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Multi-class Classification (MCC):
Classic Problem in ML

Binary classification: Multi-class classification:
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Many MCC Algorithms out there...

E.g.:
@ Multinomial logistic regression

@ Multi-class SVMs

binary: SVM

Lin, Lee, and Watkins and Crammer and

MC:  \Wahba (04)  Weston (99)  Singer (02)




In this talk: Theory for MCC

Koltchinskii and Panchenko (2002); Mohri et al. (2012); Kuznetsov et al. (2014)
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Problem Setting



Multi-class Classification

Given training data:
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Multi-class Classification

Given training data:

° (\zg’\dog) ({Qdcar) ¢

o Formally z; = (x1,)1),-. ., 2n

exXxy
> V= {1,2,...,c}

» ¢ = number of classes



Multi-class Classification
Aim:
@ Define a hypothesis class H of functions h = (hy, ..., hc)
> e.g., hy(x) = (wy, ¢(x)) € Hk
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Multi-class Classification
Aim:
@ Define a hypothesis class H of functions h = (hy, ..., hc)
> e.g., hy(x) = (wy, ¢(x)) € Hk

@ Find an h € H that “predicts well” via
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Multi-class Classification
Aim:
@ Define a hypothesis class H of functions h = (hy, ..., hc)
> e.g., hy(x) = (wy, ¢(x)) € Hk

@ Find an h € H that “predicts well” via

9= ama] _ ()

@ Want hy,(x;) being larger than all other h,(x;)

» otherwise loss incurred through loss function W, : R — R

Want: small generalization error Ex v Wy (hy (X)).




Types of Generalization bounds for MCC

Data-independent bounds

@ based on covering numbers
(Guermeur, 2002; Zhang, 2004a,b; Hill and Doucet, 2007)

@ unable to adapt to data

Data-dependent bounds

@ based on Rademacher complexity
(Koltchinskii and Panchenko, 2002; Mohri et al., 2012; Cortes et al., 2013; Kuznetsov

et al., 2014)

@ computable from the data

In this talk: data-dependent bounds




Generalization Error Bounds



Data-dependent bounds based on
Rademacher Complexity (RC)

Definition (RC)

Rs(H) := sup Hh(z,

heH N

where €1, ..., €, are random signs (“Rademacher variables")

Interpretation: RC measures how much the hypothesis class can correlate
with random noise.



Data-dependent bounds based on
Rademacher Complexity (RC)

Definition (RC)

NRs(H) : sup e, h z,
heH N
where €1, ..., €, are random signs (“Rademacher variables")

Interpretation: RC measures how much the hypothesis class can correlate
with random noise.

Cc . 1 . o @
Vhe H: EyWy(h(X)) = 3" W, (h(x)) < 2%s (\Ily(h(x)) ‘he HK)

n i=1
expectation

empirical




Data-dependent bounds based on RC
Example (Crammer & Singer):

H = {hw = (<W17¢(X)>7 R <W67¢(X)>) W= (Wj)f:h

°
W1
w2

o/ W3
°

(o}
> lIwili3| <
j=1




Data-dependent bounds based on RC

Example (Crammer & Singer):

H={h" = ((wy, ¢(x)), - .., (We, 6(x))) : w = (w;)iy, Z w3 < 1}

Multi-class margin: for any h: X — R€, we denote by
ph(%.y) = hy(x) = max hy(x) (1)
Multi-class margin loss:

\Ily(h(x)) = max (1 - ph(x7)/)7 O)

Key step is to estimate

Ns (\Uy(h) he H) = R (p,,(x,y) he H> . ms( max (h(x)): he H)



linear dependency on #classes

Classic analysis based on:

Rs(max{hy,...,hc}: hi€ Hpj=1,...,c) <| > %Rs(H,

Koltchinskii and Panchenko (2002); Mohri et al. (2012); Cortes et al. (2013); Kuznetsov et al. (2014)
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linear dependency on #classes

Classic analysis based on:

Rs(max{hy,...,hc}: hi€ Hpj=1,...,c) <| > %Rs(H,

Implies linear dependence on number of classes

()

Koltchinskii and Panchenko (2002); Mohri et al. (2012); Cortes et al. (2013); Kuznetsov et al. (2014)



From linear to sqrt dependency on F#classes

Key is to use the Lipschitz continuity of loss function:
A function f : R — R is L-Lips. cont. w.r.t. a norm || - || in R€ if

f(t) — ) < Lli(th — t1,..., te — )], Vet ERC

@ eg., lx-norm: [|t]|oc = maxj=1,.. c|tj| (Crammer & Singer)

Y. Lei, U. Dogan, A. Binder, and M. Kloft. Multi-class svms: From tighter data-dependent generalization bounds to novel
algorithms.
In Advances in Neural Information Processing Systems, pages 2026-2034, 2015.



