Learning
Iterative Localized Algorithm for Pairwise Learning

Input: initial point wo = 0, parameter k = [1 log, n]
fori=1,2,...,kdo
set Ti<mi = [51,% = 5o = 3. F(wi2,2)=f(w; 2,2") + S llw—wi1 3
draw a sample S; of size n; independently from p
apply SGD(S;, T;, f,{n:}) to minimize the following problem and get w;

l?sl.(w) = _ Z f(w;z,2') +

lw — wi_s 3. (1)
ni(ni - 1) 2,2/ €S;:z#2'

Yini

Excess Generalization Bounds

Let f be convex and Lipschitz. Then with high probability F(wy) — F(w*) = O(1/+/n).
Furthermore, it requires O(n) gradient computations.

o’

@ The existing iterative localized algorithm works for pointwise learning and only leads
to bounds in expectation.

@ We derive the first O(1/,/n) high-probability bounds with O(n) complexity based
on algorithmic stability.



SGD for Pairwise Learning: Nonconvex and Smooth Case
Learning Rates

Let f be smooth and the variance be bounded. Consider SGD with 7 = 1/+/T and
T =< n/d. With high probability 2 >>] | [|[VF(w.)|j3 = O(y/d/n).

For nonconvex problems, we consider a different error decomposition

IVF(we)ll5 < 2||VF(we) — VFs(we)|l3 +2 | VFs(we)]l3 -

estimation error optimization error
. . - 1.
@ We show with high probability ||w|> < Rr:=O(T2*)ift < T.
@ We use uniform convergence of gradients to control estimation error

IVF(we) = VFs(we)ll2 < sup  [[VF(wi) = VFs(wi)|2 = O(Rr+/d/n).

w:l|lwl2 <R

@ With high probability, the optimization error satisfies

;
Z [VF(we)|)5=O0(VTd/n+1/VT).
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