From linear to sqrt dependency on F#classes

Key is to use the Lipschitz continuity of loss function:
A function f : R — R is L-Lips. cont. w.r.t. a norm || - || in R€ if

f(t) — ) < Lli(th — t1,..., te — )], Vet ERC

@ eg., lx-norm: [|t]|oc = maxj=1,.. c|tj| (Crammer & Singer)

Key result
If fi,...,f, are L-Lips. cont. w.r.t. |- ||, then
E. sup eifi(h(x)) < V2LE, sup eihi(xi)  (3)
h:(hh...,hc)eH; h=(h1,...,hc EHZ;; ’

Y. Lei, U. Dogan, A. Binder, and M. Kloft. Multi-class svms: From tighter data-dependent generalization bounds to novel
algorithms.
In Advances in Neural Information Processing Systems, pages 2026-2034, 2015.



Crammer & Singer

The function fi(t) = maxj—1, .. tj is 1-Lipschitz continuous w.r.t. £>-norm:

.....

| max tj :n11a>.<’ tJ’<Ht—tH2— Z":J_tj‘ )1/2

Jj=1,.. =
We have the constraint: Y7, [jw;[|5 <1

® by (2),

9%5( “max (h(x)):he H) ZE sup Zg, wj, X

T Iwle<in

%5( _max (h(x)) : h e H) <E, sup ZZg, wj, X

[[(wi,...,we H2<1 i=1 j=1



Result Preserves Correlation

classic result (2): Lipschitz result (3):
n n n
sup Y ei{wi, X))+ sup > €i(wa, ;) sup > [ein(wi, Xi) +ea(wa, Xi)
lwi]l2<1i=1 lw2]l2<1i=1 ll(wi,w2)[2<1 i=1
supremum taken separately supremum taken jointly
753 w2
1

. D
1 1 1 \—/ 1

-1 -1

Preserving the coupling means supremum in a smaller space! J
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Key observation

@ Structural result (3) uses lipschitz continuity of maximum w.r.t. || -

12
< _ — _
}JnlIax tj— JRliven bl < It - = Z|tj g%
Jj=1
@ However, maximum is 1-Lipschitz continuous w.r.t. || - ||

max tj— max G| <[t —to = max |t — ]
j=1,...,¢c Jj=1,...;c Jj=1,...,c

@ the same Lipschitz constant but £,,-norm is much milder:

Itl2 = Vclt||o if elements of t are the same



Key observation

@ Structural result (3) uses lipschitz continuity of maximum w.r.t. || -

n1/2
< _ — _
| max t— max B < Je—Ela= (15 &)
j=1
@ However, maximum is 1-Lipschitz continuous w.r.t. || - ||

max tj— max G| <[t —to = max |t — ]
j=1,...,¢c Jj=1,...;c Jj=1,...,c

@ the same Lipschitz constant but £,,-norm is much milder:

lt]2 = Vc|lt]| if elements of t are the same

Can we directly use £, Lipschitz continuity?




Background: Covering numbers

@ F is a class of scalar-valued functions defined over a space Z
© S:={z,...,z,} C Z is a set of cardinality n
{vl,...,v"} CR"is an (€, lo)-cover of F w.rt. S if

sup_ min  max |f(z;) — vl <e.
feFi=1,...,mi=l,...,n

Noo(€, F, n): the smallest cardinality m of such an (e, o )-cover

Q \'




Core ldea

Introduce the linear and scalar-valued function class

H:={v— (w,v):|w|<1veS}

S = {1(x1), 2(x1)s- s Pe(x1), 5+ - o P1(30)s Pa(Xn)s - - -, elxa) ),

induced by x; induced by x,

#j(x) == (0,...,0,¢(x),0,...,0) € Hg, j €N
—_— ==

Jj—1 c—Jj
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Core ldea

Introduce the linear and scalar-valued function class

H:={v— (w,v):|w|<1veS}

S = {1(x1), 2(x1)s- s Pe(x1), 5+ - o P1(30)s Pa(Xn)s - - -, elxa) ),

induced by x; induced by x,
éi(x) == (0,...,0,4(x),0,...,0) € Hg, j€N,.
N—— N——
j-1 c—j

Key identity:

(w, ;(x))) = <(w1, we), (0, .,0,¢(x;),07...,0)> = (w;}, (%))

Jj—1 c—J

Traversing all i, j means
extracting all components w; over all examples x;




New Structural Result based on Covering Numbers

Noo(&, {W, (h(x)) : h € H}, n) < Noo(e/L, H,[nc)). (4)J

Y. Lei, U. Dogan, D.-X. Zhou, and M. Kloft. Data-dependent generalization error bounds for multi-class classification.
IEEE Transactions on Information Theory, to appear.



New Structural Result based on Covering Numbers

Noo(&, {W, (h(x)) : h € H}, n) < Noo(e/L, H,[nc)). (4)J

@ Complexity of H is readily tackled (Zhang, 2002; Srebro et al., 2010)

Y. Lei, U. Dogan, D.-X. Zhou, and M. Kloft. Data-dependent generalization error bounds for multi-class classification.
IEEE Transactions on Information Theory, to appear.



Main result

Theorem (Lei, Dogan, Zhou, and Kloft, 2019)

If W, is L-Lipschitz continuous w.r.t. || - ||, then

Rs(F) < 27LV/4

Rnc(H) |
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Main result

Theorem (Lei, Dogan, Zhou, and Kloft, 2019)

If W, is L-Lipschitz continuous w.r.t. || - ||, then

Rs(F) < 27Lv/d Ruc(H) |

Proof?

Rs(F) Noo(e, F, n) Noo(e, H, nc) R, (H)
Example

If ||w|| = [|w]|2, then

max [ 9(x;) [2(2n€) * < Rne(H) < max||d(xi)lla(ne) 2.
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Applications—classic MC-SVMs

MC-SVM in Cramer & Singer (2002):

m|n 7{2““’!”}—1_('—2 max (1—(wy, —

Multinomial logistic regression:

min 5[ D" Iy ] + €3 tog (3 exp (¢
j=1 i=1 y'=1

Crammer and Singer (2002)
wy, ¢(x))) |

Bishop (2006)

Wy —wy,, 6(x7))



Applications—classic MC-SVMs

MC-SVM in Cramer & Singer (2002):

m|n 7{2““’!”}—1_('—2 max (1—(wy, —

Multinomial logistic regression:

min [ 37 I l2] + €D tog (3 e (¢
j=1 i=1 y'=1

Crammer and Singer (2002)
wy, ¢(x))) |

Bishop (2006)

Wy —wy,, 6(x7))

Classic bound by (2) O(n_l\/27:1<¢(xi)a ¢(Xi)>)

Lipschitz bound by (3) | O n—l\/27:1<¢(x,-),¢(x,-)>)
Covering no. bound by (4) | O n*% maxien, Hqﬁ(x,-)”z)




Applications—/,-norm MC-SVM

£p-norm MC-SVM (Lei, Dogan, Binder, and Kloft, 2015)

METEN
i [ Il2] 3 s 1 o =0,
=1

yy;ﬁy



Applications—/,-norm MC-SVM
€P-norm MC-SVM (Lei, Dogan, Binder, and Kloft, 2015)

yyaéy

mvjn %{Z [lw;l|5 } + C max Wy, —wy/,¢(x;)>)+
j=1

Classic bound by (2) ( —1.\/2," H{o(xi), ¢(x,-)>)
Lipschitz bound by (3) ( *1-\/2, 1{o(xi), X,)>)

Covering no. bound by (4) O(n*% 2R log ¢ |max;en, H¢(Xi)||2)

@ Bound by (3) enJoys logarithmic dependency if p &~ 1 and sublinear
dependency ¢!~ % otherwise Lei et al. (2015)

@ Bound by (4) enjoys logarithmic dependency if p < 2 and sublinear
dependency ¢~ % otherwise Lei et al. (2019)



Empirical Verification
@ We consider two datasets ALOI and Sector
@ Vary the number of classes by grouping class labels

@ Approximation of the Empirical Rademacher Complexity (AERC)
defined by

AERC(F Z Rs(e®), F),

where (Monte Carlo approximation)

n

sup Ze;\lly,.(<w1,x,->,...,(wc,x,->).
n we ]Rdxc i—1
wllzp <A’

Rs(e, F) :=

(5)



AERC w.r.t. #classes
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AERC w.r.t. #classes
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Conclusions & Future Directions

Conclusions:

@ New data-dependent bound with mild dependency on ¢

> logarithmic for Cramer & Singer MC-SVM
> logarithmic for Multinomial logistic regression
» sublinear for £,-norm MC-SVM

@ Key is structural result (4) using lips. cont. w.r.t. || - |0



Conclusions & Future Directions

Conclusions:

@ New data-dependent bound with mild dependency on ¢

> logarithmic for Cramer & Singer MC-SVM
> logarithmic for Multinomial logistic regression
» sublinear for £,-norm MC-SVM

@ Key is structural result (4) using lips. cont. w.r.t. || - |0

Directions:
@ Extension to multi-label

@ A data-dependent bound independent of the class size?
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